Journal articles on the topic 'Optical metrology'

To see the other types of publications on this topic, follow the link: Optical metrology.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical metrology.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Williams, D. C. "Optical metrology." Optics & Laser Technology 20, no. 3 (June 1988): 163. http://dx.doi.org/10.1016/0030-3992(88)90048-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Burch, J. M. "Optical metrology." Optics & Laser Technology 20, no. 2 (April 1988): 105. http://dx.doi.org/10.1016/0030-3992(88)90101-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Baker, L. R. "Optical Metrology." Journal of Modern Optics 35, no. 5 (May 1988): 753–54. http://dx.doi.org/10.1080/09500348814550801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

YOSHIZAWA, Toru. "Optical metrology." Journal of the Japan Society for Precision Engineering 75, no. 1 (2009): 93–94. http://dx.doi.org/10.2493/jjspe.75.93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gasvik, K. J., and J. M. Burch. "Optical metrology." Precision Engineering 10, no. 3 (July 1988): 164. http://dx.doi.org/10.1016/0141-6359(88)90036-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Walker, C. A. "Optical metrology." Optics and Lasers in Engineering 8, no. 2 (January 1988): 144. http://dx.doi.org/10.1016/0143-8166(88)90052-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Osborne, Ian S. "Shrinking optical metrology." Science 361, no. 6402 (August 9, 2018): 564.10–566. http://dx.doi.org/10.1126/science.361.6402.564-j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Parks, Robert E. "Optical wavefront metrology." Optics and Photonics News 2, no. 5 (May 10, 1991): 12. http://dx.doi.org/10.1364/opn.2.5.000012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Udem, Th, R. Holzwarth, and T. W. Hänsch. "Optical frequency metrology." Nature 416, no. 6877 (March 2002): 233–37. http://dx.doi.org/10.1038/416233a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Day, Gordon W., and Douglas L. Franzen. "Optical Fiber Metrology." Journal of Lightwave Technology 26, no. 9 (May 2008): 1119–31. http://dx.doi.org/10.1109/jlt.2008.923624.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Larrabee, Robert D. "Submicrometer optical metrology." Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 50–51. http://dx.doi.org/10.1017/s042482010010233x.

Full text
Abstract:
The National Bureau of Standards (NBS) has had a continuing program for over 10 years [1-5] to develop optical feature-size standards for the integrated circuit industry. As the dimensions of interest to this industry have evolved into the submicrometer region, feature-size measurements have become more difficult because the dimensions of interest have become comparable to (or smaller than) the wavelength of light used for their measurement. In this domain of feature sizes, diffraction produces large effects in the optical image and makes that image difficult to interpret. The effects of diffraction mask the location of the feature edges that define the dimensions of interest.
APA, Harvard, Vancouver, ISO, and other styles
12

Osten, W. "Optical microsystems metrology." Optics and Lasers in Engineering 36, no. 2 (August 2001): 75–76. http://dx.doi.org/10.1016/s0143-8166(01)00051-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Caulfield, H. J. "Fuzzy optical metrology." IEEE Transactions on Fuzzy Systems 4, no. 2 (May 1996): 206–8. http://dx.doi.org/10.1109/91.493914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mertz, Lawrence. "Optical homodyne phase metrology." Applied Optics 28, no. 5 (March 1, 1989): 1011. http://dx.doi.org/10.1364/ao.28.001011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Watkins, S. E. "Optical Metrology [Book Reviews]." IEEE Instrumentation & Measurement Magazine 6, no. 3 (September 2003): 80. http://dx.doi.org/10.1109/mim.2003.1238385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hocken, R. J., N. Chakraborty, and C. Brown. "Optical Metrology of Surfaces." CIRP Annals 54, no. 2 (2005): 169–83. http://dx.doi.org/10.1016/s0007-8506(07)60025-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Robinson, David W. "Optical metrology (2nd edition)." Optics and Lasers in Engineering 28, no. 1 (September 1997): 75–76. http://dx.doi.org/10.1016/s0143-8166(97)00010-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhao, Bing, and Guangjun Zhang. "Optical metrology in China." Optics and Lasers in Engineering 43, no. 10 (October 2005): 1037–38. http://dx.doi.org/10.1016/j.optlaseng.2004.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Krenn, Astrid. "Advanced Optical Surface Metrology." Imaging & Microscopy 9, no. 1 (January 2007): 38–40. http://dx.doi.org/10.1002/imic.200790119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Oriach-Font, Carles. "Deep 3D Optical Metrology." Imaging & Microscopy 10, no. 2 (June 2008): 40–42. http://dx.doi.org/10.1002/imic.200890043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ahrent, Esther. "Optical Metrology Made Easy." Imaging & Microscopy 11, no. 2 (May 2009): 20–21. http://dx.doi.org/10.1002/imic.200990031.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Menoni, C. S. "Guest editorial [Precision optical metrology]." IEEE Journal of Quantum Electronics 37, no. 12 (December 2001): 1481. http://dx.doi.org/10.1109/jqe.2001.970892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Li, Xide, Giancarlo Pedrini, and Yu Fu. "Optical Metrology under Extreme Conditions." Scientific World Journal 2014 (2014): 1. http://dx.doi.org/10.1155/2014/263603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Osten, Wolfgang. "Optical microsystems metrology—Part II." Optics and Lasers in Engineering 36, no. 5 (November 2001): 401–2. http://dx.doi.org/10.1016/s0143-8166(01)00139-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kief, M. T., G. Al-Jumaily, and G. S. Mowry. "Optical metrology for MR heads." IEEE Transactions on Magnetics 33, no. 5 (1997): 2926–28. http://dx.doi.org/10.1109/20.617800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

YAMAGUCHI, Ichirou. "New Tides in Optical Metrology." Journal of the Japan Society for Precision Engineering 64, no. 9 (1998): 1267–68. http://dx.doi.org/10.2493/jjspe.64.1267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Gooch, Richard. "Optical metrology in manufacturing automation." Sensor Review 18, no. 2 (June 1998): 81–87. http://dx.doi.org/10.1108/02602289810209812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Joo, Ki-Nam, and Hyo-Mi Park. "Recent Progress on Optical Tomographic Technology for Measurements and Inspections of Film Structures." Micromachines 13, no. 7 (July 7, 2022): 1074. http://dx.doi.org/10.3390/mi13071074.

Full text
Abstract:
In this review, we present the recent progress on film metrology focused on the advanced and novel technologies during the last two decades. This review consists of various technologies and their measurement schemes to provide the inspiration for understanding each of the measurement principles and applications. In the technology and analysis section, several optical techniques used in film metrology are introduced and described with their benefits and limitations. The temporal, spatial and snapshot measurement schemes of optical film metrology are introduced in the measurement scheme section, and finally, the prospect on optical film metrology will be provided and discussed with the technology trend.
APA, Harvard, Vancouver, ISO, and other styles
29

ASAKURA, Toshimitsu. "Laser metrology 30 years. Development from old to modern optical metrology." Review of Laser Engineering 19, no. 1 (1991): 40–41. http://dx.doi.org/10.2184/lsj.19.40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Burada, Dali Ramu, Kamal K. Pant, Vinod Mishra, Mohamed Bichra, Gufran Sayeed Khan, Stefan Sinzinger, and Chandra Shakher. "Development of a metrology technique suitable for in situ measurement and corrective manufacturing of freeform optics." Advanced Optical Technologies 8, no. 3-4 (June 26, 2019): 203–15. http://dx.doi.org/10.1515/aot-2018-0072.

Full text
Abstract:
Abstract The applications of freeform optical surfaces in modern optical systems are providing unique solutions over rotationally symmetric surfaces. These surfaces offer higher degrees of freedom to the designer to enhance the high-end performance of the optical system. The precise metrology of freeform optics is one of the major bottlenecks for its use in imaging applications. Modern optical fabrication methods (i.e. fast or slow tool servo configuration) are, in principle, capable to meet the challenges to generate complex freeform surfaces if supported by precise metrology feedback for error compensation. In the present work, we have developed a Shack-Hartmann sensor-based metrology technique that can be used for quantitative in situ measurement of freeform optics. The sensor head is used to measure freeform optics in the reflection mode by following the CNC tool path in the offline mode. The measurements are used as feedback for corrective machining. Quantitative analysis is also performed to estimate the error budget of the metrology system. Further, the proposed in situ metrology scheme is validated by measuring freeform surface using a coherence correlation interferometric optical profiler.
APA, Harvard, Vancouver, ISO, and other styles
31

Yates, Brian W., and Dylan G. Maxwell. "Canadian Light Source — Optical Metrology Facility." Canadian Journal of Chemistry 85, no. 10 (October 1, 2007): 685–89. http://dx.doi.org/10.1139/v07-053.

Full text
Abstract:
The Canadian Light Source Optical Metrology Facility serves as a support facility and provides metrological services required by the synchrotron beamlines. The Facility consists of three state-of-the-art instruments: a Micromap 570 surface profiler, an Ocean Optics long trace profilometer, and a Zygo Verifire AT Fizeau interferometer. These three complementary measurement systems permit a complete analysis of the synchrotron beamline optical components. The systems will be discussed in detail, noting synchrotron and industrial applications where possible.Key words: optics, metrology, surface roughness, slope error, tribology.
APA, Harvard, Vancouver, ISO, and other styles
32

Bischoff, J., R. Mastylo, G. Granet, and E. Manske. "Optical metrology beyond Abbe and Rayleigh." Suplemento de la Revista Mexicana de Física 1, no. 3 (August 22, 2020): 9–16. http://dx.doi.org/10.31349/suplrevmexfis.1.3.9.

Full text
Abstract:
For many years, it was believed that optical microscopy and metrology was limited in resolution related to the light wavelength as suggested by Ernst Abbe and Lord Rayleigh. In recent past, several approaches have been developed to overcome these limitations such as Nobel price honored STED or optical CD as widely used in semiconductor metrology. Unfortunately, both techniques need special samples. While STED relies on fluorescence, OCD requires grating samples. In our contribution, we present two model based (mb) approaches to overcome some of these restrictions. One is mb Laser Focus Scanning (mLFS). Here, we show how to improve the accuracy of edge detection from several hundred nm to about 10 - 20 nm by exploiting rigorous modeling. The second one is Scanning Coherent Fourier Scatterometry (SCFS) where the diffracted Fourier spectrum is detected and the attempt is undertaken to retireve the sample profile. It is shown that this technique is very sensitive, particularly when the phase is recorded by means of a wave-front sensor. Measurements and simulations for periodic as well as for aperiodic sub-resolution features are show already good agreement. Moreover, we strongly believe that the observed high sensitivity of the Fourier spectra opens the path to quantitatively measurements below the resolution limits of light.
APA, Harvard, Vancouver, ISO, and other styles
33

Ichino, Yoshiro. "Key Materials in Optical Radiation Metrology." Materia Japan 49, no. 1 (2010): 3–6. http://dx.doi.org/10.2320/materia.49.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Meng, Deming, Yifei Wang, Hao Yang, Buyun Chen, Pan Hu, Boxiang Song, Yunxiang Wang, et al. "Optical metrology of characterizing wetting states." Journal of Vacuum Science & Technology B 39, no. 6 (December 2021): 064001. http://dx.doi.org/10.1116/6.0001187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Meng, Deming, Yifei Wang, Hao Yang, Buyun Chen, Pan Hu, Boxiang Song, Yunxiang Wang, et al. "Optical metrology of characterizing wetting states." Journal of Vacuum Science & Technology B 39, no. 6 (December 2021): 064001. http://dx.doi.org/10.1116/6.0001187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

de Groot, Peter, Gregg Gallatin, George Gardopee, and Robert Dixon. "Laser feedback metrology of optical systems." Applied Optics 28, no. 13 (July 1, 1989): 2462. http://dx.doi.org/10.1364/ao.28.002462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Yang, Lianxiang. "Optical Metrology in the Transportation Industry." Optical Engineering 46, no. 5 (May 1, 2007): 051001. http://dx.doi.org/10.1117/1.2737058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Wagner, John W., Gregory S. Agnes, and Eric Magee. "Optical Metrology of Adaptive Membrane Mirrors." Journal of Intelligent Materials Systems and Structures 11, no. 11 (November 1, 2000): 837–47. http://dx.doi.org/10.1177/104538900772664017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bennett, Jean M., Virgil Elings, and Kevin Kjoller. "Precision metrology for studying optical surfaces." Optics and Photonics News 2, no. 5 (May 10, 1991): 14. http://dx.doi.org/10.1364/opn.2.5.000014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ziger, David. "Understanding optical end of line metrology." Optical Engineering 39, no. 7 (July 1, 2000): 1951. http://dx.doi.org/10.1117/1.602580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Raymond, Christopher J. "Multiparameter grating metrology using optical scatterometry." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15, no. 2 (March 1997): 361. http://dx.doi.org/10.1116/1.589320.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Chiruvelli, Aravind, and Hwang Lee. "Parity measurements in quantum optical metrology." Journal of Modern Optics 58, no. 11 (June 20, 2011): 945–53. http://dx.doi.org/10.1080/09500340.2011.585251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Petrik, Peter. "Optical thin film metrology for optoelectronics." Journal of Physics: Conference Series 398 (December 10, 2012): 012002. http://dx.doi.org/10.1088/1742-6596/398/1/012002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dirckx, J. J. J., and W. F. Decraemer. "Coating techniques in optical interferometric metrology." Applied Optics 36, no. 13 (May 1, 1997): 2776. http://dx.doi.org/10.1364/ao.36.002776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Claus, D., D. J. Robinson, D. G. Chetwynd, Y. Shuo, W. T. Pike, José J. De J Toriz Garcia, and J. M. Rodenburg. "Dual wavelength optical metrology using ptychography." Journal of Optics 15, no. 3 (January 29, 2013): 035702. http://dx.doi.org/10.1088/2040-8978/15/3/035702.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kaznatcheev, K., and P. Z. Takacs. "Optical metrology at the NSLS-II." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 649, no. 1 (September 2011): 144–46. http://dx.doi.org/10.1016/j.nima.2010.11.140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Dorrer, Christophe. "Spatiotemporal Metrology of Broadband Optical Pulses." IEEE Journal of Selected Topics in Quantum Electronics 25, no. 4 (July 2019): 1–16. http://dx.doi.org/10.1109/jstqe.2019.2899019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Wagner, John W., Gregory S. Agnes, and Eric Magee. "Optical Metrology of Adaptive Membrane Mirrors." Journal of Intelligent Material Systems and Structures 11, no. 11 (November 2000): 837–47. http://dx.doi.org/10.1106/f47v-ld4v-4yvr-e13g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Droste, Stefan, Thomas Udem, Ronald Holzwarth, and Theodor Wolfgang Hänsch. "Optical frequency dissemination for metrology applications." Comptes Rendus Physique 16, no. 5 (June 2015): 524–30. http://dx.doi.org/10.1016/j.crhy.2015.03.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Katori, Hidetoshi. "Optical lattice clocks and quantum metrology." Nature Photonics 5, no. 4 (March 31, 2011): 203–10. http://dx.doi.org/10.1038/nphoton.2011.45.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography