Academic literature on the topic 'Optically generated spin currents'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optically generated spin currents.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Optically generated spin currents":

1

LIU, XIONG-JUN, L. C. KWEK, and C. H. Oh. "QUANTUM SPIN CURRENT INDUCED THROUGH OPTICAL DIPOLE TRANSITION PROCESS IN SEMICONDUCTORS." International Journal of Modern Physics B 22, no. 01n02 (January 20, 2008): 44–56. http://dx.doi.org/10.1142/s0217979208046037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We propose a scheme to generate quantum spin current via linear optical process. By interacting a three-level system based on the spin states of charged particles (electrons or holes in semiconductor, etc) with the angular momentum states of an optical field, we show that the dynamics of charged particles equipped with different spin polarizations are governed by different (opposite) additional effective magnetic fields. In this way, a pure dissipationless quantum spin current can be generated. No spin-orbit interaction (e.g., Rashba or Dresselhaus term) is needed in this scheme. We also calculate the effect of nonmagnetic impurities on the created spin currents and show that the vertex correction of the spin hall conductivity in the ladder approximation is exactly zero. Paper presented at NTU Spintronics Workshop, Singapore, May 2006.
2

Miah, M. Idrish, I. V. Kityk, and E. MacA Gray. "Detection and study of photo-generated spin currents in nonmagnetic semiconductor materials." Acta Materialia 55, no. 18 (October 2007): 6392–400. http://dx.doi.org/10.1016/j.actamat.2007.07.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zucchetti, C., F. Scali, P. Grassi, M. Bollani, L. Anzi, G. Isella, M. Finazzi, F. Ciccacci, and F. Bottegoni. "Non-local architecture for spin current manipulation in silicon platforms." APL Materials 11, no. 2 (February 1, 2023): 021102. http://dx.doi.org/10.1063/5.0130759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We have developed a non-local architecture for spin current injection, manipulation, and detection in n-doped bulk Si at room temperature. Spins are locally generated at the indirect gap of bulk Si by means of circularly polarized light and then detected by exploiting the inverse spin-Hall effect (ISHE) occurring inside a thin Pt pad deposited at the top of the Si substrate. We demonstrate that it is possible to modulate the transport properties of the optically injected spin current by applying a bias voltage along the direction of motion of the particles. In this case, we are able to explore both the spin diffusion regime, characterized by a spin diffusion length Ls ≈ 12 μm, and the spin drift regime with applied electric fields up to E = 35 V/cm. We demonstrate that the spin transport length of the electrons can be increased (or decreased) by more than 100% for electric fields antiparallel (or parallel) to the diffusion direction. As a consequence, the ISHE signal can be electrically controlled to have high or low output voltages from the non-local device.
4

Dotsenko, Victor S., Pascal Viot, Alberto Imparato, and Gleb Oshanin. "Cooperative dynamics in two-component out-of-equilibrium systems: molecular ‘spinning tops’." Journal of Statistical Mechanics: Theory and Experiment 2022, no. 12 (December 1, 2022): 123211. http://dx.doi.org/10.1088/1742-5468/aca900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract We study the two-dimensional Langevin dynamics of a mixture of two types of particles that live respectively at two different temperatures. Dynamics is constrained by an optical trap and the dissimilar species interact via a quadratic potential. We realize that the system evolves toward a peculiar non-equilibrium steady-state with a non-zero probability current possessing a non-zero curl. This implies that if the particles were to have a finite-size and therefore a rotational degree of freedom, they would experience a torque generated by the non-zero local curl and spin around their geometric centers, like ‘spinning top’ toys. Our analysis shows that the spinning motion is correlated and also reveals an emerging cooperative behavior of the spatial components of the probability currents of dissimilar species.
5

Bhat, R. D. R., and J. E. Sipe. "Optically Injected Spin Currents in Semiconductors." Physical Review Letters 85, no. 25 (December 18, 2000): 5432–35. http://dx.doi.org/10.1103/physrevlett.85.5432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thouless, David. "ANDERSON LOCALIZATION IN THE SEVENTIES AND BEYOND." International Journal of Modern Physics B 24, no. 12n13 (May 20, 2010): 1507–25. http://dx.doi.org/10.1142/s0217979210064496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Little attention was paid to Anderson's challenging paper on localization for the first ten years, but from 1968 onwards it generated a lot of interest. Around that time a number of important questions were raised by the community, on matters such as the existence of a sharp distinction between localized and extended states, or between conductors and insulators. For some of these questions the answers are unambiguous. There certainly are energy ranges in which states are exponentially localized, in the presence of a static disordered potential. In a weakly disordered one-dimensional potential, all states are localized. There is clear evidence, in three dimensions, for energy ranges in which states are extended, and ranges in which they are diffusive. Magnetic and spin-dependent interactions play an important part in reducing localization effects. For massive particles like electrons and atoms the lowest energy states are localized, but for massless particles like photons and acoustic phonons the lowest energy states are extended. Uncertainties remain. Scaling theory suggests that in two-dimensional systems all states are weakly localized, and that there is no minimum metallic conductivity. The interplay between disorder and mutual interactions is still an area of uncertainty, which is very important for electronic systems. Optical and dilute atomic systems provide experimental tests which allow interaction to be much less important. The quantum Hall effect provided a system where states on the Fermi surface are localized, but non-dissipative currents flow in response to an electric field.
7

