To see the other types of publications on this topic, follow the link: Optical tomography.

Journal articles on the topic 'Optical tomography'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical tomography.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kalnaya, O. A., and Yu S. Kurskoy. "Femtosecond Optical Tomography." Metrology and instruments, no. 2 (May 21, 2020): 57–60. http://dx.doi.org/10.33955/2307-2180(2)2020.57-60.

Full text
Abstract:
The aim of the work is development of medical optical tomo­graphy technologies. The physical principles, tasks, and boundary possibilities of the optical tomography systems are considered. The autors propose to use the femtosecond lasers, operating in the «optical comb» mode, as a lught source in optical tomography system. The advantages of this source uses were analyzed and reso­lution power of femtosecond optical tomographs was calculated in the artical.
APA, Harvard, Vancouver, ISO, and other styles
2

Pattan, Anusha U., and Shubhangi D.C. "Optical Tomography: The Survey on Optical Tomographic Techniques." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 6 (June 30, 2017): 376–81. http://dx.doi.org/10.23956/ijarcsse/v7i6/0300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kumar Singh Anjali, Avanish. "Study of Clinical Evaluation of Glaucoma with Anterior Segment OCT (Optical Coherence Tomography) and Optic Nerve Head OCT (Optical Coherence Tomography)." International Journal of Science and Research (IJSR) 12, no. 8 (August 5, 2023): 627–32. http://dx.doi.org/10.21275/mr23728180729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haisch, Christoph. "Optical Tomography." Annual Review of Analytical Chemistry 5, no. 1 (July 19, 2012): 57–77. http://dx.doi.org/10.1146/annurev-anchem-062011-143138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Coufal, Hans. "Optical tomography?" Journal of Molecular Structure 347 (March 1995): 285–91. http://dx.doi.org/10.1016/0022-2860(95)08551-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leutwyler, Kristin. "Optical Tomography." Scientific American 270, no. 1 (January 1994): 147–49. http://dx.doi.org/10.1038/scientificamerican0194-147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Davis, Cole, and Wayne Kuang. "Optical coherence tomography: a novel modality for scrotal imaging." Canadian Urological Association Journal 3, no. 4 (May 1, 2013): 319. http://dx.doi.org/10.5489/cuaj.1128.

Full text
Abstract:
Background: For patients with nonobstructive azoospermia,sperm retrieval rates remain modest. We describe the use ofoptical coherence tomography to improve retrieval rates and todecrease tissue destruction.Methods: Four patients underwent diagnostic testicular biopsyand imaging with the Niris optical coherence tomography de -vice. We performed a descriptive comparison between optic alcoherence tomographic images and conventional histology.Results: The measured seminiferous tubule diameter differed by16 μm between comparative imaging from optical coherencetomography and conventional histology using hematoxylin andeosin staining.Conclusion: We illustrate the usefulness of optical coherencetomography in the setting of testicular biopsy and the managementof nonobstructive azoospermia.Contexte : Chez les patients atteints d'azoospermie non obstructive,les taux de collecte de spermatozoïdes demeurent modestes.Nous décrivons le recours à une tomographie optiquecohérente pour améliorer les taux de collecte et réduire ladestruction tissulaire.Méthodes : Quatre patients ont subi une biopsie testiculaire diagnostiqueet une épreuve d'imagerie à l'aide d'un appareil Nirisde tomographie optique cohérente. Une comparaison descriptivea été effectuée entre les images obtenues par tomographieoptique cohérente et les résultats des épreuves histologiquesstandard.Résultats : La différence dans le diamètre des tubules séminifèresmesuré par tomographie optique cohérente et par coloration histologiqueà l'hématoxyline-éosine n'était que de 16 μm.Conclusion : Nous présentons une étude descriptive illustrant l’uti -lité de la tomographie optique cohérente pendant une biopsietesticulaire en vue de la prise en charge d'une azoospermie nonobstructive.
APA, Harvard, Vancouver, ISO, and other styles
8

Soeda, Tsunenari, Shiro Uemura, Yoshihiko Saito, Kyoichi Mizuno, and Ik-Kyung Jang. "Optical Coherence Tomography and Coronary Plaque Characterization." Journal of the Japanese Coronary Association 19, no. 4 (2013): 307–14. http://dx.doi.org/10.7793/jcoron.19.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

C. Kharmyssov, C. Kharmyssov, M. W. L. Ko M. W. L. Ko, and J. R. Kim J. R. Kim. "Automated segmentation of optical coherence tomography images." Chinese Optics Letters 17, no. 1 (2019): 011701. http://dx.doi.org/10.3788/col201917.011701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rollins, Andrew M., and Joseph A. Izatt. "Optimal interferometer designs for optical coherence tomography." Optics Letters 24, no. 21 (November 1, 1999): 1484. http://dx.doi.org/10.1364/ol.24.001484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

El-Sherif, Ashraf, Yasser El-Sharkawy, and Ramy Yehia. "Optical Coherence Tomography." International Conference on Mathematics and Engineering Physics 4, no. 4 (May 1, 2008): 1. http://dx.doi.org/10.21608/icmep.2008.29902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Puliafito, Carmen A. "Optical Coherence Tomography." Ophthalmic Surgery, Lasers and Imaging Retina 31, no. 3 (May 2000): 181. http://dx.doi.org/10.3928/1542-8877-20000501-03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

WADA, Yukihisa. "Optical Computed Tomography." JOURNAL OF JAPAN SOCIETY FOR LASER SURGERY AND MEDICINE 21, no. 1 (2000): 83–92. http://dx.doi.org/10.2530/jslsm1980.21.1_83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ahmad, Faheem, and Muhmmad Hussian. "OPTICAL COHERENCE TOMOGRAPHY." Professional Medical Journal 23, no. 09 (September 10, 2016): 1149–56. http://dx.doi.org/10.29309/tpmj/2016.23.09.1713.

Full text
Abstract:
“Glaucoma an optic neuropathy is a caused by progressive retinal ganglion cell(RGC) loss associated with characteristic structural changes in the optic nerve and retinal nervefiber layer (RNFL).Glaucoma induced damage causes the retinal ganglion cells loss that canresult in functional loss and decrease in vision of patient . Measurement of intraocular pressureby Tonometery, characteristics of the optic nerve head changes and associated visual fieldloss are used for diagnosis of Glaucoma. Objectives: To determine the diagnostic accuracy ofOptical Coherence Tomography in detection of glaucoma taking perimetry as gold standard.Study Design: Cross sectional (validation). Period: Six months from 17-02-2014 to 16-08-2014.Material and Method: Regarding the Inclusion Criteria patients of glaucoma suspects that meetthe criteria mentioned in operational definition of either gender with age range between 35- 60years were included while patients having refractive errors, hazy media, pupil size less than4mm after dilation were not included in this study. Also patients with history diabetes mellitus,refractive or retinal surgery were also excluded. All the data was entered and analyzed by usingSPSS V-16. Results: A total of 100 patients were included in this study during the study period.Majority of the patients were between 35-45 years of age and minimum patients were 56-60 years old. Mean age of the patients was 47.10±8.02 years. Males and females were 50(50%). At OCT glaucoma was present in 71 patients while at perimetry glaucoma was presentin 69 patients .Sensitivity, specificity and diagnostic accuracy of OCT was 92.7%, 77.4%, 88.0%,respectively .Positive predictive value and negative predictive value of OCT was 90.1% and82.7%, respectively. Discussion: Regarding the pathogenesis of Glaucoma induced damageis due to result of retinal ganglion cell (RGC) death with progressive loss of axons located inthe retinal nerve fiber layer (RNFL). Many clinical studies showed that optic nerve head (ONH)damage and thinning of the RNFL occur earlier than the appearance of Glaucoma inducedvisual field defects; Conclusion: In conclusion, glaucoma suspects undergoing the OCT canbe assessed for the presence of glaucoma based purely on the results of the OCT.
APA, Harvard, Vancouver, ISO, and other styles
15

Huang, D., E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, et al. "Optical coherence tomography." Science 254, no. 5035 (November 22, 1991): 1178–81. http://dx.doi.org/10.1126/science.1957169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Sharpe, James. "Optical Projection Tomography." Annual Review of Biomedical Engineering 6, no. 1 (August 15, 2004): 209–28. http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Yelbuz, T. Mesud, Michael A. Choma, Lars Thrane, Margaret L. Kirby, and Joseph A. Izatt. "Optical Coherence Tomography." Circulation 106, no. 22 (November 26, 2002): 2771–74. http://dx.doi.org/10.1161/01.cir.0000042672.51054.7b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yonetsu, Taishi, Brett E. Bouma, Koji Kato, James G. Fujimoto, and Ik-Kyung Jang. "Optical Coherence Tomography." Circulation Journal 77, no. 8 (2013): 1933–40. http://dx.doi.org/10.1253/circj.cj-13-0643.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Podoleanu, A. Gh. "Optical coherence tomography." British Journal of Radiology 78, no. 935 (November 2005): 976–88. http://dx.doi.org/10.1259/bjr/55735832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Haruna, Masamitsu. "Optical Coherence Tomography." Journal of The Institute of Image Information and Television Engineers 65, no. 1 (2011): 67–71. http://dx.doi.org/10.3169/itej.65.67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Fercher, A. F., W. Drexler, and C. K. Hitzenberger. "Optical ocular tomography." Neuro-Ophthalmology 18, no. 2 (January 1997): 39–49. http://dx.doi.org/10.3109/01658109709044116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chen, Zhongping, Thomas E. Milner, Shyam Srinivas, and J. Stuart Nelson. "Optical Doppler Tomography." Optics and Photonics News 8, no. 12 (December 1, 1997): 31. http://dx.doi.org/10.1364/opn.8.12.000031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Fercher, Adolf F. "Optical coherence tomography." Journal of Biomedical Optics 1, no. 2 (1996): 157. http://dx.doi.org/10.1117/12.231361.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhongping Chen, Yonghua Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig. "Optical Doppler tomography." IEEE Journal of Selected Topics in Quantum Electronics 5, no. 4 (1999): 1134–42. http://dx.doi.org/10.1109/2944.796340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Podoleanu, Adrian, V. Lakshminarayanan, and A. R. Harvey. "Optical coherence tomography." Journal of Modern Optics 62, no. 21 (November 17, 2015): 1757. http://dx.doi.org/10.1080/09500340.2015.1092220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gurwood, Andrew S., and Marc D. Myers. "Optical Coherence Tomography." Optometry - Journal of the American Optometric Association 76, no. 5 (May 2005): 282. http://dx.doi.org/10.1016/s1529-1839(05)70309-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

McCabe, James M., and Kevin J. Croce. "Optical Coherence Tomography." Circulation 126, no. 17 (October 23, 2012): 2140–43. http://dx.doi.org/10.1161/circulationaha.112.117143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Kumar, Atul, and Subijoy Sinha. "Optical Coherence Tomography." Ophthalmology 115, no. 2 (February 2008): 417–18. http://dx.doi.org/10.1016/j.ophtha.2007.07.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Carmichael, Stephen W., and Stephen A. Boppart. "Optical Projection Tomography." Microscopy Today 10, no. 5 (September 2002): 3–4. http://dx.doi.org/10.1017/s1551929500058260.

Full text
Abstract:
There are many approaches to obtaining high-resolution images and three dimensional volumetric data sets, but all have limitations. Many techniques involve reconstructing volumes of information from sections, either physical sections or optical sections. Recently, James Sharpe, Ulf Ahlgren, Paul Perry, Bill Hill, Allyson Ross, Jacob Hecksher-Sørensen, Richard Baldock, and Duncan Davidson have developed an optical technique that is analogous to computed tomography (CT). Whereas clinical CT involves an X-ray source and detector rotating around the patient, optical projection tomography (OPT) has the specimen rotating within an optical pathway.
APA, Harvard, Vancouver, ISO, and other styles
30

Katkar, Rujuta A., Satyashankara Aditya Tadinada, Bennett T. Amaechi, and Daniel Fried. "Optical Coherence Tomography." Dental Clinics of North America 62, no. 3 (July 2018): 421–34. http://dx.doi.org/10.1016/j.cden.2018.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Takano, Masamichi, Kyoichi Mizuno, SooJoong Kim, and Ik-Kyung Jang. "Optical coherence tomography." Current Cardiovascular Imaging Reports 2, no. 4 (August 2009): 275–83. http://dx.doi.org/10.1007/s12410-009-0032-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Di Mario, Carlo, and Peter Barlis. "Optical Coherence Tomography." JACC: Cardiovascular Interventions 1, no. 2 (April 2008): 174–75. http://dx.doi.org/10.1016/j.jcin.2008.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Fujimoto, James G. "Optical coherence tomography." Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, no. 8 (October 2001): 1099–111. http://dx.doi.org/10.1016/s1296-2147(01)01257-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ripandelli, Guido, Andrea M. Coppé, Antonella Capaldo, and Mario Stirpe. "Optical Coherence Tomography." Seminars in Ophthalmology 13, no. 4 (January 1998): 199–202. http://dx.doi.org/10.3109/08820539809056053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Burns, James A. "Optical coherence tomography." Current Opinion in Otolaryngology & Head and Neck Surgery 20, no. 6 (December 2012): 477–81. http://dx.doi.org/10.1097/moo.0b013e3283582d7d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

PODOLEANU, A. Gh. "Optical coherence tomography." Journal of Microscopy 247, no. 3 (June 18, 2012): 209–19. http://dx.doi.org/10.1111/j.1365-2818.2012.03619.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Chen, Ching-Jen, Jeyan S. Kumar, Stephanie H. Chen, Dale Ding, Thomas J. Buell, Samir Sur, Natasha Ironside, et al. "Optical Coherence Tomography." Stroke 49, no. 4 (April 2018): 1044–50. http://dx.doi.org/10.1161/strokeaha.117.019818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Corbett, Crystal. "Optical Coherence Tomography." Cardiac Cath Lab Director 1, no. 5-6 (October 2011): 135–37. http://dx.doi.org/10.1177/2150133511433992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Folio, Lindsey S., Gadi Wollstein, and Joel S. Schuman. "Optical Coherence Tomography." Optometry and Vision Science 89, no. 5 (May 2012): E554—E562. http://dx.doi.org/10.1097/opx.0b013e31824eeb43.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Testoni, Pier Alberto. "Optical Coherence Tomography." Scientific World JOURNAL 7 (2007): 87–108. http://dx.doi.org/10.1100/tsw.2007.29.

Full text
Abstract:
Optical coherence tomography (OCT) is an optical imaging modality that performs high-resolution, cross-sectional, subsurface tomographic imaging of the microstructure of tissues. The physical principle of OCT is similar to that of B-mode ultrasound imaging, except that it uses infrared light waves rather than acoustic waves. Thein vivoresolution is 10–25 times better (about 10 µm) than with high-frequency ultrasound imaging, but the depth of penetration is limited to 1–3 mm, depending on tissue structure, depth of focus of the probe used, and pressure applied to the tissue surface. In the last decade, OCT technology has evolved from an experimental laboratory tool to a new diagnostic imaging modality with a wide spectrum of clinical applications in medical practice, including the gastrointestinal tract and pancreatico-biliary ductal system. OCT imaging from the gastrointestinal tract can be done in humans by using narrow-diameter, catheter-based probes that can be inserted through the accessory channel of either a conventional front-view endoscope, for investigating the epithelial structure of the gastrointestinal tract, or a side-view endoscope, inside a standard transparent ERCP (endoscopic retrograde cholangiopancreatography) catheter, for investigating the pancreatico-biliary ductal system. The esophagus and esophagogastric junction have been the most widely investigated organs so far; more recently, duodenum, colon, and the pancreatico-biliary ductal system have also been extensively investigated. OCT imaging of the gastrointestinal wall structure is characterized by a multiple-layer architecture that permits an accurate evaluation of the mucosa, lamina propria, muscularis mucosae, and part of the submucosa. The technique may therefore be used to identify preneoplastic conditions of the gastrointestinal tract, such as Barrett's epithelium and dysplasia, and evaluate the depth of penetration of early-stage neoplastic lesions. OCT imaging of the pancreatic and biliary ductal system could improve the diagnostic accuracy for ductal epithelial changes, and the differential diagnosis between neoplastic and non-neoplastic lesions.
APA, Harvard, Vancouver, ISO, and other styles
41

Regar, E., J. A. Schaar, E. Mont, R. Virmani, and P. W. Serruys. "Optical coherence tomography." Cardiovascular Radiation Medicine 4, no. 4 (October 2003): 198–204. http://dx.doi.org/10.1016/j.carrad.2003.12.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ahmed, S. Hinan, and James Mancuso. "Optical Coherence Tomography." Catheterization and Cardiovascular Interventions 81, no. 3 (February 2013): 573. http://dx.doi.org/10.1002/ccd.24827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kaschke, Michael, Scott Meyer, Matthew Everett, and Marc Grahl. "Optical Coherence Tomography." Optik & Photonik 4, no. 4 (December 2009): 24–28. http://dx.doi.org/10.1002/opph.201190057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ha, Richard, Lauren C. Friedlander, Hanina Hibshoosh, Christine Hendon, Sheldon Feldman, Soojin Ahn, Hank Schmidt, et al. "Optical Coherence Tomography." Academic Radiology 25, no. 3 (March 2018): 279–87. http://dx.doi.org/10.1016/j.acra.2017.09.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Vanore, Maria, and Marie-Odile Benoit-Biancamano. "Optical Coherence Tomography." Veterinary Clinics of North America: Small Animal Practice 53, no. 2 (March 2023): 319–38. http://dx.doi.org/10.1016/j.cvsm.2022.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Paczwa, Katarzyna, and Joanna Gołębiewska. "OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN OPHTHALMOLOGY." Polish Journal of Aviation Medicine, Bioengineering and Psychology 26, no. 4 (May 17, 2023): 45–54. http://dx.doi.org/10.13174/pjambp.17.05.2023.05.

Full text
Abstract:
Abstract: Optical coherence tomography is a non-invasive method of imagining the anterior and the posterior segment of the eye. It is commonly used in ophthalmic practice to diagnose and monitor various pathologies of the eyeball. Optical coherence tomography angiography (OCTA) is a useful tool to visualize the entire retinal and choroidal microvasculature, allowing the assessment of retinal perfusion without intravenous dye administration.
APA, Harvard, Vancouver, ISO, and other styles
47

Tong Wu, Tong Wu, and Youwen Liu Youwen Liu. "Optimal non-uniform fast Fourier transform for high-speed swept source optical coherence tomography." Chinese Optics Letters 11, no. 2 (2013): 021702–21707. http://dx.doi.org/10.3788/col201311.021702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Oertel, Frederike Cosima, Svenja Specovius, Hanna G. Zimmermann, Claudia Chien, Seyedamirhosein Motamedi, Charlotte Bereuter, Lawrence Cook, et al. "Retinal Optical Coherence Tomography in Neuromyelitis Optica." Neurology - Neuroimmunology Neuroinflammation 8, no. 6 (September 15, 2021): e1068. http://dx.doi.org/10.1212/nxi.0000000000001068.

Full text
Abstract:
Background and ObjectivesTo determine optic nerve and retinal damage in aquaporin-4 antibody (AQP4-IgG)-seropositive neuromyelitis optica spectrum disorders (NMOSD) in a large international cohort after previous studies have been limited by small and heterogeneous cohorts.MethodsThe cross-sectional Collaborative Retrospective Study on retinal optical coherence tomography (OCT) in neuromyelitis optica collected retrospective data from 22 centers. Of 653 screened participants, we included 283 AQP4-IgG–seropositive patients with NMOSD and 72 healthy controls (HCs). Participants underwent OCT with central reading including quality control and intraretinal segmentation. The primary outcome was thickness of combined ganglion cell and inner plexiform (GCIP) layer; secondary outcomes were thickness of peripapillary retinal nerve fiber layer (pRNFL) and visual acuity (VA).ResultsEyes with ON (NMOSD-ON, N = 260) or without ON (NMOSD-NON, N = 241) were assessed compared with HCs (N = 136). In NMOSD-ON, GCIP layer (57.4 ± 12.2 μm) was reduced compared with HC (GCIP layer: 81.4 ± 5.7 μm, p < 0.001). GCIP layer loss (−22.7 μm) after the first ON was higher than after the next (−3.5 μm) and subsequent episodes. pRNFL observations were similar. NMOSD-NON exhibited reduced GCIP layer but not pRNFL compared with HC. VA was greatly reduced in NMOSD-ON compared with HC eyes, but did not differ between NMOSD-NON and HC.DiscussionOur results emphasize that attack prevention is key to avoid severe neuroaxonal damage and vision loss caused by ON in NMOSD. Therapies ameliorating attack-related damage, especially during a first attack, are an unmet clinical need. Mild signs of neuroaxonal changes without apparent vision loss in ON-unaffected eyes might be solely due to contralateral ON attacks and do not suggest clinically relevant progression but need further investigation.
APA, Harvard, Vancouver, ISO, and other styles
49

Kitazawa, Takahiro, and Takanori Nomura. "Refractive index tomography based on optical coherence tomography and tomographic reconstruction algorithm." Japanese Journal of Applied Physics 56, no. 9S (August 24, 2017): 09NB03. http://dx.doi.org/10.7567/jjap.56.09nb03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Kuś, Arkadiusz, Wojciech Krauze, and Małgorzata Kujawińska. "From digital holographic microscopy to optical coherence tomography – separate past and a common goal." Photonics Letters of Poland 13, no. 4 (December 30, 2021): 91. http://dx.doi.org/10.4302/plp.v13i4.1130.

Full text
Abstract:
In this paper we briefly present the history and outlook on the development of two seemingly distant techniques which may be brought close together with a unified theoretical model described as common k-space theory. This theory also known as the Fourier diffraction theorem is much less common in optical coherence tomography than its traditional mathematical model, but it has been extensively studied in digital holography and, more importantly, optical diffraction tomography. As demonstrated with several examples, this link is one of the important factors for future development of both techniques. Full Text: PDF ReferencesN. Leith, J. Upatnieks, "Reconstructed Wavefronts and Communication Theory", J. Opt. Soc. Am. 52(10), 1123 (1962). CrossRef Y. Park, C. Depeursinge, G. Popescu, "Quantitative phase imaging in biomedicine", Nat. Photonics 12, 578 (2018). CrossRef D. Huang et al., "Optical Coherence Tomography", Science 254(5035), 1178 (1991). CrossRef D. P. Popescu, C. Flueraru, S. Chang, J. Disano, S. Sherif, M.G. Sowa, "Optical coherence tomography: fundamental principles, instrumental designs and biomedical applications", Biophys. Rev. 3(3), 155 (2011). CrossRef M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, "Three-dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography", Ophthalmology 112(10), 1734 (2005). CrossRef K.C. Zhou, R. Qian, A.-H. Dhalla, S. Farsiu, J.A. Izatt, "Unified k-space theory of optical coherence tomography", Adv. Opt. Photon. 13(2), 462 (2021). CrossRef A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry", Opt. Comm. 117(1-2), 43 (1995). CrossRef E. Wolf, "Determination of the Amplitude and the Phase of Scattered Fields by Holography", J. Opt. Soc. Am. 60(1), 18 (1970). CrossRef E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data", Opt. Comm. 1(4), 153 (1969). CrossRef V. Balasubramani et al., "Roadmap on Digital Holography-Based Quantitative Phase Imaging", J. Imaging 7(12), 252 (2021). CrossRef A. Kuś, W. Krauze, P.L. Makowski, M. Kujawińska, "Holographic tomography: hardware and software solutions for 3D quantitative biomedical imaging (Invited paper)", ETRI J. 41(1), 61 (2019). CrossRef A. Kuś, M. Dudek, M. Kujawińska, B. Kemper, A. Vollmer, "Tomographic phase microscopy of living three-dimensional cell cultures", J. Biomed. Opt. 19(4), 46009 (2014). CrossRef O. Haeberlé, K. Belkebir, H. Giovaninni, A. Sentenac, "Tomographic diffractive microscopy: basics, techniques and perspectives", J. Mod. Opt. 57(9), 686 (2010). CrossRef B. Simon et al., "Tomographic diffractive microscopy with isotropic resolution", Optica 4(4), 460 (2017). CrossRef B.A. Roberts, A.C. Kak, "Reflection Mode Diffraction Tomography", Ultrason. Imag. 7, 300 (1985). CrossRef M. Sarmis et al., "High resolution reflection tomographic diffractive microscopy", J. Mod. Opt. 57(9), 740 (2010). CrossRef L. Foucault et al., "Versatile transmission/reflection tomographic diffractive microscopy approach", J. Opt. Soc. Am. A 36(11), C18 (2019). CrossRef W. Krauze, P. Ossowski, M. Nowakowski, M. Szkulmowski, M. Kujawińska, "Enhanced QPI functionality by combining OCT and ODT methods", Proc. SPIE 11653, 116530B (2021). CrossRef E. Mudry, P.C. Chaumet, K. Belkebir, G. Maire, A. Sentenac, "Mirror-assisted tomographic diffractive microscopy with isotropic resolution", Opt. Lett. 35(11), 1857 (2010). CrossRef P. Hosseini, Y. Sung, Y. Choi, N. Lue, Z. Yaqoob, P. So, "Scanning color optical tomography (SCOT)", Opt. Expr. 23(15), 19752 (2015). CrossRef J. Jung, K. Kim, J. Yoon, Y. Park, "Hyperspectral optical diffraction tomography", Opt. Expr. 24(3), 1881 (2016). CrossRef T. Zhang et al., Biomed. "Multi-wavelength multi-angle reflection tomography", Opt. Expr. 26(20), 26093 (2018). CrossRef R.A. Leitgeb, "En face optical coherence tomography: a technology review [Invited]", Biomed. Opt. Expr. 10(5), 2177 (2019). CrossRef J.F. de Boer, R. Leitgeb, M. Wojtkowski, "Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]", Biomed. Opt. Expr. 8(7), 3248 (2017). CrossRef T. Anna, V. Srivastava, C. Shakher, "Transmission Mode Full-Field Swept-Source Optical Coherence Tomography for Simultaneous Amplitude and Quantitative Phase Imaging of Transparent Objects", IEEE Photon. Technol. Lett. 23(11), 899 (2011). CrossRef M.T. Rinehart, V. Jaedicke, A. Wax, "Quantitative phase microscopy with off-axis optical coherence tomography", Opt. Lett. 39(7), 1996 (2014). CrossRef C. Photiou, C. Pitris, "Dual-angle optical coherence tomography for index of refraction estimation using rigid registration and cross-correlation", J. Biomed. Opt. 24(10), 1 (2019). CrossRef Y. Zhou, K.K.H. Chan, T. Lai, S. Tang, "Characterizing refractive index and thickness of biological tissues using combined multiphoton microscopy and optical coherence tomography", Biomed. Opt. Expr. 4(1), 38 (2013). CrossRef K.C. Zhou, R. Qian, S. Degan, S. Farsiu, J.A. Izatt, "Optical coherence refraction tomography", Nat. Photon. 13, 794 (2019). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography