Journal articles on the topic 'Optical experiments'

To see the other types of publications on this topic, follow the link: Optical experiments.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical experiments.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Máttar, Alejandro, Paul Skrzypczyk, Jonatan Bohr Brask, Daniel Cavalcanti, and Antonio Acín. "Optimal randomness generation from optical Bell experiments." New Journal of Physics 17, no. 2 (February 10, 2015): 022003. http://dx.doi.org/10.1088/1367-2630/17/2/022003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Thalhammer, Robert, and Gerhard Wachutka. "Virtual optical experiments Part II Design of experiments." Journal of the Optical Society of America A 20, no. 4 (April 1, 2003): 707. http://dx.doi.org/10.1364/josaa.20.000707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grangier, P. "Optical quantum nondemolition measurements: experiments." Physics Reports 219, no. 3-6 (October 1992): 121–29. http://dx.doi.org/10.1016/0370-1573(92)90130-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tebaldi, M., and N. Bolognini. "Experiments with an optical converter." European Journal of Physics 17, no. 4 (July 1, 1996): 236–43. http://dx.doi.org/10.1088/0143-0807/17/4/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

BOUCHIAT, M. A., and L. POTTIER. "Optical Experiments and Weak Interactions." Science 234, no. 4781 (December 5, 1986): 1203–10. http://dx.doi.org/10.1126/science.234.4781.1203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Höpfel, R. A., J. Shah, T. Y. Chang, and N. J. Sauer. "Single heterostructures for optical transport experiments." Applied Physics Letters 51, no. 22 (November 30, 1987): 1815–17. http://dx.doi.org/10.1063/1.98532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

McCay, T. D., R. H. Eskridge, and D. H. Van Zandt. "Experiments on optical discharges in hydrogen." Journal of Thermophysics and Heat Transfer 2, no. 4 (October 1988): 317–23. http://dx.doi.org/10.2514/3.106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Spitz, E., J. P. Huignard, and C. P. Puech. "Early experiments on optical disc storage." IEEE Journal of Selected Topics in Quantum Electronics 6, no. 6 (November 2000): 1413–18. http://dx.doi.org/10.1109/2944.902196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

SMITH, P. W. "OPTICAL SWITCHING IN GLASS FIBERS : EXPERIMENTS." Le Journal de Physique Colloques 49, no. C2 (June 1988): C2–23—C2–27. http://dx.doi.org/10.1051/jphyscol:1988206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kelleher, B., D. Goulding, B. Baselga Pascual, S. P. Hegarty, and G. Huyet. "Phasor plots in optical injection experiments." European Physical Journal D 58, no. 2 (March 16, 2010): 175–79. http://dx.doi.org/10.1140/epjd/e2010-00063-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lucas, Max Antonio Ramos, Ricardo Enrique Medrano, and Peter P. Gillis. "Dynamic fatigue experiments on optical fibers." Metallurgical Transactions A 22, no. 4 (April 1991): 867–71. http://dx.doi.org/10.1007/bf02658996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Porshnev, Pete I., Hidde L. Wallaart, Marie-Yvonne Perrin, and Jean-Pierre Martin. "Modeling of optical pumping experiments in CO. I. Time-resolved experiments." Chemical Physics 213, no. 1-3 (December 1996): 111–22. http://dx.doi.org/10.1016/s0301-0104(96)00254-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Low, Mun Ji, Thazhe Madam Rohith, Byunggi Kim, Seung-Woo Kim, C. S. Suchand Sandeep, Vadakke Matham Murukeshan, and Young-Jin Kim. "Refractive-diffractive hybrid optics array: comparative analysis of simulation and experiments." Journal of Optics 24, no. 5 (April 5, 2022): 055401. http://dx.doi.org/10.1088/2040-8986/ac5926.

Full text
Abstract:
Abstract Hybrid optical elements, which combine refractive and diffractive optical components to enhance optical performance by taking advantage of the optical characteristics of the individual components, have enormous potential for next-generation optical devices. However, there have not been many reports on the simulation methodology to characterize such hybrid optical systems. Here, we present a method for simulating a hybrid optical element realized by attaching an ultra-thin, flexible diffractive optics array onto a refractive optical element. The ultra-thin diffractive optical element is fabricated by direct-laser-writing using a femtosecond pulsed laser as the light source. A systematic investigation of the proposed simulation method, which does not require extensive hardware resources or computational time, but retains resolution and accuracy, is presented. The proposed scheme is validated by comparing simulation and experimental results. The simulation and experimental results on the spot size and focal length for the diffractive Fresnel zone plate (FZP) match well, with typical errors of less than 6%. The aspect ratio of the focal spot sizes at the compound and FZP focal planes of the hybrid optical system from the simulation and experiment also match quite well, with typical errors below 7%. This simulation scheme will expedite the designs for novel hybrid optical systems with optimal optical performances for specific applications, such as microfluidics and aberration-controlled optics.
APA, Harvard, Vancouver, ISO, and other styles
14

Difato, Francesco, Giulietta Pinato, and Dan Cojoc. "Cell Signaling Experiments Driven by Optical Manipulation." International Journal of Molecular Sciences 14, no. 5 (April 25, 2013): 8963–84. http://dx.doi.org/10.3390/ijms14058963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Andreev, A. V. "Optical superradiance: new ideas and new experiments." Uspekhi Fizicheskih Nauk 160, no. 12 (1990): 1. http://dx.doi.org/10.3367/ufnr.0160.199012a.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mack, L. E., E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, et al. "Optical closure experiments for biomass smoke aerosols." Atmospheric Chemistry and Physics Discussions 10, no. 3 (March 23, 2010): 7469–94. http://dx.doi.org/10.5194/acpd-10-7469-2010.

Full text
Abstract:
Abstract. The FLAME experiments were a series of laboratory studies of the chemical, physical, and optical properties of fresh smokes from the combustion of wildland fuels that are burned annually in the western and southeastern US. The burns were conducted in the combustion chamber of the USFS Fire Sciences Laboratory in Missoula, Montana. Here we discuss the retrieval of optical properties for a variety of fuels burned in FLAME 2, using nephelometer-measured scattering coefficients, photoacoustically-measured aerosol absorption coefficients, and size distribution measurements. Uncertainties are estimated from the various instrument characteristics and from instrument calibration studies. Our estimates of single scattering albedo for different dry smokes varied from 0.43–0.99, indicative of the wide variations in smoke aerosol chemical composition that were observed. In selected case studies, we retrieved the complex refractive index from the measurements, but show that these are highly sensitive to the uncertainties in measured size distributions.
APA, Harvard, Vancouver, ISO, and other styles
17

Canright, G. S., and A. G. Rojo. "Some consequences ofscrPscrTsymmetry for optical rotation experiments." Physical Review Letters 68, no. 10 (March 9, 1992): 1601–4. http://dx.doi.org/10.1103/physrevlett.68.1601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Huba, T., M. Huba, P. Bistak, and P. Tapak. "New Thermo-Optical Plants for Laboratory Experiments." IFAC Proceedings Volumes 47, no. 3 (2014): 9013–18. http://dx.doi.org/10.3182/20140824-6-za-1003.02760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wasilewski, Z., S. Porowski, and R. A. Stradling. "High pressure cell for magneto-optical experiments." Journal of Physics E: Scientific Instruments 19, no. 6 (June 1986): 480–82. http://dx.doi.org/10.1088/0022-3735/19/6/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Andreev, Anatolii V. "Optical superradiance: new ideas and new experiments." Soviet Physics Uspekhi 33, no. 12 (December 31, 1990): 997–1020. http://dx.doi.org/10.1070/pu1990v033n12abeh002664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Razdan, K., and D. A. Van Baak. "Demonstrating optical beat notes through heterodyne experiments." American Journal of Physics 70, no. 10 (October 2002): 1061–67. http://dx.doi.org/10.1119/1.1484150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sakamoto, João M. S., Renan B. Marques, Cláudio Kitano, Nicolau A. S. Rodrigues, and Rudimar Riva. "Optical beam deflection sensor: design and experiments." Applied Optics 56, no. 28 (September 29, 2017): 8005. http://dx.doi.org/10.1364/ao.56.008005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cai, B., and A. J. Seeds. "Optical frequency modulation links: Theory and experiments." IEEE Transactions on Microwave Theory and Techniques 45, no. 4 (April 1997): 505–11. http://dx.doi.org/10.1109/22.566630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Wintner, E. "Numerical evaluation of optical pump‐probe experiments." Journal of Applied Physics 57, no. 5 (March 1985): 1533–37. http://dx.doi.org/10.1063/1.334467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Krieble, Kelly, and Joseph L. Powlette. "A Simple Apparatus for Optical Polarization Experiments." Physics Teacher 41, no. 9 (December 2003): 537–41. http://dx.doi.org/10.1119/1.1631625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gähler, Roland, and Anton Zeilinger. "Wave‐optical experiments with very cold neutrons." American Journal of Physics 59, no. 4 (April 1991): 316–24. http://dx.doi.org/10.1119/1.16540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Dey, Sanjib, Anha Bhat, Davood Momeni, Mir Faizal, Ahmed Farag Ali, Tarun Kumar Dey, and Atikur Rehman. "Probing noncommutative theories with quantum optical experiments." Nuclear Physics B 924 (November 2017): 578–87. http://dx.doi.org/10.1016/j.nuclphysb.2017.09.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Moon, S. J., K. B. Fournier, H. Scott, H. K. Chung, and R. W. Lee. "Optical pumping experiments in the XUV regime." Journal of Quantitative Spectroscopy and Radiative Transfer 81, no. 1-4 (September 2003): 311–17. http://dx.doi.org/10.1016/s0022-4073(03)00083-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Giacobino, E., and C. Fabre. "Quantum noise reduction in optical systems ? Experiments." Applied Physics B Photophysics and Laser Chemistry 55, no. 3 (September 1992): 189. http://dx.doi.org/10.1007/bf00325005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Atkinson, A., S. C. Jain, and S. J. Webb. "Convolution of spectra in optical microprobe experiments." Semiconductor Science and Technology 14, no. 6 (January 1, 1999): 561–64. http://dx.doi.org/10.1088/0268-1242/14/6/312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Schachtschneider, Reyko, Manuel Stavridis, Ines Fortmeier, Michael Schulz, and Clemens Elster. "SimOptDevice: a library for virtual optical experiments." Journal of Sensors and Sensor Systems 8, no. 1 (February 27, 2019): 105–10. http://dx.doi.org/10.5194/jsss-8-105-2019.

Full text
Abstract:
Abstract. Virtual experiments have become an indispensable tool for the design and the accuracy assessment of novel measurement procedures and instruments. Virtual experiments are particularly relevant in modern optics due to its challenging demands for highly accurate measurements. This paper introduces SimOptDevice, a flexible library for opto-mechanical virtual experiments. After describing the scope and general structure of the library, its underlying mathematical tools used for solving the related numerical tasks are described. Finally, the application of SimOptDevice to a recent interferometric measurement procedure is presented.
APA, Harvard, Vancouver, ISO, and other styles
32

Mack, L. A., E. J. T. Levin, S. M. Kreidenweis, D. Obrist, H. Moosmüller, K. A. Lewis, W. P. Arnott, et al. "Optical closure experiments for biomass smoke aerosols." Atmospheric Chemistry and Physics 10, no. 18 (September 29, 2010): 9017–26. http://dx.doi.org/10.5194/acp-10-9017-2010.

Full text
Abstract:
Abstract. A series of laboratory experiments at the Fire Laboratory at Missoula (FLAME) investigated chemical, physical, and optical properties of fresh smoke samples from combustion of wildland fuels that are burned annually in the western and southeastern US The burns were conducted in the combustion chamber of the US Forest Service Fire Sciences Laboratory in Missoula, Montana. Here we discuss retrieval of optical properties for a variety of fuels burned in FLAME 2, using nephelometer-measured scattering coefficients, photoacoustically-measured aerosol absorption coefficients, and size distribution measurements. Uncertainties are estimated from various instrument characteristics and instrument calibration studies. Our estimates of single scattering albedo for different dry smoke samples varied from 0.428 to 0.990, indicative of observed wide variations in smoke aerosol chemical composition. In selected case studies, we retrieved the complex refractive index from measurements but show that these are highly sensitive to uncertainties in measured size distributions.
APA, Harvard, Vancouver, ISO, and other styles
33

Liu, Andrea J., and Michael E. Fisher. "Universal critical adsorption profile from optical experiments." Physical Review A 40, no. 12 (December 1, 1989): 7202–21. http://dx.doi.org/10.1103/physreva.40.7202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Watson, Erkai, Max Gulde, Lukas Kortmann, Masumi Higashide, Frank Schaefer, and Stefan Hiermaier. "Optical fragment tracking in hypervelocity impact experiments." Acta Astronautica 155 (February 2019): 111–17. http://dx.doi.org/10.1016/j.actaastro.2018.11.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bykov, Dmitry S., Maximilian Meusburger, Lorenzo Dania, and Tracy E. Northup. "Hybrid electro-optical trap for experiments with levitated particles in vacuum." Review of Scientific Instruments 93, no. 7 (July 1, 2022): 073201. http://dx.doi.org/10.1063/5.0096391.

