Journal articles on the topic 'Optical parametric amplification'

To see the other types of publications on this topic, follow the link: Optical parametric amplification.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical parametric amplification.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Jankowski, Marc, Nayara Jornod, Carsten Langrock, Boris Desiatov, Alireza Marandi, Marko Lončar, and Martin M. Fejer. "Quasi-static optical parametric amplification." Optica 9, no. 3 (March 1, 2022): 273. http://dx.doi.org/10.1364/optica.442550.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Al-Mahmoud, Mouhamad, Andon A. Rangelov, Virginie Coda, and Germano Montemezzani. "Segmented Composite Optical Parametric Amplification." Applied Sciences 10, no. 4 (February 11, 2020): 1220. http://dx.doi.org/10.3390/app10041220.

Full text
Abstract:
We propose a novel optical parametric amplification scheme that combines quasi-phase-matching with a composite pulse approach that involves crystal segments of specific lengths. The presented scheme highly increases the robustness of the frequency conversion against variations of the nonlinear coupling and of the pump, idler, or signal wavelengths, and has therefore the potential to enhance high amplification and broadband operation. Simulation examples applied to LiNbO 3 are given.
APA, Harvard, Vancouver, ISO, and other styles
3

Cartella, A., T. F. Nova, M. Fechner, R. Merlin, and A. Cavalleri. "Parametric amplification of optical phonons." Proceedings of the National Academy of Sciences 115, no. 48 (November 14, 2018): 12148–51. http://dx.doi.org/10.1073/pnas.1809725115.

Full text
Abstract:
We use coherent midinfrared optical pulses to resonantly excite large-amplitude oscillations of the Si–C stretching mode in silicon carbide. When probing the sample with a second pulse, we observe parametric optical gain at all wavelengths throughout the reststrahlen band. This effect reflects the amplification of light by phonon-mediated four-wave mixing and, by extension, of optical-phonon fluctuations. Density functional theory calculations clarify aspects of the microscopic mechanism for this phenomenon. The high-frequency dielectric permittivity and the phonon oscillator strength depend quadratically on the lattice coordinate; they oscillate at twice the frequency of the optical field and provide a parametric drive for the lattice mode. Parametric gain in phononic four-wave mixing is a generic mechanism that can be extended to all polar modes of solids, as a means to control the kinetics of phase transitions, to amplify many-body interactions or to control phonon-polariton waves.
APA, Harvard, Vancouver, ISO, and other styles
4

Mao, Hongwei, Baichang Wu, Chuangtin Chen, Daiqin Zhang, and Peilin Wang. "Broadband optical parametric amplification in LiB3O5." Applied Physics Letters 62, no. 16 (April 19, 1993): 1866–68. http://dx.doi.org/10.1063/1.109526.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Witte, Stefan, and K. S. E. Eikema. "Ultrafast Optical Parametric Chirped-Pulse Amplification." IEEE Journal of Selected Topics in Quantum Electronics 18, no. 1 (January 2012): 296–307. http://dx.doi.org/10.1109/jstqe.2011.2118370.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Byer, Robert L., and Algis Piskarskas. "Optical Parametric Oscillation and Amplification Introduction." Journal of the Optical Society of America B 10, no. 9 (September 1, 1993): 1656. http://dx.doi.org/10.1364/josab.10.001656.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Byer, Robert L., and Algis Piskarskas. "Optical Parametric Oscillation and Amplification Introduction." Journal of the Optical Society of America B 10, no. 11 (November 1, 1993): 2148. http://dx.doi.org/10.1364/josab.10.002148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Hongjun, Hongying Wang, Xiaoli Li, Yishan Wang, Wei Zhao, and Chi Ruan. "Stacking chirped pulse optical parametric amplification." Optics Communications 282, no. 9 (May 2009): 1858–60. http://dx.doi.org/10.1016/j.optcom.2009.01.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beržanskis, A., W. Chinaglia, L. A. Lugiato, K. H. Feller, and P. Di Trapani. "Spatial structures in optical parametric amplification." Physical Review A 60, no. 2 (August 1, 1999): 1626–35. http://dx.doi.org/10.1103/physreva.60.1626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pyragaitė, V., and A. Stabinis. "Parametric amplification of random optical fields." Lithuanian Journal of Physics 49, no. 2 (2009): 175–81. http://dx.doi.org/10.3952/lithjphys.49211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mancini, S., A. Gatti, and L. A. Lugiato. "Parametric Image Amplification in Optical Cavities." Fortschritte der Physik 48, no. 5-7 (May 2000): 665–69. http://dx.doi.org/10.1002/(sici)1521-3978(200005)48:5/7<665::aid-prop665>3.0.co;2-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dongjia Han, Dongjia Han, Yanyan Li Yanyan Li, Juan Du Juan Du, Kun Wang Kun Wang, Yongfang Li Yongfang Li, Tomohiro Miyatake Tomohiro Miyatake, Hitoshi Tamiaki Hitoshi Tamiaki, Takayoshi Kobayashi Takayoshi Kobayashi, and and Yuxin Leng and Yuxin Leng. "Ultrafast laser system based on noncollinear optical parametric amplification for laser spectroscopy." Chinese Optics Letters 13, no. 12 (2015): 121401–4. http://dx.doi.org/10.3788/col201513.121401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wang, Bopeng, Xubo Zou, and Feng Jing. "Quantum analysis of optical parametric fluorescence in the optical parametric amplification process." Journal of Optics 17, no. 7 (July 1, 2015): 075503. http://dx.doi.org/10.1088/2040-8978/17/7/075503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Melkonian, J. M., A. Godard, M. Lefebvre, and E. Rosencher. "Pulsed optical parametric oscillators with intracavity optical parametric amplification: a critical study." Applied Physics B 86, no. 4 (December 23, 2006): 633–42. http://dx.doi.org/10.1007/s00340-006-2546-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Jing, Jingui Ma, Peng Yuan, Daolong Tang, Binjie Zhou, Guoqiang Xie, and Liejia Qian. "Scattering-initiated parametric noise in optical parametric chirped-pulse amplification." Optics Letters 40, no. 14 (July 14, 2015): 3396. http://dx.doi.org/10.1364/ol.40.003396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Aşırım, Özüm Emre, and Mustafa Kuzuoğlu. "Numerical Study of Resonant Optical Parametric Amplification via Gain Factor Optimization in Dispersive Microresonators." Photonics 7, no. 1 (December 25, 2019): 5. http://dx.doi.org/10.3390/photonics7010005.

Full text
Abstract:
The achievement of wideband high-gain optical parametric amplification has not been shown in micrometer-scale cavities. In this paper we have computationally investigated the optical parametric amplification process in a few micrometer-long dispersive microresonator. By performing a gain medium resonance frequency dependent analysis of optical parametric amplification, we have found that it is possible to achieve a wideband high-gain optical amplification in a dispersive microresonator. In order to account for the effects of dispersion (modeled by the polarization damping coefficient) and the resonance frequency of the gain medium on optical parametric amplification, we have solved the wave equation in parallel with the nonlinear equation of electron cloud motion, using the finite difference time domain method. Then we have determined the resonance frequency values that yield an enhanced or a resonant case of optical parametric amplification, via gain factor optimization. It was observed that if the microresonator is more dispersive (has a lower polarization damping coefficient), then there are more resonance frequencies that yield an optical gain resonance. At these gain resonances, a very wideband, high-gain optical amplification seems possible in the micron scale, which, to our knowledge, has not been previously reported in the context of nonlinear wave mixing theory.
APA, Harvard, Vancouver, ISO, and other styles
17

Dorrer, C. "Optical parametric amplification of spectrally incoherent pulses." Journal of the Optical Society of America B 38, no. 3 (February 10, 2021): 792. http://dx.doi.org/10.1364/josab.413647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yamakawa, Koichi, and Tetsuo Harimoto. "High Power, Ultrabroadband Optical Parametric Amplification System." Review of Laser Engineering 34, Supplement (2006): 27–28. http://dx.doi.org/10.2184/lsj.34.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dubietis, A., R. Butkus, and A. P. Piskarskas. "Trends in chirped pulse optical parametric amplification." IEEE Journal of Selected Topics in Quantum Electronics 12, no. 2 (March 2006): 163–72. http://dx.doi.org/10.1109/jstqe.2006.871962.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Peng Yuan, Liejia Qian, Hang Luo, Heyuan Zhu, and Shuangchun Wen. "Femtosecond optical parametric amplification with dispersion precompensation." IEEE Journal of Selected Topics in Quantum Electronics 12, no. 2 (March 2006): 181–86. http://dx.doi.org/10.1109/jstqe.2006.872723.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

McKinstrie, C. J., J. M. Dailey, A. Agarwal, and P. Toliver. "Optical filtering enabled by cascaded parametric amplification." Optics Express 24, no. 13 (June 15, 2016): 14242. http://dx.doi.org/10.1364/oe.24.014242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vaughan, Peter M., and Rick Trebino. "Optical-parametric-amplification imaging of complex objects." Optics Express 19, no. 9 (April 22, 2011): 8920. http://dx.doi.org/10.1364/oe.19.008920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lassonde, Philippe, Francois Legare, Bruno E. Schmidt, Nicolas Thire, Ladan Arissian, Guilmot Ernotte, Francois Poitras, et al. "High Gain Frequency Domain Optical Parametric Amplification." IEEE Journal of Selected Topics in Quantum Electronics 21, no. 5 (September 2015): 1–10. http://dx.doi.org/10.1109/jstqe.2015.2418293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Zhang, J. Y., J. Y. Huang, Y. R. Shen, Chuangtian Chen, and Bochang Wu. "Picosecond optical parametric amplification in lithium triborate." Applied Physics Letters 58, no. 3 (January 21, 1991): 213–15. http://dx.doi.org/10.1063/1.104692.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Werner, M. J., M. G. Raymer, M. Beck, and P. D. Drummond. "Ultrashort pulsed squeezing by optical parametric amplification." Physical Review A 52, no. 5 (November 1, 1995): 4202–13. http://dx.doi.org/10.1103/physreva.52.4202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Cheng-Wei Huang, Wayne, and Herman Batelaan. "Dualism between optical and difference parametric amplification." EPL (Europhysics Letters) 119, no. 2 (July 1, 2017): 24002. http://dx.doi.org/10.1209/0295-5075/119/24002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ilday, F. Ö., and F. X. Kärtner. "Cavity-enhanced optical parametric chirped-pulse amplification." Optics Letters 31, no. 5 (March 1, 2006): 637. http://dx.doi.org/10.1364/ol.31.000637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Radic, S. "Parametric amplification and processing in optical fibers." Laser & Photonics Review 2, no. 6 (December 11, 2008): 498–513. http://dx.doi.org/10.1002/lpor.200810049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Deng Cheng-Xian, Li Zheng-Jia, and Zhu Chang-Hong. "Singly resonant optical parametric oscillator with intracavity optical amplification." Acta Physica Sinica 54, no. 10 (2005): 4754. http://dx.doi.org/10.7498/aps.54.4754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Caucheteur, C., D. Bigourd, E. Hugonnot, P. Szriftgiser, A. Kudlinski, M. Gonzalez-Herraez, and A. Mussot. "Optical Parametric Chirped Pulse Amplification in an Optical Fiber." Optics and Photonics News 21, no. 12 (December 1, 2010): 34. http://dx.doi.org/10.1364/opn.21.12.000034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Abbade, M. L. F., A. L. A. Costa, F. R. Barbosa, F. R. Durand, J. D. Marconi, and E. Moschim. "Optical amplitude multiplexing through parametric amplification in optical fibers." Optics Communications 283, no. 3 (February 2010): 454–63. http://dx.doi.org/10.1016/j.optcom.2009.10.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Lopez, Laurent, Sylvain Gigan, Agnès Maître, Nicolas Treps, and Claude Fabre. "Spatial quantum optical properties of c.w. Optical Parametric Amplification." Comptes Rendus Physique 8, no. 2 (March 2007): 199–205. http://dx.doi.org/10.1016/j.crhy.2006.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Xu, Hai Bin. "Spectral Properties of Broadband Pumped Optical Parametric Amplification." Applied Mechanics and Materials 128-129 (October 2011): 301–6. http://dx.doi.org/10.4028/www.scientific.net/amm.128-129.301.

Full text
Abstract:
The spectral properties of broadband pumped optical parametric amplification (BPOPA) are investigated theoretically. General mathematical expression to describe the relationship between the pump bandwidth (BW) and the parametric BW is achieved. There exist broaden and compression point of parametric spectral BW by observing the figures origin from obtained expression. Results obtained show good accordance with published experiments and the numerical simulations, which is calculated by means of three-wave mixing equations. The results are helpful for optimization of broadband pump-based OPA and optical parametric oscillation.
APA, Harvard, Vancouver, ISO, and other styles
34

Yan, Ding, Zhiyuan Zhong, Tong Qi, Hongying Chen, and Wei Gao. "High-fidelity parametric amplification of Ince–Gaussian beams." Chinese Optics Letters 20, no. 11 (2022): 113801. http://dx.doi.org/10.3788/col202220.113801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang, Jing, Qiu-Lin Zhang, Man Jiang, Dong-Xiang Zhang, Bao-Hua Feng, and Jing-Yuan Zhang. "Amplification of fluorescence using collinear picosecond optical parametric amplification at degeneracy." Chinese Physics B 21, no. 8 (August 2012): 084211. http://dx.doi.org/10.1088/1674-1056/21/8/084211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Supe, Andis, Kaspars Zakis, Lilita Gegere, Dmitrii Redka, Jurgis Porins, Sandis Spolitis, and Vjaceslavs Bobrovs. "Raman Assisted Fiber Optical Parametric Amplifier for S-Band Multichannel Transmission System." Fibers 9, no. 2 (February 1, 2021): 9. http://dx.doi.org/10.3390/fib9020009.

Full text
Abstract:
In this paper we present results from the study of optical signal amplification using Raman assisted fiber optical parametric amplifier with considerable benefits for S-band telecommunication systems where the use of widely used erbium-doped fiber amplifier is limited. We have created detailed models and performed computer simulations of combined Raman and fiber optical parametric amplification in a 16-channel 40 Gbps/channel wavelength division multiplexed transmission system. Achieved gain bandwidth, as well as transmission system parameters—signal-to-noise ratio and bit-error-ratio—were analyzed by comparing the Raman assisted fiber optical parametric amplifier to the single pump fiber optical parametric amplifier. Results show that the 3 dB gain bandwidth in the case of combined amplification is up to 0.2 THz wider with 1.9 dB difference between the lowest and highest gain.
APA, Harvard, Vancouver, ISO, and other styles
37

XU, HAIBIN, BO WU, SHUANGSHUANG CAI, and YONGHANG SHEN. "INVESTIGATION ON THE PUMP ACCEPTANCE BANDWIDTH FOR COLLINEAR QUASI-PHASE-MATCHING OPTICAL PARAMETRIC AMPLIFICATION." Journal of Nonlinear Optical Physics & Materials 18, no. 01 (March 2009): 141–51. http://dx.doi.org/10.1142/s021886350900452x.

Full text
Abstract:
We investigated the issue of parametric bandwidth for a collinear quasi-phase-matching (QPM) optical parametric amplification (OPA). Mathematical model for evaluating the parametric bandwidth tolerance of the OPA was derived by expanding the wave-vector mismatch in Taylor series and taking the first two terms into consideration for accuracy. Based on the model, the variation of pump acceptance spectral bandwidth with parametric wavelength was discussed. The correlating curve of the pump wavelength and the parametric wavelength was obtained for the largest pump acceptance spectral bandwidth. These results were compared to that obtained by numerically calculating the parametric gain curves of OPA when pumped with different Gauss bandwidths by means of three-wave mixing equations directly, and were found to be in good accordance. The results presented are helpful for specifying the optimal pump wavelength of the parametric amplification and oscillation.
APA, Harvard, Vancouver, ISO, and other styles
38

Vedadi, Armand, Mohammad Amin Shoaie, and Camille-Sophie Brès. "Near-Nyquist optical pulse generation with fiber optical parametric amplification." Optics Express 20, no. 26 (December 6, 2012): B558. http://dx.doi.org/10.1364/oe.20.00b558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Korobko, Mikhail, F. Ya Khalili, and Roman Schnabel. "Engineering the optical spring via intra-cavity optical-parametric amplification." Physics Letters A 382, no. 33 (August 2018): 2238–44. http://dx.doi.org/10.1016/j.physleta.2017.08.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zeng Shu-Guang and Zhang Bin. "Inverse problem of optical parametric chirped pulse amplification." Acta Physica Sinica 58, no. 4 (2009): 2476. http://dx.doi.org/10.7498/aps.58.2476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wen Jing, 温静, 左言磊 Zuo Yanlei, 周松 Zhou Song, 王波鹏 Wang Bopeng, and 曾小明 Zeng Xiaoming. "Conversion-efficiency improvement during broadband optical parametric amplification." High Power Laser and Particle Beams 26, no. 5 (2014): 51021. http://dx.doi.org/10.3788/hplpb20142605.51021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Iida, Takashi, and Yoshihiko Mizushima. "Optical parametric amplification in the magnetoplasma in semiconductors." Journal of Applied Physics 77, no. 1 (January 1995): 218–24. http://dx.doi.org/10.1063/1.359601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

El-Ganainy, R., J. I. Dadap, and R. M. Osgood. "Optical parametric amplification via non-Hermitian phase matching." Optics Letters 40, no. 21 (October 29, 2015): 5086. http://dx.doi.org/10.1364/ol.40.005086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ibragimov, E., A. A. Struthers, D. J. Kaup, J. D. Khaydarov, and K. D. Singer. "Three-wave interaction solitons in optical parametric amplification." Physical Review E 59, no. 5 (May 1, 1999): 6122–37. http://dx.doi.org/10.1103/physreve.59.6122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Novák, O., H. Turčičová, M. Divoký, J. Huynh, and P. Straka. "Mismatch characteristics of optical parametric chirped pulse amplification." Laser Physics Letters 11, no. 2 (December 20, 2013): 025401. http://dx.doi.org/10.1088/1612-2011/11/2/025401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kurdi, G., K. Osvay, M. Csatari, I. N. Ross, and J. Klebniczki. "Optical Parametric Amplification of Femtosecond Ultraviolet Laser Pulses." IEEE Journal of Selected Topics in Quantum Electronics 10, no. 6 (November 2004): 1259–67. http://dx.doi.org/10.1109/jstqe.2004.837706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Zhao, C. Y., and W. H. Tan. "Quantum fluctuation of nonlinear degenerate optical parametric amplification." Journal of Modern Optics 53, no. 14 (September 20, 2006): 1965–76. http://dx.doi.org/10.1080/09500340600733402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Trovatello, Chiara, Andrea Marini, Xinyi Xu, Changhwan Lee, Fang Liu, Nicola Curreli, Cristian Manzoni, et al. "Optical parametric amplification by monolayer transition metal dichalcogenides." Nature Photonics 15, no. 1 (December 21, 2020): 6–10. http://dx.doi.org/10.1038/s41566-020-00728-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Levenson, J. A., Ph Grangier, I. Abram, and Th Rivera. "Reduction of quantum noise in optical parametric amplification." Journal of the Optical Society of America B 10, no. 11 (November 1, 1993): 2233. http://dx.doi.org/10.1364/josab.10.002233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Jing, Qiu-lin Zhang, Dong-xiang Zhang, Bao-hua Feng, and Jing-yuan Zhang. "Generation and optical parametric amplification of picosecond supercontinuum." Applied Optics 49, no. 34 (November 30, 2010): 6645. http://dx.doi.org/10.1364/ao.49.006645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography