Academic literature on the topic 'Optimal Hedging'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optimal Hedging.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optimal Hedging"
Albuquerque, Rui. "Optimal currency hedging." Global Finance Journal 18, no. 1 (January 2007): 16–33. http://dx.doi.org/10.1016/j.gfj.2006.09.002.
Full textCong, Jianfa, Ken Seng Tan, and Chengguo Weng. "VAR-BASED OPTIMAL PARTIAL HEDGING." ASTIN Bulletin 43, no. 3 (July 29, 2013): 271–99. http://dx.doi.org/10.1017/asb.2013.19.
Full textTSUZUKI, YUKIHIRO. "ON OPTIMAL SUPER-HEDGING AND SUB-HEDGING STRATEGIES." International Journal of Theoretical and Applied Finance 16, no. 06 (September 2013): 1350038. http://dx.doi.org/10.1142/s0219024913500386.
Full textLeung, Tim, and Matthew Lorig. "Optimal static quadratic hedging." Quantitative Finance 16, no. 9 (April 22, 2016): 1341–55. http://dx.doi.org/10.1080/14697688.2016.1161229.
Full textLioui, Abraham, and Patrice Poncet. "Optimal currency risk hedging." Journal of International Money and Finance 21, no. 2 (April 2002): 241–64. http://dx.doi.org/10.1016/s0261-5606(01)00045-6.
Full textAlexander, C. "Optimal hedging using cointegration." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, no. 1758 (August 1999): 2039–58. http://dx.doi.org/10.1098/rsta.1999.0416.
Full textKim, Hee Ho, and 김미 화. "Optimal Indirect Hedging and Price Conditions." Journal of Derivatives and Quantitative Studies 14, no. 1 (May 31, 2006): 61–88. http://dx.doi.org/10.1108/jdqs-01-2006-b0003.
Full textLee, Cheng-Few, Kehluh Wang, and Yan Long Chen. "Hedging and Optimal Hedge Ratios for International Index Futures Markets." Review of Pacific Basin Financial Markets and Policies 12, no. 04 (December 2009): 593–610. http://dx.doi.org/10.1142/s0219091509001769.
Full textDi Tella, Paolo, Martin Haubold, and Martin Keller-Ressel. "Semi-static variance-optimal hedging in stochastic volatility models with Fourier representation." Journal of Applied Probability 56, no. 3 (September 2019): 787–809. http://dx.doi.org/10.1017/jpr.2019.41.
Full textArruda, Nelson, Alain Bergeron, and Mark Kritzman. "Optimal Currency Hedging: Horizon Matters." Journal of Alternative Investments 23, no. 4 (March 1, 2021): 122–30. http://dx.doi.org/10.3905/jai.2021.1.126.
Full textDissertations / Theses on the topic "Optimal Hedging"
Chen, Fei. "Essays on Optimal Hedging in Financial Markets." Thesis, University of Reading, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533745.
Full textXu, Weijun Banking & Finance Australian School of Business UNSW. "Optimal hedging strategy in stock index future markets." Awarded by:University of New South Wales. Banking & Finance, 2009. http://handle.unsw.edu.au/1959.4/43728.
Full textOosterhof, Casper Martijn. "Essays on corporate risk management and optimal hedging." [S.l. : [Groningen : s.n.] ; University Library Groningen] [Host], 2006. http://irs.ub.rug.nl/ppn/298196808.
Full textLi, Yanmin. "Optimal hedging under transaction costs and implied trees." Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418116.
Full textKamgaing, Moyo Clinsort. "Optimal hedging under price, quantity and exchange rate uncertainty." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/37696.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND DEWEY
Bibliography: leaf 46.
by Moyo Clinsort Kamgaing.
M.S.
Ndounkeu, Ludovic Tangpi. "Optimal cross hedging of Insurance derivatives using quadratic BSDEs." Thesis, Stellenbosch : Stellenbosch University, 2011. http://hdl.handle.net/10019.1/17950.
Full textENGLISH ABSTRACT: We consider the utility portfolio optimization problem of an investor whose activities are influenced by an exogenous financial risk (like bad weather or energy shortage) in an incomplete financial market. We work with a fairly general non-Markovian model, allowing stochastic correlations between the underlying assets. This important problem in finance and insurance is tackled by means of backward stochastic differential equations (BSDEs), which have been shown to be powerful tools in stochastic control. To lay stress on the importance and the omnipresence of BSDEs in stochastic control, we present three methods to transform the control problem into a BSDEs. Namely, the martingale optimality principle introduced by Davis, the martingale representation and a method based on Itô-Ventzell’s formula. These approaches enable us to work with portfolio constraints described by closed, not necessarily convex sets and to get around the classical duality theory of convex analysis. The solution of the optimization problem can then be simply read from the solution of the BSDE. An interesting feature of each of the different approaches is that the generator of the BSDE characterizing the control problem has a quadratic growth and depends on the form of the set of constraints. We review some recent advances on the theory of quadratic BSDEs and its applications. There is no general existence result for multidimensional quadratic BSDEs. In the one-dimensional case, existence and uniqueness strongly depend on the form of the terminal condition. Other topics of investigation are measure solutions of BSDEs, notably measure solutions of BSDE with jumps and numerical approximations. We extend the equivalence result of Ankirchner et al. (2009) between existence of classical solutions and existence of measure solutions to the case of BSDEs driven by a Poisson process with a bounded terminal condition. We obtain a numerical scheme to approximate measure solutions. In fact, the existing self-contained construction of measure solutions gives rise to a numerical scheme for some classes of Lipschitz BSDEs. Two numerical schemes for quadratic BSDEs introduced in Imkeller et al. (2010) and based, respectively, on the Cole-Hopf transformation and the truncation procedure are implemented and the results are compared. Keywords: BSDE, quadratic growth, measure solutions, martingale theory, numerical scheme, indifference pricing and hedging, non-tradable underlying, defaultable claim, utility maximization.
AFRIKAANSE OPSOMMING: Ons beskou die nuts portefeulje optimalisering probleem van ’n belegger wat se aktiwiteite beïnvloed word deur ’n eksterne finansiele risiko (soos onweer of ’n energie tekort) in ’n onvolledige finansiële mark. Ons werk met ’n redelik algemene nie-Markoviaanse model, wat stogastiese korrelasies tussen die onderliggende bates toelaat. Hierdie belangrike probleem in finansies en versekering is aangepak deur middel van terugwaartse stogastiese differensiaalvergelykings (TSDEs), wat blyk om ’n onderskeidende metode in stogastiese beheer te wees. Om klem te lê op die belangrikheid en alomteenwoordigheid van TSDEs in stogastiese beheer, bespreek ons drie metodes om die beheer probleem te transformeer na ’n TSDE. Naamlik, die martingale optimaliteits beginsel van Davis, die martingale voorstelling en ’n metode wat gebaseer is op ’n formule van Itô-Ventzell. Hierdie benaderings stel ons in staat om te werk met portefeulje beperkinge wat beskryf word deur geslote, nie noodwendig konvekse versamelings, en die klassieke dualiteit teorie van konvekse analise te oorkom. Die oplossing van die optimaliserings probleem kan dan bloot afgelees word van die oplossing van die TSDE. ’n Interessante kenmerk van elkeen van die verskillende benaderings is dat die voortbringer van die TSDE wat die beheer probleem beshryf, kwadratiese groei en afhanglik is van die vorm van die versameling beperkings. Ons herlei ’n paar onlangse vooruitgange in die teorie van kwadratiese TSDEs en gepaartgaande toepassings. Daar is geen algemene bestaanstelling vir multidimensionele kwadratiese TSDEs nie. In die een-dimensionele geval is bestaan ââen uniekheid sterk afhanklik van die vorm van die terminale voorwaardes. Ander ondersoek onderwerpe is maatoplossings van TSDEs, veral maatoplossings van TSDEs met spronge en numeriese benaderings. Ons brei uit op die ekwivalensie resultate van Ankirchner et al. (2009) tussen die bestaan van klassieke oplossings en die bestaan van maatoplossings vir die geval van TSDEs wat gedryf word deur ’n Poisson proses met begrensde terminale voorwaardes. Ons verkry ’n numeriese skema om oplossings te benader. Trouens, die bestaande self-vervatte konstruksie van maatoplossings gee aanleiding tot ’n numeriese skema vir sekere klasse van Lipschitz TSDEs. Twee numeriese skemas vir kwadratiese TSDEs, bekendgestel in Imkeller et al. (2010), en gebaseer is, onderskeidelik, op die Cole-Hopf transformasie en die afknot proses is geïmplementeer en die resultate word vergelyk.
Lindholm, Love. "Calibration and Hedging in Finance." Licentiate thesis, KTH, Numerisk analys, NA, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156077.
Full textDen här avhandlingen behandlar aspekter av två fundamentala problem i tillämpad finansiell matematik: kalibrering av en given stokastisk process till observerade marknadspriser på finansiella instrument (vilket är ämnet för den första artikeln) och strategier för hedging av optioner i finansiella marknader som är inkompletta (vilket är ämnet för den andra artikeln). Kalibrering i finans innebär att välja parametrarna i en stokastisk process så att de priser på finansiella instrument som processen genererar replikerar observerade marknadspriser. Vi behandlar den så kallade lokala volatilitets modellen som är en av de mest utbrett använda modellerna inom options prissättning för alla tillgångsklasser. Kalibrering av en lokal volatilitetsyta till marknadspriser på optioner är ett illa ställt inverst problem som en följd av att antalet observerbara marknadspriser är relativt litet och att priserna inte är släta i lösenpris och löptid. Liksom i vissa tidigare publikationer formulerar vi detta inversa problem som en minsta kvadratoptimering under bivillkoret att optionspriser följer Dupires partiella differentialekvation. Vi utvecklar två algoritmer för att utföra optimeringen: en baserad på tekniker från optimal kontrollteori och en annan där en numerisk kvasi-Newton metod direkt appliceras på målfunktionen. Regularisering av problemet kan enkelt införlivas i båda problemformuleringarna. Metoderna testas på tre månaders data med marknadspriser på optioner på två stora aktieindex. De resulterade lokala volatilitetsytorna från båda metoderna ger priser som överensstämmer mycket väl med observerade marknadspriser. Hedging inom finans innebär att uppväga risken i ett finansiellt instrument genom att ta positioner i en eller flera andra handlade tillgångar. Kvadratisk hedging är en väl utvecklad teori för hedging av betingade kontrakt i inkompletta marknader genom att minimera replikeringsfelet i en passande L2-norm. Denna teori används emellertid inte i någon högre utsträckning av marknadsaktörer och relativt få vetenskapliga artiklar utvärderar hur väl kvadratisk hedging fungerar på verklig marknadsdata. Vi utvecklar ett ramverk för att jämföra hedgingstrategier och använder det för att empiriskt pröva hur väl kvadratisk hedging fungerar för europeiska köpoptioner på aktieindexet Euro Stoxx 50 när det modelleras med en affin stokastisk volatilitetsmodell med och utan hopp. Som jämförelse använder vi hedging i Black-Scholes modell.Vi visar att kvadratiska hedgingstrategier är signifikant bättre än hedging i Black-Scholes modell för optioner utanför pengarna och optioner nära pengarna med kort löptid när endast spot används i hedgen. När en annan option används i hedgen utöver spot är kvadratiska hedgingstrategier bättre än hedging i Black-Scholes modell även för optioner nära pengarna medmedellång löptid.
QC 20141121
Savina, Oksana Yurievna. "On optimal hedging and redistribution of catastrophe risk in insurance." Thesis, London School of Economics and Political Science (University of London), 2008. http://etheses.lse.ac.uk/2041/.
Full textSayle, James Hughes. "Optimal hedging strategies for early-planted soybeans in the South." Master's thesis, Mississippi State : Mississippi State University, 2007. http://library.msstate.edu/etd/show.asp?etd=etd-06192007-141148.
Full textKollar, Jozef. "Optimal Martingale measures and hedging in models driven by Levy processes." Thesis, Heriot-Watt University, 2011. http://hdl.handle.net/10399/2508.
Full textBooks on the topic "Optimal Hedging"
Vukina, Tomislaw. State-space forecasting approach to optimal intertemporal hedging. Kingston, R.I: University of Rhode Island, Dept. of Resource Economics, 1992.
Find full textVukina, Tomislaw. State-space forecasting approach to optimal intertemporal hedging. Kingston, R.I: University of Rhode Island, Dept. of Resource Economics, 1992.
Find full textDeep, Akash. Optimal dynamic hedging using futures under a borrowing constraint. Basel, Switzerland: Bank for International Settlements, Monetary and Economic Dept., 2002.
Find full textHarwood, Joy L. Year-specific estimation of optimal hedges for central Illinois soybean producers. Ithaca, N.Y: Dept. of Agricultural Economics, Cornell University Agricultural Experiment Station, New York State College of Agriculture and Life Sciences, Cornell University, 1987.
Find full textSteil, Benn. Currency options and the optimal hedging of contingent foreign exchange exposure. Oxford: Nuffield College, 1992.
Find full textDelaney, Brian. Dynamic hedging and time-varying optimal hedge ratio estimation with foreign currency futures. Dublin: University College Dublin, 1995.
Find full textQian, Ying. Optimal hedging strategy re-visited: Acknowledging the existence of non-stationary economic time series. [Washington, DC]: World Bank, International Economics Dept., International Trade Division, 1994.
Find full textThomas, Ted. A comprehensive approach to mortgage pipeline hedging: Using a variety of instruments for optimal hedge protection. Chicago (141 W. Jackson Blvd., Chicago 60604-2994): Chicago Board of Trade, 1999.
Find full textGrant, Dwight. Optimal futures positions for corn and soybean growers facing price and yield risk. Washington, D.C: U.S. Dept. of Agriculture, Economic Research Service, 1989.
Find full textHenry-Labordere, Pierre. Model-Free Hedging: A Martingale Optimal Transport Viewpoint. Taylor & Francis Group, 2017.
Find full textBook chapters on the topic "Optimal Hedging"
Chatterjee, Rupak. "Optimal Hedging Monte Carlo Methods." In Practical Methods of Financial Engineering and Risk Management, 195–236. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6134-6_5.
Full textDavis, Mark H. A. "Optimal Hedging with Basis Risk." In From Stochastic Calculus to Mathematical Finance, 169–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/978-3-540-30788-4_8.
Full textBernhard, Pierre, Jacob C. Engwerda, Berend Roorda, J. M. Schumacher, Vassili Kolokoltsov, Patrick Saint-Pierre, and Jean-Pierre Aubin. "Optimal Hedging Under Robust-Cost Constraints." In The Interval Market Model in Mathematical Finance, 65–77. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-0-8176-8388-7_5.
Full textRöthig, Andreas. "Backwardation and Optimal Hedging Demand in an Expected Utility Hedging Model." In Lecture Notes in Economics and Mathematical Systems, 15–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01565-6_2.
Full textLioui, Abraham, Pascal Nguyen Duc Trong, and Patrice Poncet. "Optimal Dynamic Hedging in Incomplete Futures Markets." In Financial Risk and Derivatives, 103–22. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1826-9_6.
Full textWindcliff, H., P. A. Forsyth, K. R. Vetzal, and W. J. Morland. "Simulations for Hedging Financial Contracts with Optimal Decisions." In Applied Optimization, 271–96. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3613-7_14.
Full textRémillard, Bruno, Alexandre Hocquard, Hugues Langlois, and Nicolas Papageorgiou. "Optimal Hedging of American Options in Discrete Time." In Springer Proceedings in Mathematics, 145–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25746-9_5.
Full textSkantze, Petter L., and Marija D. Ilic. "Optimal Futures Market Strategies for Energy Service Providers." In Valuation, Hedging and Speculation in Competitive Electricity Markets, 113–33. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1701-6_7.
Full textLimperger, J. "Impacts of Hedging with Futures on Optimal Production Levels." In Studies in Classification, Data Analysis, and Knowledge Organization, 338–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-57280-7_37.
Full textRüschendorf, Ludger, and Viktor Wolf. "Construction and Hedging of Optimal Payoffs in Lévy Models." In Springer Proceedings in Mathematics & Statistics, 331–77. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45875-5_16.
Full textConference papers on the topic "Optimal Hedging"
Yamada, Yuji. "Optimal Hedging with Additive Models." In Proceedings of the KIER–TMU International Workshop on Financial Engineering 2010. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814366038_0011.
Full textFei, Fan, Junjie Liu, and Qiuhong Song. "Fuel Hedging and Optimal Energy Management." In 2019 IEEE International Conference on Energy Internet (ICEI). IEEE, 2019. http://dx.doi.org/10.1109/icei.2019.00089.
Full textXiao, Bo, Wuguannan Yao, and Xiang Zhou. "Optimal Option Hedging with Policy Gradient." In 2021 International Conference on Data Mining Workshops (ICDMW). IEEE, 2021. http://dx.doi.org/10.1109/icdmw53433.2021.00145.
Full textYamada, Yuji. "Optimal hedging of basket options using smooth payoff functions: Comparison with super-hedging strategy." In 2012 American Control Conference - ACC 2012. IEEE, 2012. http://dx.doi.org/10.1109/acc.2012.6314805.
Full textLiang, Jianfeng, and Weiping Yang. "Optimal Hedging with Quantity Uncertanity and Agency Peoblem." In 2012 Fifth International Conference on Business Intelligence and Financial Engineering (BIFE). IEEE, 2012. http://dx.doi.org/10.1109/bife.2012.46.
Full textKantor, J., and P. Mousaw. "Optimal hedging for flexible fuel energy conversion networks." In 2010 American Control Conference (ACC 2010). IEEE, 2010. http://dx.doi.org/10.1109/acc.2010.5531045.
Full textYamada, Yuji. "Optimal hedging for multivariate derivatives based on additive models." In 2011 American Control Conference. IEEE, 2011. http://dx.doi.org/10.1109/acc.2011.5990828.
Full textSato, K., Y. Yuji, and H. Fujioka. "Mean square optimal hedging with non-uniform rebalancing intervals." In SICE 2008 - 47th Annual Conference of the Society of Instrument and Control Engineers of Japan. IEEE, 2008. http://dx.doi.org/10.1109/sice.2008.4655205.
Full textYamada, Yuji. "Optimal hedging of path-dependent basket options with additive models." In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7402375.
Full textHui, Rui, and Jay R. Lund. "Optimal Flood Pre-Releases—Flood Hedging for a Single Reservoir." In World Environmental and Water Resources Congress 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479162.215.
Full textReports on the topic "Optimal Hedging"
León, John Jairo, Leandro Gaston Andrian, and Jorge Mondragón. Optimal Commodity Price Hedging. Banco Interamericano de Desarrollo, December 2022. http://dx.doi.org/10.18235/0004649.
Full text