Madjar, A., P. R. Herczfeld, and A. Paolella. "Analytical model for optically generated currents in GaAs MESFETs." IEEE Transactions on Microwave Theory and Techniques 40, no. 8 (1992): 1681–91. http://dx.doi.org/10.1109/22.149548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Miah, M. Idrish. "Electric-field effects in optically generated spin transport." Physics Letters A 373, no. 23-24 (May 2009): 2097–100. http://dx.doi.org/10.1016/j.physleta.2009.04.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Takeuchi, Akihito, and Gen Tatara. "Charge and Spin Currents Generated by Dynamical Spins." Journal of the Physical Society of Japan 77, no. 7 (July 15, 2008): 074701. http://dx.doi.org/10.1143/jpsj.77.074701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lin, Zheng-Zhe, and Xi Chen. "Spin-polarized currents generated by magnetic Fe atomic chains." Nanotechnology 25, no. 23 (May 21, 2014): 235202. http://dx.doi.org/10.1088/0957-4484/25/23/235202.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Optically generated spin currents":

1

Lin, Jun-Xiao. "Light Induced Magnetization Manipulation in In-Plane Magnetized Heterostructures." Electronic Thesis or Diss., Université de Lorraine, 2024. http://www.theses.fr/2024LORR0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La demande de stockage de données a connu une croissance exponentielle, alimentée par la dépendance croissante du monde à l'égard de l'information numérique. Cette croissance a catalysé le développement de technologies plus rapides et plus éco-énergétiques. Ce développement coïncide avec les objectifs de la spintronique, un domaine visant à réduire la consommation d'énergie dans le stockage de données magnétiques en explorant des alternatives basées sur le spin. En conséquence, des recherches approfondies ont été consacrées à la manipulation de la magnétisation (c'est-à-dire les spins), qui est au cœur de la spintronique, formant un programme de recherche substantiel et durable. La vitesse et l'efficacité de cette manipulation dépendent des méthodes d'écriture utilisées et des propriétés des matériaux magnétiques impliqués, nécessitant ainsi une compréhension approfondie des mécanismes de manipulation sous-jacents. Parmi les différentes techniques d'écriture, l'utilisation d'impulsions laser ultracourtes (femtosecondes) a attiré une attention considérable en raison de sa capacité à exciter rapidement la magnétisation à l'échelle femtoseconde. Une seule impulsion laser femtoseconde a été démontrée pour induire une inversion complète de la magnétisation dans les matériaux magnétiques, un phénomène connu sous le nom de commutation optique complète indépendante de l'hélicité (AO-HIS). Cependant, le mécanisme sous-jacent et les critères de l'AO-HIS restent incomplètement compris. De plus, depuis le premier rapport de l'AO-HIS, cet effet a principalement été observé dans un groupe spécifique de matériaux magnétiques présentant une anisotropie magnétique perpendiculaire. De plus amples efforts et études sont nécessaires pour élargir l'applicabilité de l'AO-HIS. Pour atteindre cet objectif, cette thèse se concentre sur l'étude de l'AO-HIS dans une gamme de matériaux ferrimagnétiques et ferromagnétiques caractérisés par une anisotropie magnétique dans le plan. Nous utilisons des impulsions laser femtosecondes pour induire l'inversion de la magnétisation dans ces matériaux. De plus, nous entreprenons une exploration systématique visant à comprendre l'AO-HIS en modifiant les propriétés magnétiques des hétérostructures magnétiques. Cette manipulation comprend la variation des concentrations d'alliage, des températures de Curie, des épaisseurs et du type de couches magnétiques. Nous considérons nos résultats comme cruciaux d'un point de vue fondamental. Les résultats expérimentaux de cette thèse sont présentés dans trois chapitres (Chapitres 4 à 6). Dans le Chapitre 4, nous avons largement discuté de la commutation optique complète déterministe observée dans une large gamme de concentrations d'alliage et d'épaisseurs dans les films minces de GdCo magnétisés dans le plan, en utilisant un système de microscopie à effet Kerr magnéto-optique basé sur un laser. Les Chapitres 5 et 6 explorent le processus de transition des multiples aux inversions uniques de la magnétisation dans les matériaux ferromagnétiques magnétisés dans le plan, induit par des impulsions de courant de spin optiquement générées
The demand for data storage has experienced exponential growth, driven by the world's increasing reliance on digital information. This growth has catalyzed the development of faster and more energy-efficient technologies. This development coincides with the objectives of spintronics, a field aimed at reducing energy consumption in magnetic data storage by exploring spin-based alternatives. As a result, extensive research has been dedicated to the manipulation of magnetization (i.e., spins), which lies at the heart of spintronics, forming a substantial and enduring research agenda. The speed and efficiency of this manipulation depend on the methods of writing employed and the properties of the magnetic materials involved, thus requiring a comprehensive understanding of the underlying manipulation mechanisms. Among the various writing techniques, the utilization of ultrashort (femtosecond) laser pulses has gained considerable attention for its capability to rapidly excite magnetization on the femtosecond timescale. A single femtosecond laser pulse has been demonstrated to induce full magnetization reversal in magnetic materials, a phenomenon known as all-optical helicity-independent switching (AO-HIS). However, the underlying mechanism and criteria for the AO-HIS remain incompletely understood. Moreover, since the initial report of AO-HIS, this effect has mainly been observed in a specific group of magnetic materials exhibiting perpendicular magnetic anisotropy. Further endeavors and studies are necessary to broaden the applicability of AO-HIS. In pursuit of this goal, this thesis focuses on investigating AO-HIS in a range of ferrimagnetic and ferromagnetic materials characterized by in-plane magnetic anisotropy. We employ femtosecond laser pulses to drive magnetization reversal in these materials. Furthermore, we undertake a systematic exploration aimed at comprehending AO-HIS by altering the magnetic properties of magnetic heterostructures. This manipulation includes varying alloy concentrations, Curie temperatures, thicknesses, and the type of magnetic layers. We consider our findings crucial from a fundamental perspective. The experimental findings of this thesis are presented in three chapters (Chapters 4 to 6). In Chapter 4, we extensively discussed the deterministic AO-HIS observed in a broad range of alloy concentrations and thicknesses in in-plane magnetized GdCo thin films, utilizing a laser-based magneto-optic Kerr effect microscopy system. Chapters 5 and 6 delve into the recipe of transitioning from multiple to single magnetization reversals in in-plane magnetized ferromagnetic materials, induced by optically generated spin current pulses

Books on the topic "Optically generated spin currents":

1

Hirohata, A., and J. Y. Kim. Optically Induced and Detected Spin Current. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This chapter presents an alternative method of injecting spin-polarized electrons into a nonmagnetic semiconductor through photoexcitation. This method uses circularly-polarized light, whose energy needs to be the same as, or slightly larger than, the semiconductor band-gap, to excite spin-polarized electrons. This process will introduce a spin-polarized electron-hole pair, which can be detected as electrical signals. Such an optically induced spin-polarized current can only be generated in a direct band-gap semiconductor due to the selection rule described in the following sections. This introduction of circularly polarized light can also be used for spin-polarized scanning tunnelling microscopy.
2

Nikolic, Branislav K., Liviu P. Zarbo, and Satofumi Souma. Spin currents in semiconductor nanostructures: A non-equilibrium Green-function approach. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This article examines spin currents and spin densities in realistic open semiconductor nanostructures using different tools of quantum-transport theory based on the non-equilibrium Green function (NEGF) approach. It begins with an introduction to the essential theoretical formalism and practical computational techniques before explaining what pure spin current is and how pure spin currents can be generated and detected. It then considers the spin-Hall effect (SHE), and especially the mesoscopic SHE, along with spin-orbit couplings in low-dimensional semiconductors. It also describes spin-current operator, spindensity, and spin accumulation in the presence of intrinsic spin-orbit couplings, as well as the NEGF approach to spin transport in multiterminal spin-orbit-coupled nanostructures. The article concludes by reviewing formal developments with examples drawn from the field of the mesoscopic SHE in low-dimensional spin-orbit-coupled semiconductor nanostructures.
3

Takahashi, S., and S. Maekawa. Spin Hall Effect. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198787075.003.0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This chapter discusses the spin Hall effect that occurs during spin injection from a ferromagnet to a nonmagnetic conductor in nanostructured devices. This provides a new opportunity for investigating AHE in nonmagnetic conductors. In ferromagnetic materials, the electrical current is carried by up-spin and downspin electrons, with the flow of up-spin electrons being slightly deflected in a transverse direction while that of down-spin electrons being deflected in the opposite direction; this results in an electron flow in the direction perpendicular to both the applied electric field and the magnetization directions. Since up-spin and downspin electrons are strongly imbalanced in ferromagnets, both spin and charge currents are generated in the transverse direction by AHE, the latter of which are observed as the electrical Hall voltage.