Full text
Abstract:
We confine a microparticle in a hybrid potential created by a Paul trap and a dual-beam optical trap. We transfer the particle between the Paul trap and the optical trap at different pressures and study the influence of feedback cooling on the transfer process. This technique provides a path for experiments with optically levitated particles in ultra-high vacuum and in potentials with complex structures.
APA, Harvard, Vancouver, ISO, and other styles
36

Fisher, Alexander A., Elizabeth F. C. Dreyer, Ayan Chakrabarty, and Stephen C. Rand. "Optical magnetization, Part I: Experiments on radiant optical magnetization in solids." Optics Express 24, no. 23 (November 1, 2016): 26055. http://dx.doi.org/10.1364/oe.24.026055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hudec, Ren�, and Jan Sold�n. "Ground-based optical CCD experiments for GRB and optical transient detection." Astrophysics and Space Science 231, no. 1-2 (September 1995): 311–14. http://dx.doi.org/10.1007/bf00658639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

López-Quesada, C., A. S. Fontaine, A. Farré, M. Joseph, J. Selva, G. Egea, M. D. Ludevid, E. Martín-Badosa, and M. Montes-Usategui. "Artificially-induced organelles are optimal targets for optical trapping experiments in living cells." Biomedical Optics Express 5, no. 7 (May 30, 2014): 1993. http://dx.doi.org/10.1364/boe.5.001993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kaushik Rangadurai, Atul, Honglue Shi, Yu Xu, Bei Liu, and Hashim M. Al-Hashimi. "Nucleic Acid Conformational Penalties from Optical Melting Experiments." Biophysical Journal 120, no. 3 (February 2021): 220a. http://dx.doi.org/10.1016/j.bpj.2020.11.1476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Iitaka, Hiroshi, Soujun Sato, Yukio Fujinawa, Masayoshi Yamaguchi, Satoshi Terakubo, and Yoshikazu Murata. "Ocean Experiments on Optical Fiber Distributed Temperature Sensor." Journal of the Society of Naval Architects of Japan 1991, no. 169 (1991): 223–31. http://dx.doi.org/10.2534/jjasnaoe1968.1991.223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kawalec, T., and P. Sowa. "Wireless photodiode for optical and atomic physics experiments." Review of Scientific Instruments 92, no. 11 (November 1, 2021): 114711. http://dx.doi.org/10.1063/5.0063251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Silver, Joel A., and Alan C. Stanton. "Optical interference fringe reduction in laser absorption experiments." Applied Optics 27, no. 10 (May 15, 1988): 1914. http://dx.doi.org/10.1364/ao.27.001914.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Moura, T. A., U. M. S. Andrade, J. B. S. Mendes, and M. S. Rocha. "Silicon microparticles as handles for optical tweezers experiments." Optics Letters 45, no. 5 (February 17, 2020): 1055. http://dx.doi.org/10.1364/ol.383139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mitschke, F., R. Deserno, J. Mlynek, and W. Lange. "Transients in optical bistability: Experiments with external noise." IEEE Journal of Quantum Electronics 21, no. 9 (September 1985): 1435–40. http://dx.doi.org/10.1109/jqe.1985.1072841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Shemwell, D., K. Robinson, R. Gellert, D. Quimby, J. Ross, J. Slater, A. Vetter, D. Trost, and J. Zumdieck. "Optical cavities for visible free-electron laser experiments." IEEE Journal of Quantum Electronics 23, no. 9 (September 1987): 1522–26. http://dx.doi.org/10.1109/jqe.1987.1073562.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Jiang, Wenhan. "Adaptive optical image compensation experiments on stellar objects." Optical Engineering 34, no. 1 (January 1, 1995): 15. http://dx.doi.org/10.1117/12.184078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Wei, Sun, Wang Yi-qiu, and Gao Chong-ming. "Construction of an optical tweezers—calculation and experiments." Chinese Physics 9, no. 11 (November 2000): 855–60. http://dx.doi.org/10.1088/1009-1963/9/11/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Malykin, G. B. "Classical optical experiments and special relativity: A review." Optics and Spectroscopy 107, no. 4 (October 2009): 592–608. http://dx.doi.org/10.1134/s0030400x09100142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sierakowski, Marek, Miroslaw Karpierz, Thang-Long Do, and Marcin Roszko. "Nonlinear Optical Experiments on Liquid Crystal Chiral Structures." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 282, no. 1 (May 1996): 139–44. http://dx.doi.org/10.1080/10587259608037574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Fourkas, John T., Hitoshi Kawashima, and Keith A. Nelson. "Theory of nonlinear optical experiments with harmonic oscillators." Journal of Chemical Physics 103, no. 11 (September 15, 1995): 4393–407. http://dx.doi.org/10.1063/1.470680.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography