Academic literature on the topic 'Optical Properties - Nanocomposites'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optical Properties - Nanocomposites.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optical Properties - Nanocomposites"
Sangawar, Vijaya S., and Manisha C. Golchha. "Optical Properties of ZnO/Low Density Polyethylene Nanocomposites." International Journal of Scientific Research 2, no. 7 (June 1, 2012): 490–92. http://dx.doi.org/10.15373/22778179/july2013/169.
Full textRamazanov, MA, FV Hajiyeva, YA Babayev, GV Valadova, SG Nuriyeva, and HA Shirinova. "Synthesis and optical properties of PVC-CdS-based nanocomposites." Journal of Elastomers & Plastics 52, no. 2 (February 14, 2019): 159–66. http://dx.doi.org/10.1177/0095244319827989.
Full textMusbah, Salah, Vesna Radojevic, Nadezda Borna, Dusica Stojanovic, Miroslav Dramicanin, Aleksandar Marinkovic, and Radoslav Aleksic. "PMMA-Y2O3 (Eu3+) nanocomposites: Optical and mechanical properties." Journal of the Serbian Chemical Society 76, no. 8 (2011): 1153–61. http://dx.doi.org/10.2298/jsc100330094m.
Full textAnitha, R., E. Kumar, and S. C. Vella Durai. "Synthesis and Investigations of Structural, Optical and AC Conductivity Properties of PANI/CeO2 Nanocomposites." Asian Journal of Chemistry 31, no. 5 (March 28, 2019): 1158–62. http://dx.doi.org/10.14233/ajchem.2019.21910.
Full textJawad, Yaqoob M., Mahasin F. Hadi Al-Kadhemy, and Jehan Abdul Sattar Salman. "Synthesis Structural and Optical Properties of CMC/MgO Nanocomposites." Materials Science Forum 1039 (July 20, 2021): 104–14. http://dx.doi.org/10.4028/www.scientific.net/msf.1039.104.
Full textAlam, Rabeya Binta, Md Hasive Ahmad, S. M. Nazmus Sakib Pias, Eashika Mahmud, and Muhammad Rakibul Islam. "Improved optical, electrical, and thermal properties of bio-inspired gelatin/SWCNT composite." AIP Advances 12, no. 4 (April 1, 2022): 045317. http://dx.doi.org/10.1063/5.0089118.
Full textSharma, Deepali, B. S. Kaith, and Jaspreet Rajput. "Single Step In Situ Synthesis and Optical Properties of Polyaniline/ZnO Nanocomposites." Scientific World Journal 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/904513.
Full textAHMED, S. M., A. A. A. DARWISH, E. A. EL-SABAGH, N. A. MANSOUR, D. E. ABULYAZIED, and E. S. ALI. "PHYSICOCHEMICAL PROPERTIES OF PREPARED ZnO/ POLYSTYRENE NANOCOMPOSITES: STRUCTURE, MECHANICAL AND OPTICAL." Journal of Ovonic Research 16, no. 1 (January 2020): 71–81. http://dx.doi.org/10.15251/jor.2020.161.71.
Full textSudhakaran, Allwin, Ashwin Sudhakaran, and E. Siva Senthil. "Study of Bandgap Energy of Novel Nanocomposite." International Journal of Recent Technology and Engineering (IJRTE) 10, no. 4 (November 30, 2021): 171–76. http://dx.doi.org/10.35940/ijrte.d6607.1110421.
Full textMurugadoss, G., M. Rajesh Kumar, R. Jothi Ramalingam, Hamad Al-Lohedan, A. Ramesh Babu, A. Kathalingam, and Ahmed M. Tawfeek. "Synthesis and study on optical properties of CeO2-Mg(OH)2 and inverted Mg(OH)2-CeO2 nanocomposites." Digest Journal of Nanomaterials and Biostructures 16, no. 4 (December 2021): 1427–32. http://dx.doi.org/10.15251/djnb.2021.164.1427.
Full textDissertations / Theses on the topic "Optical Properties - Nanocomposites"
Van, Sickle Austin Reed. "Temperature Dependent Optical Properties of Silicon Quantum Dot/Polymer Nanocomposites." Thesis, North Dakota State University, 2012. https://hdl.handle.net/10365/26619.
Full textCOLOMBO, ANNALISA. "Synthesis and characterization of TiO2 polymeric nanocomposites with tailorable optical properties." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28632.
Full textMINNAI, CHLOE'. "OPTICAL AND ELECTRICAL PROPERTIES OF METAL POLYMER NANOCOMPOSITES FABRICATED WITH SUPERSONIC CLUSTER BEAM IMPLANTATION." Doctoral thesis, Università degli Studi di Milano, 2018. http://hdl.handle.net/2434/637068.
Full textTakele, Haile [Verfasser]. "Optical and electrical properties of metal-polymer nanocomposites prepared by vapor-phase co-evaporation / Haile Takele." Kiel : Universitätsbibliothek Kiel, 2009. http://d-nb.info/1019810459/34.
Full textArlindo, Elen Poliani da Silva [UNESP]. "Estudo das propriedades elétricas e ópticas de nanocompósitos transparentes e condutores." Universidade Estadual Paulista (UNESP), 2010. http://hdl.handle.net/11449/91968.
Full textFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nanocompósitos são materiais que combinam duas (ou mais) fases sólidas, uma das quais deve possuir dimensões nanométricas, que pode reunir em um único material várias propriedades melhoradas para uma dada aplicação e, portanto, podem permitir a coexistência de propriedades tradicionalmente antagônicas como, transparência e condutividade. O presente trabalho teve como objetivo a obtenção de um nanocompósito polimérico transparente e condutor de polimetilmetacrilato – PMMA com nanofitas do sistema Indium Tin Oxide – ITO. Para isto primeiramente estudou-se a influência da temperatura na síntese das nanoestruturas de ITO e depois de obtida a temperatura de síntese que proporcionou o crescimento de nanofitas de ITO com maior condutividade e maior transparência no espectro visível, estudou-se a influência da inserção destas nanofitas nas propriedades ópticas e elétricas de filmes nanocompósitos de PMMA. Como as nanofitas obtidas são emaranhadas, para a obtenção do nanocompósito foi realizada uma separação prévia das mesmas utilizando duas dispersões distintas: sendo a primeira em um ultrasom convencional e a segunda em uma ponta ultrasônica. Depois de dispersas, as nanofitas foram misturadas ao PMMA comercial dissolvido em concentrações mássicas de 1%, 2%, 5% e 10% de nanofitas. As soluções foram então depositadas sobre substrato de vidro e, depois de secos, os filmes foram destacados. As caracterizações ópticas mostraram que a transmitância no espectro visível dos filmes diminui em função do aumento da quantidade de nanofitas no compósito. Neste estudo, as caracterizações elétricas mostraram que ocorreu percolação das nanofitas no polímero após a inserção de 5% em massa de nanofitas. As imagens de MET para os filmes corroboraram os resultados previstos pelas caracterizações elétricas. Os filmes...
Nanocomposites are materials which have two or more solid phases, and one of these phases should be in nano-sized scale range. These materials can have several properties increased for special application and it is possible to obtain composites with traditionally antagonistic combinations of properties, such as transparence in the visible range of light and good conductivity. The main goal of this work is obtain a transparent and conductive polymer-based nanocomposite using polymethylmethacrylate – PMMA and ITO (Indium Tin Oxide) nanobelts. To reach this goal it was first studied the influence of temperature on the synthesis of nanostructured ITO. Once the temperature of synthesis was optimized to ensure the growth of ITO nanobelts with both good conductivity and good transparency in the visible spectrum, we studied the influence of ITO nanobelts on the electrical and optical properties of nanocomposites of PMMA. Because the synthesized nanobelts are entangled each other, to obtain the composite it was realized a separation of them using two different ways; first using a conventional ultrasound and after an ultrasonic tip. Then, nanobelts were mixed with commercial PMMA dissolved in THF 10% in mass concentrations of 1%, 2%, 5% and 10%. So, the solution was deposited over a glass substrate by casting. The results showed that films transmittance in visible range decreases by increasing the amount of nanobelts. The electrical characterization showed that percolation occurred after 5%wt of filler. TEM images of composites corroborate the results provided by the electrical measures. The films prepared using both dispersions had the same transmittance in the visible spectrum, despite of the films obtained by dispersing the nanobelts in ultrasonic tip had a lower electrical resistance. Thus it can be concluded that the dispersion by ultrasonic... (Summary complete electronic access click below)
Kochergin, Vladimir [Verfasser]. "Optical properties of metamaterials based on porous semiconductors and nanocomposites : theoretical considerations and experiments / Vladimir Yevgenyevich Kochergin." Kiel : Universitätsbibliothek Kiel, 2010. http://d-nb.info/1020005343/34.
Full textArlindo, Elen Poliani da Silva. "Estudo das propriedades elétricas e ópticas de nanocompósitos transparentes e condutores /." Ilha Solteira : [s.n.], 2010. http://hdl.handle.net/11449/91968.
Full textBanca: Walter Katsumi Sakamoto
Banca: Emerson Rodrigues de Camargo
Resumo: Nanocompósitos são materiais que combinam duas (ou mais) fases sólidas, uma das quais deve possuir dimensões nanométricas, que pode reunir em um único material várias propriedades melhoradas para uma dada aplicação e, portanto, podem permitir a coexistência de propriedades tradicionalmente antagônicas como, transparência e condutividade. O presente trabalho teve como objetivo a obtenção de um nanocompósito polimérico transparente e condutor de polimetilmetacrilato - PMMA com nanofitas do sistema Indium Tin Oxide - ITO. Para isto primeiramente estudou-se a influência da temperatura na síntese das nanoestruturas de ITO e depois de obtida a temperatura de síntese que proporcionou o crescimento de nanofitas de ITO com maior condutividade e maior transparência no espectro visível, estudou-se a influência da inserção destas nanofitas nas propriedades ópticas e elétricas de filmes nanocompósitos de PMMA. Como as nanofitas obtidas são emaranhadas, para a obtenção do nanocompósito foi realizada uma separação prévia das mesmas utilizando duas dispersões distintas: sendo a primeira em um ultrasom convencional e a segunda em uma ponta ultrasônica. Depois de dispersas, as nanofitas foram misturadas ao PMMA comercial dissolvido em concentrações mássicas de 1%, 2%, 5% e 10% de nanofitas. As soluções foram então depositadas sobre substrato de vidro e, depois de secos, os filmes foram destacados. As caracterizações ópticas mostraram que a transmitância no espectro visível dos filmes diminui em função do aumento da quantidade de nanofitas no compósito. Neste estudo, as caracterizações elétricas mostraram que ocorreu percolação das nanofitas no polímero após a inserção de 5% em massa de nanofitas. As imagens de MET para os filmes corroboraram os resultados previstos pelas caracterizações elétricas. Os filmes... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Nanocomposites are materials which have two or more solid phases, and one of these phases should be in nano-sized scale range. These materials can have several properties increased for special application and it is possible to obtain composites with traditionally antagonistic combinations of properties, such as transparence in the visible range of light and good conductivity. The main goal of this work is obtain a transparent and conductive polymer-based nanocomposite using polymethylmethacrylate - PMMA and ITO (Indium Tin Oxide) nanobelts. To reach this goal it was first studied the influence of temperature on the synthesis of nanostructured ITO. Once the temperature of synthesis was optimized to ensure the growth of ITO nanobelts with both good conductivity and good transparency in the visible spectrum, we studied the influence of ITO nanobelts on the electrical and optical properties of nanocomposites of PMMA. Because the synthesized nanobelts are entangled each other, to obtain the composite it was realized a separation of them using two different ways; first using a conventional ultrasound and after an ultrasonic tip. Then, nanobelts were mixed with commercial PMMA dissolved in THF 10% in mass concentrations of 1%, 2%, 5% and 10%. So, the solution was deposited over a glass substrate by casting. The results showed that films transmittance in visible range decreases by increasing the amount of nanobelts. The electrical characterization showed that percolation occurred after 5%wt of filler. TEM images of composites corroborate the results provided by the electrical measures. The films prepared using both dispersions had the same transmittance in the visible spectrum, despite of the films obtained by dispersing the nanobelts in ultrasonic tip had a lower electrical resistance. Thus it can be concluded that the dispersion by ultrasonic... (Summary complete electronic access click below)
Mestre
Matsumura, Masashi. "Synthesis, electrical properties, and optical characterization of hybrid zinc oxide/polymer thin films and nanostructures." Birmingham, Ala. : University of Alabama at Birmingham, 2007. https://www.mhsl.uab.edu/dt/2009r/matsumura.pdf.
Full textTitle from PDF t.p. (viewed Feb. 3, 2010). Additional advisors: Derrick R. Dean, Sergey B. Mirov, Sergey Vyazovkin, Mary Ellen Zvanut. Includes bibliographical references (p. 122-145).
Chamorro, Coral William. "Microstructure, chemistry and optical properties in ZnO and ZnO-Au nanocomposite thin films grown by DC-reactive magnetron co-sputtering." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0253/document.
Full textComposite materials can exhibit properties that none of the individual components show. Moreover, composites at the nanoscale can present new properties compared to the bulk state or to macro-composites due to confinement and quantum size effects. The semiconductor/metal nanocomposites are highly interesting due to their unique catalytic and optoelectronic properties and the possibility to tune them easily. This PhD work gives insight into the specific interactions and resulting physical properties occurring in ZnO and ZnO-Au nanocomposite films grown by reactive DC magnetron sputtering. The results can be summarized in two points: First, it was possible to tune the microstructural and optical properties of ZnO. Epitaxial growth of ZnO onto sapphire was achieved for the first time in O2-rich conditions without thermal assistance. Also, a study of the optical properties highlights the close relationship between the bandgap energy (E_g ) and the defect chemistry in ZnO films. A model was proposed to explain the large scatter of the E_g values reported in the literature. Second, the deep influence of the incorporation of gold into the ZnO matrix on important material properties was revealed. Moreover, the presence of donor (acceptor) defects in the matrix is found to give rise to the reduction (oxidation) of the Au nanoparticles. This research work contributes to a better understanding of semiconductor/metal nanocomposites revealing the key role of the state of the semiconductor matrix
Esteves, Ana Catarina de Carvalho. "Nanocompósitos de matriz polimérica do tipo SIO2/ polímero e Cds/ Polímero." Master's thesis, Universidade de Aveiro, 2002. http://hdl.handle.net/10773/21907.
Full textO principal objectivo desta dissertação foi estudar novas perspectivas na preparação de nanocompósitos de matriz polimérica, através da síntese e caracterização de nanomateriais do tipo SiO2/ polímero e CdS/ polímero. O primeiro capítulo consiste numa revisão bibliográfica, com destaque para os principais tópicos discutidos ao longo da tese. São efectuadas algumas considerações sobre a utilização de nanopartículas inorgânicas como cargas, e sobre os aspectos mais relevantes da aplicação de polímeros como matrizes. São ainda descritas, algumas estratégias utilizadas para compatibilizar estes componentes. A revisão é concluída com uma breve descrição das metodologias aplicadas na preparação de nanocompósitos de matriz polimérica. No segundo capítulo apresenta-se a síntese e caracterização das cargas inorgânicas. Seguindo métodos descritos na literatura, foram preparadas nanopartículas de SiO2, esféricas e sob a forma de fibras ocas, nanocristais de CdS e compósitos inorgânicos do tipo SiO2@CdS. Estes últimos, foram sujeitos a um tratamento superficial orgânico com TOPO e ainda com SiO2. Para os materiais tratados com TOPO verificou-se uma melhoria das suas propriedades ópticas, nomeadamente ao nível da fotoluminescência à temperatura ambiente. No terceiro e quarto capítulos, são apresentados os nanocompósitos do tipo SiO2/ polímero, que foram sintetizados por polimerização in situ de matrizes semicristalinas (poliamidas e poliuretanos), e amorfas (poli(estireno)). A sua caracterização foi efectuada por espectroscopia de IV, SEM, TEM, TGA e DSC. Os nanocompósitos de matriz semicristalina foram preparados por polimerização por etapas. No caso das poliamidas, foi investigada a influência das cargas de SiO2 com diferentes morfologias e tratamentos de superfície, no processos de fusão e cristalização da matriz. Os materiais de matriz amorfa foram preparados por polimerização radicalar em emulsão e dispersão. Neste caso o estudo incidiu sobre a morfologia das partículas dos nanocompósitos, nas possíveis condições experimentais que a determinam e na influência destas sobre as propriedades térmicas do nanocompósito. Por fim descreve-se no quinto capítulo a síntese e caracterização dos nanocompósitos do tipo CdS/ polímero. Estes materiais foram preparados por polimerização radicalar em solução, na presença de nanocristais de CdS, e compósitos inorgânicos do tipo SiO2@CdS. A inserção das cargas na matriz promoveu as suas propriedades de fotoluminescência à temperatura ambiente. Foram ainda avaliadas as propriedades térmicas de algumas amostras representativas. Neste trabalho foram preparados uma série de novos nanocompósitos de matriz polimérica, que fazem antever futuras aplicações tecnológicas. Foram ainda estabelecidos novos caminhos para a compreensão dos mecanismos de formação de materiais híbridos, e das interacções que ocorrem ao nível das interfaces de natureza orgânica/ inorgânica.
The aim of this thesis was to study new methods for the preparation of polymer based nanocomposites, through the synthesis and characterisation of SiO2/polymer and CdS/ polymer nanomaterials. The first chapter consists in an introduction to the aim topics that are discussed in the thesis as well as a literature review. Some considerations are made regarding the use of inorganic nanoparticles as fillers, and to the methods used to modify the inorganic materials surface in order to make them more compatible with the organic nature of polymeric matrices. In this introduction some relevant aspects of the use of polymers as matrices are reported, and a brief review of the polymerisation methods to be used in the nanocomposites preparation is given. The second chapter is devoted to the preparation and characterisation of the fillers. Following methods previously described on the literature, SiO2 nanoparticles with spherical and hollow fibres morphologies, CdS nanocristalites and SiO2@CdS inorganic composites were prepared. The last were organically treated with TOPO and also with SiO2. It was concluded that the TOPO capping results in improved room temperature photoluminescence properties. In the third and fourth chapters, the synthesis and characterisation of SiO2/ polymer nanocomposites is discussed. Using several in situ polymerisation techniques semi-crystalline (polyurethanes and polyamides) and amorphous (poly(styrene)) matrices were prepared. The materials were characterised by FTIR spectroscopy, TEM and SEM, TGA and DSC analysis. The semicrystalline polymeric matrix nanocomposites were prepared by steppolymerisation. In the case of the polyamide based nanocomposites the influence of the SIO2 nanoparticles on the melting and crystallization behaviour of the matrices is discussed. As regards the amorphous matrix nanocomposites these were prepared by radical emulsion and dispersion polymerisation. The morphology of the nanocomposite particles is discussed in light of changes in experimental conditions, and its possible influence on thermal properties. Finally, the chapter five is concerned with CdS/ polymer nanocomposites prepared by in situ polymerisation in the presence of CdS nanocrystals, and SiO2@CdS inorganic composites. TOPO capping results in higher affinity of the fillers to the matrix, and its insertion on the matrices promotes their optical properties, namely room temperature photoluminescence. The thermal properties of some representative samples were also studied. In this work a wide range of novel polymer based nanocomposites were prepared. This study showed that nanomaterials have unique properties that can anticipate potential technologic applications. Furthermore, new routes have been opened to the understanding of the mechanisms of nanocomposites formation, as well as the nature of interactions between organic/ inorganic interfaces.
Books on the topic "Optical Properties - Nanocomposites"
N, Cartwright Alexander, Materials Research Society, Materials Research Society Meeting, and Symposium on Organic and Nanocomposite Optical Materials (2004 : Boston, Mass.), eds. Organic and nanocomposite optical materials: Symposium held November 28-December 3, 2004, Boston, Massachusetts, U.S.A. Warrendale, Pa: Materials Research Society, 2005.
Find full textZnO bao mo zhi bei ji qi guang, dian xing neng yan jiu. Shanghai Shi: Shanghai da xue chu ban she, 2010.
Find full textNovel Nanocomposites: Optical, Electrical, Mechanical and Surface Related Properties. MDPI, 2021. http://dx.doi.org/10.3390/books978-3-0365-2248-7.
Full textAyyar, Manikandan, Anish Khan, Abdullah Mohammed Ahmed Asiri, and Imran Khan. Magnetic Nanoparticles and Polymer Nanocomposites: Structural, Electrical and Optical Properties and Applications [Volume 2]. Elsevier Science & Technology, 2023.
Find full textAyyar, Manikandan, Anish Khan, Abdullah Mohammed Ahmed Asiri, and Imran Khan. Magnetic Nanoparticles and Polymer Nanocomposites: Structural, Electrical and Optical Properties and Applications, Volume 2. Elsevier Science & Technology, 2023.
Find full textNikl, Martin. Nanocomposite, Ceramic, and Thin Film Scintillators. Jenny Stanford Publishing, 2016.
Find full textNikl, Martin. Nanocomposite, Ceramic, and Thin Film Scintillators. Jenny Stanford Publishing, 2016.
Find full textNanocomposite, Ceramic and Thin Film Scintillators. Taylor & Francis Group, 2016.
Find full textSociety, Materials Research. Organic and Nanocomposite Optical Materials: Symposium Held November 28-December 3, 2004, Boston, Massachusetts, U.S.A. Materials Research Society, 2005.
Find full textPrakash Rai, Dibya, ed. Advanced Materials and Nano Systems: Theory and Experiment (Part-1). BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/97898150507451220101.
Full textBook chapters on the topic "Optical Properties - Nanocomposites"
Tomar, Richa, N. B. Singh, and N. P. Singh. "Optical Properties of Nanocomposite Materials." In Nanocomposites, 155–85. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003314479-8.
Full textO’Connor, Timothy, and Mikhail Zamkov. "Optical Properties of Nanocomposites." In UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization, 485–529. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-27594-4_13.
Full textRoppolo, Ignazio, Marco Sangermano, and Alessandro Chiolerio. "Optical Properties of Polymer Nanocomposites." In Functional and Physical Properties of Polymer Nanocomposites, 139–57. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118542316.ch7.
Full textDas, Poushali, Syed Rahin Ahmed, Seshasai Srinivasan, and Amin Reza Rajabzadeh. "Optical Properties of Quantum Dots." In Quantum Dots and Polymer Nanocomposites, 69–85. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003266518-4.
Full textArulmurugan, B., G. Kausalya Sasikumar, and L. Rajeshkumar. "Nanostructured Metals: Optical, Electrical, and Mechanical Properties." In Mechanics of Nanomaterials and Polymer Nanocomposites, 69–85. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2352-6_4.
Full textKumar, T. Sujin Jeba, and Muthu Arumugam. "Optical Properties of Magnetic Nanoalloys and Nanocomposites." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 547–73. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90948-2_18.
Full textStalmashonak, Andrei, Gerhard Seifert, and Amin Abdolvand. "Optical Properties of Nanocomposites Containing Metal Nanoparticles." In SpringerBriefs in Physics, 5–15. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00437-2_2.
Full textKumar, T. Sujin Jeba, and Muthu Arumugam. "Optical Properties of Magnetic Nanoalloys and Nanocomposites." In Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites, 1–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-34007-0_18-1.
Full textSanchez, Clément, Bénédicte Lebeau, Frédéric Chaput, and Jean-Pierre Boilot. "Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites." In Functional Hybrid Materials, 122–71. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527602372.ch5.
Full textHore, Michael J. A. "Predicting the Optical and Electrical Properties of Polymer Nanocomposites." In Theory and Modeling of Polymer Nanocomposites, 259–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60443-1_10.
Full textConference papers on the topic "Optical Properties - Nanocomposites"
Popov, Ivan D., Yulia V. Kuznetsova, Alexander A. Sergeev, Svetlana V. Rempel, and Andrey A. Rempel. "Optical properties of CdS-glass nanocomposites." In ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING: FROM THEORY TO APPLICATIONS: Proceedings of the International Conference on Electrical and Electronic Engineering (IC3E 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.4998114.
Full textBloemer, Mark J., and Joseph W. Haus. "Polarizing properties of silver/glass nanocomposites." In Optical Science, Engineering and Instrumentation '97. SPIE, 1997. http://dx.doi.org/10.1117/12.278985.
Full textPatel, Mitesh H., Tapas K. Chaudhuri, Vaibhav K. Patel, T. Shripathi, and U. Deshpande. "Optical properties of PbS/PVP nanocomposites films." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946157.
Full textColombo, Annalisa, and Roberto Simonutti. "Polymer based nanocomposites with tailorable optical properties." In SPIE NanoScience + Engineering, edited by Stefano Cabrini, Gilles Lérondel, Adam M. Schwartzberg, and Taleb Mokari. SPIE, 2014. http://dx.doi.org/10.1117/12.2062388.
Full textGan'shina, E. A., M. Yu Kochneva, P. N. Scherbak, K. Aimuta, and M. Inoue. "Magneto-optical properties of Co-based nanocomposites." In INTERMAG Asia 2005: Digest of the IEEE International Magnetics Conference. IEEE, 2005. http://dx.doi.org/10.1109/intmag.2005.1464477.
Full textDu, H., S. H. Ng, K. T. Neo, M. Ng, I. S. Altman, S. Chiruvolu, N. Kambe, R. Mosso, and K. Drain. "Inorganic-Polymer Nanocomposites for Optical Applications." In ASME 2006 Multifunctional Nanocomposites International Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/mn2006-17088.
Full textEnomoto, Hiroyuki, Masayuki Kawaguchi, Nipaka Sukpirom, and Michael M. Lerner. "Electrical properties of polymer/ MX 2 nanocomposites." In International Symposium on Optical Science and Technology, edited by Naomi J. Halas. SPIE, 2002. http://dx.doi.org/10.1117/12.450467.
Full textTseng, Justine Y., Chia-Yen Li, T. Takada, C. L. Lechner, and John D. Mackenzie. "Optical properties of metal-cluster-doped ORMOSIL nanocomposites." In San Diego '92, edited by John D. Mackenzie. SPIE, 1992. http://dx.doi.org/10.1117/12.132054.
Full textManhas, Sandeep Singh, Priyanka Rehan, Akashdeep Kaur, Aman Deep Acharya, and Bhawna Sarwan. "Evaluation of optical properties of polypyrrole: Polystyrene nanocomposites." In PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098591.
Full textAbd, Mohammed T., Zaid T. Khodair, J. Al-Zanganawee, Hadeel N. Mekhdad, and Asaad A. Kamil. "Improvement of optical properties of ZnO/ PVA nanocomposites." In 2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS: ICMTA2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0103415.
Full textReports on the topic "Optical Properties - Nanocomposites"
Hubert, C. A., J. A. Lubin, W. H. Yang, and T. E. Huber. Synthesis and Optical Properties of Dense Semiconductor-Dielectric Nanocomposites. Fort Belvoir, VA: Defense Technical Information Center, January 1993. http://dx.doi.org/10.21236/ada271304.
Full textHaglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1481179.
Full textRamos, Nuno M. M., Joana Maia, Rita Carvalho Veloso, Andrea Resende Souza, Catarina Dias, and João Ventura. Envelope systems with high solar reflectance by the inclusion of nanoparticles – an overview of the EnReflect Project. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541621982.
Full text