Journal articles on the topic 'Optical phase conjugation'

To see the other types of publications on this topic, follow the link: Optical phase conjugation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical phase conjugation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Damzen, M. J. "Optical Phase Conjugation." Optica Acta: International Journal of Optics 32, no. 6 (June 1985): 639. http://dx.doi.org/10.1080/716099688a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shkunov, Vladimir V., and Boris Ya Zel'dovich. "Optical Phase Conjugation." Scientific American 253, no. 6 (December 1985): 54–59. http://dx.doi.org/10.1038/scientificamerican1285-54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Krolikowski, W., M. R. Belić, and A. Bledowski. "Phase transfer in optical phase conjugation." Physical Review A 37, no. 6 (March 1, 1988): 2224–26. http://dx.doi.org/10.1103/physreva.37.2224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ostermeyer, M., H. J. Kong, V. I. Kovalev, R. G. Harrison, A. A. Fotiadi, P. Mégret, M. Kalal, et al. "Trends in stimulated Brillouin scattering and optical phase conjugation." Laser and Particle Beams 26, no. 3 (June 9, 2008): 297–362. http://dx.doi.org/10.1017/s0263034608000335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
AbstractAn overview on current trends in stimulated Brillouin scattering and optical phase conjugation is given. This report is based on the results of the “Second International Workshop on stimulated Brillouin scattering and phase conjugation” held in Potsdam/Germany in September 2007. The properties of stimulated Brillouin scattering are presented for the compensation of phase distortions in combination with novel laser technology like ceramics materials but also for e.g., phase stabilization, beam combination, and slow light. Photorefractive nonlinear mirrors and resonant refractive index gratings are addressed as phase conjugating mirrors in addition.
5

Chengmingyue Li, Chengmingyue Li. "Optical phase conjugation (OPC) for focusing light through/inside biological tissue." Infrared and Laser Engineering 48, no. 7 (2019): 702001. http://dx.doi.org/10.3788/irla201948.0702001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Okada, Yoshiko, and Ichirou Yamaguchi. "Optical phase conjugation using bacteriorhodopsin." Optics & Laser Technology 24, no. 2 (April 1992): 104. http://dx.doi.org/10.1016/0030-3992(92)90043-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moosad, K. P. B. "Optical phase conjugation for postgraduates." European Journal of Physics 10, no. 2 (April 1, 1989): 133–35. http://dx.doi.org/10.1088/0143-0807/10/2/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pepper, David M. "Applications of Optical Phase Conjugation." Scientific American 254, no. 1 (January 1986): 74–83. http://dx.doi.org/10.1038/scientificamerican0186-74.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Eichmann, George, Yao Li, and R. R. Alfano. "Parallel optical logic using optical phase conjugation." Applied Optics 26, no. 2 (January 15, 1987): 194. http://dx.doi.org/10.1364/ao.26.000194.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tang, Xuefeng, and Zongyan Wu. "WDM transmissions exploiting optical phase conjugation." Annales Des Télécommunications 62, no. 5-6 (May 2007): 518–30. http://dx.doi.org/10.1007/bf03253274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

WANG, Huitian. "Optical Phase Conjugation and Image Reconstruction." Review of Laser Engineering 27, no. 2 (1999): 89–94. http://dx.doi.org/10.2184/lsj.27.89.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

MacDonald, R. L., and R. A. Linke. "Optical phase conjugation using DX centers." Journal of the Optical Society of America B 13, no. 5 (May 1, 1996): 961. http://dx.doi.org/10.1364/josab.13.000961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

PASMANIK, G. A. "OPTICAL Phase Conjugation in the USSR." Optics and Photonics News 3, no. 4 (April 1, 1992): 22. http://dx.doi.org/10.1364/opn.3.4.000022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fujiwara, Hirofumi, and Kazuo Nakagawa. "Organic Materials for Optical Phase Conjugation." Kobunshi 41, no. 9 (1992): 642–45. http://dx.doi.org/10.1295/kobunshi.41.642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Lanzerotti, Mary Y., Alexander L. Gaeta, and Robert W. Boyd. "Optical phase conjugation of nonclassical fields." Physical Review A 51, no. 4 (April 1, 1995): 3182–87. http://dx.doi.org/10.1103/physreva.51.3182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

GRYNBERG, G. "OPTICAL PHASE-CONJUGATION IN ATOMIC VAPORS." Journal of Nonlinear Optical Physics & Materials 02, no. 01 (January 1993): 117–30. http://dx.doi.org/10.1142/s0218199193000061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We present a brief review of optical phase conjugation by four-wave mixing in atomic vapors. We emphasize the particular properties of vapors for this process. We discuss the case of nearly resonant excitation for two-level atoms, the case of multilevel atoms where the nonlinearity arises from optical pumping and the nearly resonant two-photon excitation. We finally describe the modification of phase-conjugate signals when one goes from the Bragg regime to the Raman-Nath regime and we show how one can achieve a phase-contrast mirror rather than a phase-conjugate mirror in this last case.
17

Belić, Milivoj R., and Wiesław Królikowski. "Multigrating optical phase conjugation: numerical results." Journal of the Optical Society of America B 6, no. 5 (May 1, 1989): 901. http://dx.doi.org/10.1364/josab.6.000901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Pegg, D. T., J. A. Vaccaro, and Stephen M. Barnett. "Quantum-optical Phase and Canonical Conjugation." Journal of Modern Optics 37, no. 11 (November 1990): 1703–10. http://dx.doi.org/10.1080/09500349014551931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Chowdhury, Aref, and René-Jean Essiambre. "Optical phase conjugation and pseudolinear transmission." Optics Letters 29, no. 10 (May 14, 2004): 1105. http://dx.doi.org/10.1364/ol.29.001105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kuzin, E. A., M. P. Petrov, and B. E. Davydenko. "Phase conjugation in an optical fibre." Optical and Quantum Electronics 17, no. 6 (1985): 393–97. http://dx.doi.org/10.1007/bf00619565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Vijaya, R., Y. V. G. S. Murti, and T. A. Prasada Rao. "Optical phase conjugation in laser dyes." Optical and Quantum Electronics 24, no. 5 (May 1992): 575–86. http://dx.doi.org/10.1007/bf00619756.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

KIKUCHI, Kazuro. "Optical Fiber Communication System Using Optical Phase Conjugation." Review of Laser Engineering 24, no. 6 (1996): 649–55. http://dx.doi.org/10.2184/lsj.24.649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, Kai, Zhiyang Wang, Haihan Zhao, Chao Liu, Haoyun Zhang, and Bin Xue. "Implementation of an Off-Axis Digital Optical Phase Conjugation System for Turbidity Suppression on Scattering Medium." Applied Sciences 10, no. 3 (January 27, 2020): 875. http://dx.doi.org/10.3390/app10030875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Due to the light scattering effect, it is difficult to directly achieve optical focusing and imaging in turbid media, such as milk and biological tissue. The turbidity suppression of a scattering medium and control of light through the scattering medium are important for imaging on biological tissue or biophotonics. Optical phase conjugation is a novel technology on turbidity suppression by directly creating phase conjugation light waves to form time-reversed light. In this work, we report a digital optical phase conjugation system based on off-axis holography. Compared with traditional digital optical phase conjugation methods, the off-axis holography acquires the conjugation phase using only one interference image, obviously saving photo acquisition time. Furthermore, we tested the optical phase conjugate reduction performance of this system and also achieved optical focusing through the diffuser. We also proved that the reversing of random scattering in turbid media is achievable by phase conjugation.
24

Sun, Fan, Feng Wen, Baojian Wu, Yun Ling, and Kun Qiu. "Optical Phase Conjugation Conversion through a Nonlinear Bidirectional Semiconductor Optical Amplifier Configuration." Photonics 9, no. 3 (March 9, 2022): 164. http://dx.doi.org/10.3390/photonics9030164.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The optical phase conjugation (OPC) process is thoughtfully investigated in a nonlinear bidirectional semiconductor optical amplifier subsystem (SOA), demonstrating the conjugation conversion through the two ports of the SOA, simultaneously. The spectral responses, the nonlinear power curves and the quality optimization of the conjugated are discussed through the simulation in nonlinear bidirectional configuration. The experimental investigation of the polarization-insensitive SOA further confirms the OPC behavior in the bidirectional operation, achieving the error-free conjugation conversion with an output optical signal-to-noise ratio (OSNR) of up to 16 dB. The nonlinear bidirectional SOA configuration tested in the system relaxes the requirement of the conventional four-wave mixing (FWM), enabling the OPC conversion with the signal regeneration in only one unit.
25

Agrawal, Govind P. "Phase detection in optical communication systems through phase conjugation." Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, no. 3 (June 1996): 383–85. http://dx.doi.org/10.1088/1355-5111/8/3/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tompkin, Wayne R., Raymond Y. Chiao, Michelle S. Malcuit, and Robert W. Boyd. "Time reversal of Berry’s phase by optical phase conjugation." Journal of the Optical Society of America B 7, no. 2 (February 1, 1990): 230. http://dx.doi.org/10.1364/josab.7.000230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Xie, Ping, Jian-Hua Dai, and Hong-Jun Zhang. "Mulitigrating optical phase conjugation with considerations of phase effects." Journal of the Optical Society of America B 9, no. 12 (December 1, 1992): 2240. http://dx.doi.org/10.1364/josab.9.002240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Reghunath, A. T., C. K. Subramanian, P. S. Narayanan, and M. R. Sajan. "Optical phase conjugation in methylene blue films." Applied Optics 31, no. 24 (August 20, 1992): 4905. http://dx.doi.org/10.1364/ao.31.004905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bozhevolnyi, Sergey I., Ole Keller, and Igor I. Smolyaninov. "Phase conjugation of an optical near field." Optics Letters 19, no. 20 (October 15, 1994): 1601. http://dx.doi.org/10.1364/ol.19.001601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kim, Kihong. "Enhanced optical phase conjugation in nonlinear metamaterials." Optics Express 22, S7 (October 28, 2014): A1744. http://dx.doi.org/10.1364/oe.22.0a1744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Huh, J. Y., E. Son, S. B. Jun, and Y. C. Chung. "Temperature-independent fiber-based optical phase conjugation." IEEE Photonics Technology Letters 18, no. 15 (August 2006): 1678–80. http://dx.doi.org/10.1109/lpt.2006.879541.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dennis, W. M., W. Blau, and D. J. Bradley. "Optical Phase Conjugation In A Soluble Polymer." Optical Engineering 25, no. 4 (April 1, 1986): 254538. http://dx.doi.org/10.1117/12.7973856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kawata, Y., K. Fujita, O. Nakamura, and S. Kawata. "4Pi confocal optical system with phase conjugation." Optics Letters 21, no. 18 (September 15, 1996): 1415. http://dx.doi.org/10.1364/ol.21.001415.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Haus, J. W., C. M. Bowden, and C. C. Sung. "Optical phase conjugation with smooth pump profiles." Physical Review A 35, no. 8 (April 1, 1987): 3398–405. http://dx.doi.org/10.1103/physreva.35.3398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

He, G. "Optical phase conjugation: principles, techniques, and applications." Progress in Quantum Electronics 26, no. 3 (May 2002): 131–91. http://dx.doi.org/10.1016/s0079-6727(02)00004-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jang, Mooseok, Anne Sentenac, and Changhuei Yang. "Optical phase conjugation (OPC)-assisted isotropic focusing." Optics Express 21, no. 7 (April 2, 2013): 8781. http://dx.doi.org/10.1364/oe.21.008781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bajer, Jiŕí, and Jan Peřina. "Quantum statistical properties of optical phase conjugation." Optics Communications 85, no. 2-3 (September 1991): 261–66. http://dx.doi.org/10.1016/0030-4018(91)90406-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lahiri, Joydev, and B. K. Sinha. "Resonant optical phase conjugation in laser plasmas." Optics Communications 113, no. 4-6 (January 1995): 407–12. http://dx.doi.org/10.1016/0030-4018(94)00505-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Leonardy, Jörg, Friedemann Kaiser, Milivoj R. Belić, and Ortwin Hess. "Running transverse waves in optical phase conjugation." Physical Review A 53, no. 6 (June 1, 1996): 4519–27. http://dx.doi.org/10.1103/physreva.53.4519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mikhailov, Viktor N., Maria Bondani, Fabio Paleari, and Alessandra Andreoni. "Optical phase conjugation in difference-frequency generation." Journal of the Optical Society of America B 20, no. 8 (August 1, 2003): 1715. http://dx.doi.org/10.1364/josab.20.001715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Alekseev, V. N., D. I. Dmitriev, and V. I. Reshetnikov. "Optical phase conjugation of a scanning beam." Soviet Journal of Quantum Electronics 21, no. 1 (January 31, 1991): 99–101. http://dx.doi.org/10.1070/qe1991v021n01abeh003723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jia, Qing, Kenan Qu, and Nathaniel J. Fisch. "Optical phase conjugation in backward Raman amplification." Optics Letters 45, no. 18 (September 14, 2020): 5254. http://dx.doi.org/10.1364/ol.397321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Roussignol, P., D. Ricard, K. C. Rustagi, and C. Flytzanis. "Optical phase conjugation in semiconductor-doped glasses." Optics Communications 55, no. 2 (August 1985): 143–48. http://dx.doi.org/10.1016/0030-4018(85)90319-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Hall, T. J. "Principles of Phase Conjugation." Optica Acta: International Journal of Optics 33, no. 6 (June 1986): 685–86. http://dx.doi.org/10.1080/713822019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

SONDERER, N., and P. GÜNTER. "NEAR INFRARED NONLINEAR OPTICAL PHASE CONJUGATION IN PHOTOREFRACTIVE CRYSTALS AND SEMICONDUCTOR MATERIALS PART II: MATERIALS AND APPLICATIONS." Journal of Nonlinear Optical Physics & Materials 03, no. 03 (July 1994): 373–438. http://dx.doi.org/10.1142/s0218199194000225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Materials used in experiments for optical wavefront reversing as a tool for phase aberration correction are reviewed. The recent experimental results in optical phase conjugation in the near infrared are summarized. Photorefractive oxides and their feasibility to use these materials in this wavelength range as well as bulk semiconductors with the corresponding bandgap and dopant are reviewed by listing the nonlinear optical properties and the measured results in optical phase conjugating experiments. Advantages of each material is confronted with the drawbacks. Different enhancement techniques are presented in order to improve the corresponding material parameters. Several applications and experiments are discussed.
46

Wang, Daifa, Edward Haojiang Zhou, Joshua Brake, Haowen Ruan, Mooseok Jang, and Changhuei Yang. "Focusing through dynamic tissue with millisecond digital optical phase conjugation." Optica 2, no. 8 (August 7, 2015): 728. http://dx.doi.org/10.1364/optica.2.000728.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Li, Yao, George Eichmann, Roger Dorisinville, and R. R. Alfano. "Parallel digital and symbolic optical computation via optical phase conjugation." Applied Optics 27, no. 10 (May 15, 1988): 2025. http://dx.doi.org/10.1364/ao.27.002025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ramos, F., and J. Marti. "RF response of analog optical links employing optical phase conjugation." Journal of Lightwave Technology 19, no. 6 (June 2001): 842–46. http://dx.doi.org/10.1109/50.927515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Wang, Lei, Mingyi Gao, Mengli Liu, Huaqing Zhu, Bowen Chen, and Lian Xiang. "Energy-efficient all optical wavelength converter for optical phase conjugation." Optical Fiber Technology 58 (September 2020): 102278. http://dx.doi.org/10.1016/j.yofte.2020.102278.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Plumb, D. M., and J. M. Harris. "Absorbance Measurements in Optically Inhomogeneous Samples Using Phase-Conjugate Thermal Lens Spectroscopy." Applied Spectroscopy 46, no. 9 (September 1992): 1346–53. http://dx.doi.org/10.1366/0003702924123827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The optical phase conjugation properties of a BaTiO3 crystal are employed in a thermal lens experiment to measure small absorbance values of optically inhomogeneous samples. The sensitivity of the thermal lens, together with the beam reconstruction capabilities of phase conjugation, allows measurement of absorbances as low as 1.2 × 10−5 in the presence of large-amplitude spatial noise. A model which describes the behavior of an ordinary thermal lens could be used to evaluate the behavior of the phase-conjugate thermal lens response. Controlled phase-front perturbations generated by the thermal lens are used to characterize the influence of optical path distortions on phase-conjugate reflectivity.

To the bibliography