Conference papers on the topic "Optically generated spin currents":

1

Sipe, John, R. d. R. Bhat, Ali Najmaie, F. Nastos, Y. Kerachian, H. M. van Driel, Arthur L. Smirl, Martin J. Stevens, and X. Y. Pan. "Optically injected spin currents in semiconductors." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithk4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dutt, M. V. Gurudev, Jun Cheng, Bo Li, Wencan He, Allan S. Bracker, Daniel Gammon, Lu J. Sham, and D. G. Steel. "Optically generated single electron spin coherence." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/iqec.2004.ithh1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hubner, J., W. W. Ruhle, M. Klude, D. Hommel, R. D. R. Bhat, J. E. Sipe, and H. M. van Driel. "Direct observation of optically injected spin-polarized currents in semiconductors." In Quantum Electronics and Laser Science (QELS). Postconference Digest. IEEE, 2003. http://dx.doi.org/10.1109/qels.2003.238397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kuznetsova, Y. Y., E. V. Calman, J. R. Leonard, L. V. Butov, K. L. Campman, and A. C. Gossard. "Spin Currents and Polarization Textures in Optically Created Indirect Excitons." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.fm3b.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bao, J. "Optically-Generated Many Spin Entanglement in a Quantum Well." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wegrowe, Jean-Eric, and Henri-Jean Drouhin. "Thermokinetic considerations about spin-dependent voltage generated by heat currents." In SPIE NanoScience + Engineering, edited by Henri-Jean Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2025736.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Duc, Huynh Thanh, Jens Förstner, and Torsten Meier. "Microscopic theoretical analysis of optically generated injection currents in semiconductor quantum wells." In OPTO, edited by Jin-Joo Song, Kong-Thon Tsen, Markus Betz, and Abdulhakem Y. Elezzabi. SPIE, 2010. http://dx.doi.org/10.1117/12.840388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kim, Erik D., Katherine Truex, Xiaodong Xu, Bo Sun, Duncan Steel, Allan Bracker, Dan Gammon, and Lu Sham. "A Spin Phase Gate Based on Optically Generated Geometric Phases in a Self-Assembled Quantum Dot." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/qels.2010.qfd2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Adam, Roman, Derang Cao, Daniel E. Bürgler, Sarah Heidtfeld, Fangzhou Wang, Christian Greb, Genyu Chen, et al. "Control of THz Emission in Exchange-Coupled Spintronic Emitters." In CLEO: Fundamental Science. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_fs.2023.fw3n.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Optically triggered THz transient intensity can be precisely controlled by the interlayer exchange coupling between two closely spaced spin emitters. We ascribe this excellent tunability to the constructive and destructive interference of the THz signal generated by the individual spin emitters.
10

Esener, Sadik, and Sing H. Lee. "Design considerations for three-terminal optically addressed MQW spatial light modulators." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/oam.1986.ml7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Although current developments in multiple quantum well (MQW) device technology show great promise, problems remain when considered in the larger framework of processing element (PE) arrays. Spatial light modulation requires many small modulator cells (25 × 25 μm2) with low switching energy (<20 fJ/μm2), low driving voltage (<20 V), good dynamic range (> 10 dB), and integrable into large arrays (>100 × 100 PEs) with a technology compatible with detector fabrication. For digital optical processors to become viable, spatial light modulators with at least 104 processing elements operating at 100-MHz frame rate are required. Assuming ideal detection efficiency, a unity power gain, and operation near thermal limits, this frame rate results in an impractical input light power density of 100 W/cm2 for a modulator array consuming 10 fJ/μm2. To ease the optical power requirements a power gain of several hundred must be achieved. For an acceptable dynamic range the processing elements should be three-terminal devices consisting of physically separated detectors and MQW modulators and should be biased at lower energies than the energy corresponding to the excitonic absorption peak. This is in contrast to two-terminal optical bistable devices using the self-electroabsorption effect and operable only with low dynamic range. A detector with high gain is also essential for weak signals to produce larger photocurrents than the currents generated in the MQW modulator. GaAs/GaAIAs heterojunction bipolar phototransistors may be good candidates to perform the required detection functions, because of their compatibility with GaAs/GaAIAs MQW modulator technology.

Reports on the topic "Optically generated spin currents":

1

Kim, Erik D., Katherine Truex, Xiaodong Xu, Bo Sun, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham. Spin Phase Gate Based on Optically Generated Geometric Phases in a Self-Assembled Quantum Dot. Fort Belvoir, VA: Defense Technical Information Center, January 2011. http://dx.doi.org/10.21236/ada558660.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography