Journal articles on the topic 'Optical parametric oscillation'

To see the other types of publications on this topic, follow the link: Optical parametric oscillation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical parametric oscillation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Powers, P. E., L. K. Cheng, S. Ramakrishna, and C. L. Tang. "Optical parametric oscillation with KTiOAsO_4." Optics Letters 18, no. 14 (July 15, 1993): 1171. http://dx.doi.org/10.1364/ol.18.001171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brinkmann, Maximilian, Tim Hellwig, and Carsten Fallnich. "Optical parametric chirped pulse oscillation." Optics Express 25, no. 11 (May 24, 2017): 12884. http://dx.doi.org/10.1364/oe.25.012884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guidry, Melissa A., Ki Youl Yang, Daniil M. Lukin, Ashot Markosyan, Joshua Yang, Martin M. Fejer, and Jelena Vučković. "Optical parametric oscillation in silicon carbide nanophotonics." Optica 7, no. 9 (September 3, 2020): 1139. http://dx.doi.org/10.1364/optica.394138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Byer, Robert L., and Algis Piskarskas. "Optical Parametric Oscillation and Amplification Introduction." Journal of the Optical Society of America B 10, no. 9 (September 1, 1993): 1656. http://dx.doi.org/10.1364/josab.10.001656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Byer, Robert L., and Algis Piskarskas. "Optical Parametric Oscillation and Amplification Introduction." Journal of the Optical Society of America B 10, no. 11 (November 1, 1993): 2148. http://dx.doi.org/10.1364/josab.10.002148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Longhi, Stefano. "Localized structures in optical parametric oscillation." Physica Scripta 56, no. 6 (December 1, 1997): 611–18. http://dx.doi.org/10.1088/0031-8949/56/6/014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Yunping, Zuyan Xu, Daoqun Deng, Wanhua Zheng, Baichang Wu, and Chuangtian Chen. "Visible optical parametric oscillation in LiB3O5." Applied Physics Letters 59, no. 5 (July 29, 1991): 531–33. http://dx.doi.org/10.1063/1.105429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ru, Qitian, Nathaniel Lee, Xuan Chen, Kai Zhong, Georgiy Tsoy, Mike Mirov, Sergey Vasilyev, Sergey B. Mirov, and Konstantin L. Vodopyanov. "Optical parametric oscillation in a random polycrystalline medium." Optica 4, no. 6 (June 6, 2017): 617. http://dx.doi.org/10.1364/optica.4.000617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

KASAI, KATSUYUKI, and CLAUDE FABRE. "SQUEEZING OF THE PUMP BEAM IN OPTICAL PARAMETRIC INTERACTION." Journal of Nonlinear Optical Physics & Materials 05, no. 04 (October 1996): 921–27. http://dx.doi.org/10.1142/s0218863596000659.

Full text
Abstract:
We investigate the squeezing of the pump beam in optical parametric interaction. According to our semi-classical calculation, the pump beam reflected back from a Triply Resonant Optical Parametric Oscillator (TROPO) is squeezed.1 In this paper we preliminarily demonstrate the squeezing of the pump beam by using a semimonolithic KTP TROPO pumped by a frequency doubled LD-pumped YAG laser. Noise reduction of 1.2 dB below the shot noise level is observed in the bistable region of the parametric oscillation.
APA, Harvard, Vancouver, ISO, and other styles
10

Wen, Jin. "Pulse evolution in mid-infrared femtosecond optical parametric oscillator based on silicon-on-insulator waveguides." Modern Physics Letters B 30, no. 11 (April 29, 2016): 1650163. http://dx.doi.org/10.1142/s0217984916501633.

Full text
Abstract:
The pulse evolution of mid-infrared optical parametric oscillator based on silicon-on-insulator (SOI) waveguides is numerically investigated. The properties of pulse evolution in the process of optical parametric oscillation have been described. The numerical results show that the threshold of the optical parametric oscillation cavity can be lowered due to the high nonlinearity of the waveguide. The parametric signals initiate to oscillate when the circle trip number is 5 with the appropriate length of the SOI waveguide 7 mm. Meanwhile the peak power of the output signal pulse can be reached to 400 W at the stable situation when the circle trip number is over 10 with the conversion efficiency as high as 5%. This research can supply a kind of way to generate the mid-infrared femtosecond pulse at the highly stable on-chip integration level.
APA, Harvard, Vancouver, ISO, and other styles
11

Baumberg, J. J., P. G. Savvidis, R. M. Stevenson, A. I. Tartakovskii, M. S. Skolnick, D. M. Whittaker, and J. S. Roberts. "Parametric oscillation in a vertical microcavity: A polariton condensate or micro-optical parametric oscillation." Physical Review B 62, no. 24 (December 15, 2000): R16247—R16250. http://dx.doi.org/10.1103/physrevb.62.r16247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lu, Bo, Chen-Rui Fan, Jun-Yang Song, and Chuan Wang. "Optical Parametric Oscillation with Ultra-Low Power Threshold in a Dimer of Active-Passive Cavities." Crystals 11, no. 5 (May 19, 2021): 566. http://dx.doi.org/10.3390/cryst11050566.

Full text
Abstract:
Optical parametric oscillation can convert the input laser into a couple of coherent optical output with signal and idler frequencies. It is an important method for the realization of the broadband middle infrared tunable lasers. The optical parametric oscillation process depends on the ultra-fast non-linear response of matter to light with a certain pump power. Therefore, reducing the pump threshold of the optical parametric oscillation process and improving the energy conversion efficiency are of great significance to the study of non-linear optics. In this paper, we construct a dimer system that couples a passive non-linear resonator to an active resonator. Based on the dimer system, an ultra-low threshold optical parametric oscillation generation method is proposed. By coupling the gain pump mode, the non-linear effect is effectively enhanced, the pump power threshold is reduced to half of when there is no gain, and the energy conversion efficiency is increased. We believe this research provides a feasible method for a low-threshold tunable and easy-to-integrate optical parametric oscillation laser source.
APA, Harvard, Vancouver, ISO, and other styles
13

KOVALENKO, N. "Zn1-xMgxSe: A PROMISING MATERIAL FOR NON-LINEAR OPTICS." Journal of Nonlinear Optical Physics & Materials 20, no. 02 (June 2011): 123–27. http://dx.doi.org/10.1142/s0218863511005954.

Full text
Abstract:
A theoretical analysis of the condition of scalar phase-matched second harmonic generation and optical parametric oscillation (OPO) in single-crystalline samples Zn0.52Mg0.48Se is presented. The calculated range of pumping for second harmonic generation with phase matching is 5.1-13 μm. The tuning range of the optical parametric oscillator based on Zn0.52Mg0.48Se is determined. The combination of active media and nonlinear converter for OPO in the same optical element are proposed.
APA, Harvard, Vancouver, ISO, and other styles
14

Lan, Song, J. A. Giordmaine, Mordechai Segev, and Daniel Rytz. "Optical parametric oscillation in soliton-induced waveguides." Optics Letters 27, no. 9 (May 1, 2002): 737. http://dx.doi.org/10.1364/ol.27.000737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

de Valcárcel, Germán J., Eugenio Roldán, and Kestutis Staliunas. "Cavity solitons in nondegenerate optical parametric oscillation." Optics Communications 181, no. 1-3 (July 2000): 207–13. http://dx.doi.org/10.1016/s0030-4018(00)00744-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Bosenberg, W. R., L. K. Cheng, and C. L. Tang. "Ultraviolet optical parametric oscillation in β‐BaB2O4." Applied Physics Letters 54, no. 1 (January 2, 1989): 13–15. http://dx.doi.org/10.1063/1.101434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Rosenman, G., A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomas, and Z. W. Hu. "Periodically poled KTiOAsO4crystals for optical parametric oscillation." Journal of Physics D: Applied Physics 32, no. 14 (January 1, 1999): L49—L52. http://dx.doi.org/10.1088/0022-3727/32/14/101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Bromley, L. J., A. Guy, and D. C. Hanna. "Synchronously pumped optical parametric oscillation in KTP." Optics Communications 70, no. 4 (March 1989): 350–54. http://dx.doi.org/10.1016/0030-4018(89)90333-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ru, Qitian, Nathaniel Lee, Xuan Chen, Kai Zhong, Georgiy Tsoy, Mike Mirov, Sergey Vasilyev, Sergey B. Mirov, and Konstantin L. Vodopyanov. "Optical parametric oscillation in a random polycrystalline medium: publisher’s note." Optica 4, no. 7 (July 17, 2017): 813. http://dx.doi.org/10.1364/optica.4.000813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Lu, Xiyuan, Gregory Moille, Anshuman Singh, Qing Li, Daron A. Westly, Ashutosh Rao, Su-Peng Yu, Travis C. Briles, Scott B. Papp, and Kartik Srinivasan. "Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics." Optica 6, no. 12 (December 19, 2019): 1535. http://dx.doi.org/10.1364/optica.6.001535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Koch, Karl, Gerald T. Moore, and E. C. Cheungy. "Optical parametric oscillation with intracavity difference-frequency mixing." Journal of the Optical Society of America B 12, no. 11 (November 1, 1995): 2268. http://dx.doi.org/10.1364/josab.12.002268.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Diederichs, C., J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, Ph Roussignol, and C. Delalande. "Optical parametric oscillation in a vertical triple microcavity." Superlattices and Microstructures 41, no. 5-6 (May 2007): 301–7. http://dx.doi.org/10.1016/j.spmi.2007.03.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Moore, Gerald T., Karl Koch, and E. C. Cheung. "Optical parametric oscillation with intracavity second-harmonic generation." Optics Communications 113, no. 4-6 (January 1995): 463–70. http://dx.doi.org/10.1016/0030-4018(94)00596-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cheng, L. K., W. R. Bosenberg, and C. L. Tang. "Broadly tunable optical parametric oscillation in β‐BaB2O4." Applied Physics Letters 53, no. 3 (July 18, 1988): 175–77. http://dx.doi.org/10.1063/1.100582.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ding, Y. J., S. J. Lee, and J. B. Khurgin. "Transversely Pumped Counterpropagating Optical Parametric Oscillation and Amplification." Physical Review Letters 75, no. 3 (July 17, 1995): 429–32. http://dx.doi.org/10.1103/physrevlett.75.429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Moore, G. T., and K. Koch. "Optical parametric oscillation with intracavity sum-frequency generation." IEEE Journal of Quantum Electronics 29, no. 3 (March 1993): 961–69. http://dx.doi.org/10.1109/3.206580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Vodopyanov, K. L., O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier. "Optical parametric oscillation in quasi-phase-matched GaAs." Optics Letters 29, no. 16 (August 13, 2004): 1912. http://dx.doi.org/10.1364/ol.29.001912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Phua, P. B., B. X. Xu, T. C. Chong, and Y. C. Fong. "Oscillation threshold of pulsed doubly resonating optical parametric oscillator operating near degeneracy." Optics Communications 139, no. 4-6 (July 1997): 320–26. http://dx.doi.org/10.1016/s0030-4018(97)00131-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

DING, YUJIE J., and JACOB B. KHURGIN. "MIRRORLESS OPTICAL PARAMETRIC OSCILLATORS." Journal of Nonlinear Optical Physics & Materials 05, no. 02 (April 1996): 223–46. http://dx.doi.org/10.1142/s0218863596000179.

Full text
Abstract:
We have considered two novel configurations for optical parametric oscillators (OPO’s): transversely-pumped counter-propagating and nondegenerate backward OPO’s due to the distributed feedback provided through the opposite propagation directions of the signal and idler. In both configurations, by changing the incident angle of the pump beam, one can tune the output frequency in a large range. The threshold pump powers for the oscillation can be as low as ~10 W for the transversely-pumped counter-propagating OPO’s and 44 W for the nondegenerate backward OPO’s. The quasi-phase matching is achieved by spatially modulating second-order susceptibility along the growth direction based on semiconductor alternating thin layers or asymmetric quantum-well domain structures or by electric-field poling in conventional second-order nonlinear materials. The nondegenerate backward OPO’s offer the most efficient conversion among all the configurations for the OPO’s having the same threshold pump power. The transversely-pumped counter-propagating OPO’s have the optimal pump power.
APA, Harvard, Vancouver, ISO, and other styles
30

Laenen, R., H. Graener, and A. Laubereau. "Broadly tunable femtosecond pulses generated by optical parametric oscillation." Optics Letters 15, no. 17 (September 1, 1990): 971. http://dx.doi.org/10.1364/ol.15.000971.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tang, Yulong, Zheng Gong, Xianwen Liu, and Hong X. Tang. "Widely separated optical Kerr parametric oscillation in AlN microrings." Optics Letters 45, no. 5 (February 19, 2020): 1124. http://dx.doi.org/10.1364/ol.384317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hui-Qing, Li, Geng Ai-Cong, Bo Yong, Wu Ling-An, Cui Da-Fu, and Xu Zu-Yan. "Beam divergence effects on high power optical parametric oscillation." Chinese Physics 14, no. 10 (September 23, 2005): 2026–32. http://dx.doi.org/10.1088/1009-1963/14/10/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Sayson, Noel Lito B., Karen E. Webb, Stéphane Coen, Miro Erkintalo, and Stuart G. Murdoch. "Widely tunable optical parametric oscillation in a Kerr microresonator." Optics Letters 42, no. 24 (December 11, 2017): 5190. http://dx.doi.org/10.1364/ol.42.005190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Piskarskas, A., V. Smilgevic̆ius, and A. Stabinis. "Optical parametric oscillation excited by an incoherent conical beam." Optics Communications 143, no. 1-3 (November 1997): 72–74. http://dx.doi.org/10.1016/s0030-4018(97)00273-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zlobina, E. A., S. I. Kablukov, and Sergei A. Babin. "Continuous-wave parametric oscillation in polarisation-maintaining optical fibre." Quantum Electronics 41, no. 9 (September 30, 2011): 794–800. http://dx.doi.org/10.1070/qe2011v041n09abeh014577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Schilke, Alexander, Claus Zimmermann, Philippe W. Courteille, and William Guerin. "Optical parametric oscillation with distributed feedback in cold atoms." Nature Photonics 6, no. 2 (December 18, 2011): 101–4. http://dx.doi.org/10.1038/nphoton.2011.320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Khodja, S., D. Josse, and J. Zyss. "Near-infrared optical parametric oscillation in an organomineral crystal." Journal of the Optical Society of America B 15, no. 2 (February 1, 1998): 751. http://dx.doi.org/10.1364/josab.15.000751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bromley, L. J., A. Guy, and D. C. Hanna. "Synchronously pumped optical parametric oscillation in beta-barium borate." Optics Communications 67, no. 4 (July 1988): 316–20. http://dx.doi.org/10.1016/0030-4018(88)90157-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xu, Hai Bin. "Spectral Properties of Broadband Pumped Optical Parametric Amplification." Applied Mechanics and Materials 128-129 (October 2011): 301–6. http://dx.doi.org/10.4028/www.scientific.net/amm.128-129.301.

Full text
Abstract:
The spectral properties of broadband pumped optical parametric amplification (BPOPA) are investigated theoretically. General mathematical expression to describe the relationship between the pump bandwidth (BW) and the parametric BW is achieved. There exist broaden and compression point of parametric spectral BW by observing the figures origin from obtained expression. Results obtained show good accordance with published experiments and the numerical simulations, which is calculated by means of three-wave mixing equations. The results are helpful for optimization of broadband pump-based OPA and optical parametric oscillation.
APA, Harvard, Vancouver, ISO, and other styles
40

Meisenheimer, Sarah-Katharina, Josef Urban Fürst, Karsten Buse, and Ingo Breunig. "Continuous-wave optical parametric oscillation tunable up to an 8 μm wavelength." Optica 4, no. 2 (February 2, 2017): 189. http://dx.doi.org/10.1364/optica.4.000189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

XU, HAIBIN, BO WU, SHUANGSHUANG CAI, and YONGHANG SHEN. "INVESTIGATION ON THE PUMP ACCEPTANCE BANDWIDTH FOR COLLINEAR QUASI-PHASE-MATCHING OPTICAL PARAMETRIC AMPLIFICATION." Journal of Nonlinear Optical Physics & Materials 18, no. 01 (March 2009): 141–51. http://dx.doi.org/10.1142/s021886350900452x.

Full text
Abstract:
We investigated the issue of parametric bandwidth for a collinear quasi-phase-matching (QPM) optical parametric amplification (OPA). Mathematical model for evaluating the parametric bandwidth tolerance of the OPA was derived by expanding the wave-vector mismatch in Taylor series and taking the first two terms into consideration for accuracy. Based on the model, the variation of pump acceptance spectral bandwidth with parametric wavelength was discussed. The correlating curve of the pump wavelength and the parametric wavelength was obtained for the largest pump acceptance spectral bandwidth. These results were compared to that obtained by numerically calculating the parametric gain curves of OPA when pumped with different Gauss bandwidths by means of three-wave mixing equations directly, and were found to be in good accordance. The results presented are helpful for specifying the optimal pump wavelength of the parametric amplification and oscillation.
APA, Harvard, Vancouver, ISO, and other styles
42

Liu Lei, 刘磊, 李霄 Li Xiao, 刘通 Liu Tong, 许晓军 Xu Xiaojun, and 姜宗福 Jiang Zongfu. "Progress of Mid-Infrared Continuous-Wave Optical Parametric Oscillation Technique." Laser & Optoelectronics Progress 49, no. 6 (2012): 060002. http://dx.doi.org/10.3788/lop49.060002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Hang, Yuheng Wang, Heyan Liu, Lujie Li, Yongji Yu, and Guangyong Jin. "Study on MgO: APLN Crystal for Multi-Optical Parametric Oscillation." Journal of Physics: Conference Series 1237 (June 2019): 052045. http://dx.doi.org/10.1088/1742-6596/1237/5/052045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yu, Nan Ei, Sunao Kurimura, Yoshiyuki Nomura, Masaru Nakamura, Kenji Kitamura, Jun Sakuma, Yoshio Otani, and Akira Shiratori. "Periodically poled near-stoichiometric lithium tantalate for optical parametric oscillation." Applied Physics Letters 84, no. 10 (March 8, 2004): 1662–64. http://dx.doi.org/10.1063/1.1667616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lim, Hwan Hong, Sunao Kurimura, and Nan Ei Yu. "Parasitic-light-suppressed quasi-phase-matched optical parametric oscillation device." Optics Express 22, no. 5 (February 27, 2014): 5209. http://dx.doi.org/10.1364/oe.22.005209.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Stothard, David J. M., and Malcolm H. Dunn. "Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators." Optics Express 18, no. 2 (January 12, 2010): 1336. http://dx.doi.org/10.1364/oe.18.001336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Burdulis, S., R. Grigonis, A. Piskarskas, G. Sinkevicius, V. Sirutkaitis, A. Fix, J. Nolting, and R. Wallenstein. "Visible optical parametric oscillation in synchronously pumped beta-barium borate." Optics Communications 74, no. 6 (January 1990): 398–402. http://dx.doi.org/10.1016/0030-4018(90)90226-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Laenen, R., H. Graener, and A. Laubereau. "Tunable subpicosecond pulses in the infrared by optical parametric oscillation." Optics Communications 77, no. 2-3 (June 1990): 226–30. http://dx.doi.org/10.1016/0030-4018(90)90439-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Tagiev, Z. A., and Sh Sh Amirov. "Efficiency of optical parametric oscillation in the constant intensity approximation." Soviet Journal of Quantum Electronics 19, no. 11 (November 30, 1989): 1442–45. http://dx.doi.org/10.1070/qe1989v019n11abeh009568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Feng, Sheng, and Olivier Pfister. "Stable nondegenerate optical parametric oscillation at degenerate frequencies in Na:KTP." Journal of Optics B: Quantum and Semiclassical Optics 5, no. 3 (April 28, 2003): 262–67. http://dx.doi.org/10.1088/1464-4266/5/3/310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography