Academic literature on the topic 'Optical communication'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Optical communication.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Optical communication"
Okoshi, Takanori, and Akira Hirose. "Optical communication techniques; A prospect of optical communications." Journal of the Institute of Television Engineers of Japan 42, no. 5 (1988): 460–67. http://dx.doi.org/10.3169/itej1978.42.460.
Full textRayamajhi, Kamal Bahadur. "Optical Communication." Himalayan Physics 1 (July 28, 2011): 77–78. http://dx.doi.org/10.3126/hj.v1i0.5185.
Full textNishizawa, Junichi. "Optical Communication." Journal of the Society of Mechanical Engineers 102, no. 964 (1999): 112–13. http://dx.doi.org/10.1299/jsmemag.102.964_112.
Full textIwamoto, Yoshinao, and Syu Yamamoto. "Optical communication techniques. (7); Fundamentals of optical communication system." Journal of the Institute of Television Engineers of Japan 41, no. 12 (1987): 1185–92. http://dx.doi.org/10.3169/itej1978.41.1185.
Full textARIGA, TADASHI. "Space optical communication." Review of Laser Engineering 21, no. 1 (1993): 166–68. http://dx.doi.org/10.2184/lsj.21.166.
Full textMINEMURA, KOICHI. "Coherent optical communication." Review of Laser Engineering 21, no. 1 (1993): 168–70. http://dx.doi.org/10.2184/lsj.21.168.
Full textMATSUMOTO, MASAYUKI. "Optical soliton communication." Review of Laser Engineering 21, no. 1 (1993): 171–73. http://dx.doi.org/10.2184/lsj.21.171.
Full textSodnik, Zoran, Bernhard Furch, and Hanspeter Lutz. "Optical Intersatellite Communication." IEEE Journal of Selected Topics in Quantum Electronics 16, no. 5 (September 2010): 1051–57. http://dx.doi.org/10.1109/jstqe.2010.2047383.
Full textEldada, Louay. "Optical communication components." Review of Scientific Instruments 75, no. 3 (March 2004): 575–93. http://dx.doi.org/10.1063/1.1647701.
Full textIkegami, Tetsuhiko. "Optical communication technology." Optics and Photonics News 1, no. 11 (November 1, 1990): 6. http://dx.doi.org/10.1364/opn.1.11.000006.
Full textDissertations / Theses on the topic "Optical communication"
Aladeloba, Abisayo Olufemi. "Optically amplified free-space optical communication systems." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13304/.
Full textBoiyo, Duncan Kiboi, and Romeo Gamatham. "Optimization of flexible spectrum in optical transport networks." Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/14609.
Full textJiang, Junyi. "Optical wireless communication systems." Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/387239/.
Full textDu, Hao. "Optical wireless MIMO communication." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/70945/.
Full textAlbuquerque, André Antunes de Carvalho. "All-optical signal processing for optical communication systems." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/23624.
Full textO processamento ótico de sinal é uma alternativa possível para melhorar o desempenho e eficiência de sistemas de comunicações óticas, mas o seu estágio atual de desenvolvimento é ainda insuficiente para aplicações em sistemas reais. De forma a inverter esta situação, novas estratégias e pos-sibilidades para processamento ótico de sinal são aqui investigadas, com ênfase em conversão de comprimento de onda, regeneração de fase e amplificação sensível à fase em dispositivos de niobato de lítio com inversão periódica dos domínios ferroelétricos e fibras fortemente não-lineares. Um novo método para o desenho do perfil de inversão dos domínios fer¬roelétricos nos dispositivos de niobato de lítio de acordo com um espetro de conversão alvo é investigado nesta tese. O método proposto é validado numericamente e através da produção de um dispositivo real com largura de banda de conversão de 400 GHz. O dispositivo produzido é utilizado para conversão de onda multicanal de oito sinais modulados em fase, com a possibilidade adicional de sintonizar o comprimento de onda dos sinais con¬vertidos. Observa-se a existência de um compromisso entre elevada largura de banda de conversão e eficiência do dispositivo. São também investigadas nesta tese conversão e permuta de comprimento de onda tolerantes ao ruído de fase adicionado por fontes de bombeamento. Demonstra-se neste trabalho que a utilização de fontes de bombeamento coerentes permite evitar a adição de ruído de fase aos sinais convertidos. Nesta tese é também analisada analítica e numericamente amplificação sensível a fase baseada em dispositivos de niobato de lítio com inversão periódica dos domínios ferroelétricos para configurações de amplificadores de um, dois ou quatro modos. É ainda avaliada a possibilidade de ge¬rar ondas correlacionadas e de realizar amplificação sensível a fase num único dispositivo com propagação bidirecional. Com base neste esquema, demonstra-se regeneração de fase de sinais modulados em fase, porém com ganho limitado devido à baixa eficiência de conversão dos dispositivos e com desempenho afetado por instabilidades térmicas e foto refrativas. Mo¬tivado por estas limitações, demonstra-se amplificação de elevado ganho num amplificador sensível à fase de quatro modos, construído com uma fibra fortemente não-linear em vez de um dispositivo de niobato de lítio. Por fim, é efetuada uma análise numérica do impacto de utilizar amplifica¬dores sensíveis à fase em vez de amplificadores de fibra dopada com érbio no alcance em transmissão ponto a ponto de sinais e na amplificação e regeneração em redes óticas. Demonstra-se que amplificadores sensíveis à fase são mais vantajosos para formatos de modulação avançados e siste¬mas compostos por ligações óticas longas. As simulações assumem mode¬los simplificados para o ganho e ruído dos amplificadores, bem como uma versão modificada do modelo de ruído Gaussiano para estimar a potência das distorções não-lineares em sistemas com compensação total da dispersão cromática no final de cada segmento de fibra entre amplificadores.
All-optical signal processing techniques are a possible way to improve the performance and efficiency of optical communication systems, but the cur¬rent stage of development of such techniques is still unsatisfactory for real- world implementation. In order to invert this situation, new strategies and possibilities for all-optical signal processing are investigated here, with a particular focus on wavelength conversion, phase regeneration and phase- sensitive amplification in periodically poled lithium niobate waveguides and highly nonlinear fibers. A new and flexible method to design the poling pattern of periodically poled lithium niobate devices according to a target conversion spectrum is inves¬tigated in this work. The proposed method is validated through numerical simulations and by producing a real device with broad conversion bandwidth of 400 GHz. The device is then used for multichannel wavelength conversion of eight phase-modulated signals, with the additional possibility to tune the wavelength of the converted signals. A trade-off between high conversion bandwidth and conversion efficiency is observed. Advanced wavelength conversion and wavelength exchange tolerant to the phase noise added by the pump lasers are also investigated. It is shown that the additional phase noise transferred to the converted signals is eliminated by using coherent pumps, generated from the same light source. Phase-sensitive amplification based on periodically poled lithium niobate devices is also investigated in this thesis by numerically comparing the gain properties for one-, two- and four-mode configurations. The possibility to si¬multaneously generate correlated waves and observe phase-sensitive amplifi¬cation in a single device with bidirectional propagation is also demonstrated. Using such scheme,"black-box" phase regeneration of phase-encoded sig¬nals is experimentally demonstrated, albeit with limited net gain due to the low conversion efficiency of the device, and the limited reliability due to thermal and photorefractive instabilities. Motivated by such limitations, high-gain amplification in a four-mode phase-sensitive amplifier built with a highly nonlinear fiber instead of a periodically poled lithium niobate is demonstrated. Finally, the impact of using phase-sensitive amplifiers instead of common erbium-doped fiber amplifiers on the reach in point-to-point transmission and on the amplification and regeneration requirements in optical transport networks is numerically investigated. The calculations show that phase- sensitive amplifiers are particularly advantageous when considering high- order modulation formats and for transport networks comprised by long links. The numerical simulations are performed using simplified models for the gain and noise properties of the amplifiers, and a modified enhanced Gaussian noise model to estimate the power of the nonlinear distortions in systems with full dispersion compensation at the end of each span of fiber.
Males, Mladen. "Suppression of transient gain excursions in an erbium-doped fibre amplifier /." Connect to this title, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0157.
Full textSong, Yunbin. "Optical Communication Systems for Smart Dust." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/34679.
Full textMaster of Science
Curty, Alonso Marcos. "Cryptographic protocols in optical communication." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=979048621.
Full textChapple, Rebecca Jane. "Communication problems in optical networks." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq37496.pdf.
Full textYen, Brent J. 1977. "Multiple-user quantum optical communication." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30244.
Full textIncludes bibliographical references (p. 133-138).
A fundamental understanding of the information carrying capacity of optical channels requires the signal and physical channel to be modeled quantum mechanically. This thesis considers the problems of distributing multi-party quantum entanglement to distant users in a quantum communication system and determining the ability of quantum optical channels to reliably transmit information. A recent proposal for a quantum communication architecture that realizes long-distance, high-fidelity qubit teleportation is reviewed. Previous work on this communication architecture is extended in two primary ways. First, models are developed for assessing the effects of amplitude, phase, and frequency errors in the entanglement source of polarization-entangled photons, as well as fiber loss and imperfect polarization restoration, on the throughput and fidelity of the system. Second, an error model is derived for an extension of this communication architecture that allows for the production and storage of three-party entangled Greenberger-Horne-Zeilinger states. A performance analysis of the quantum communication architecture in qubit teleportation and quantum secret sharing communication protocols is presented. Recent work on determining the channel capacity of optical channels is extended in several ways. Classical capacity is derived for a class of Gaussian Bosonic channels representing the quantum version of classical colored Gaussian-noise channels. The proof is strongly motivated by the standard technique of whitening Gaussian noise used in classical information theory. Minimum output entropy problems related to these channel capacity derivations are also studied.
(cont.) These single-user Bosonic capacity results are extended to a multi-user scenario by deriving capacity regions for single-mode and wideband coherent-state multiple access channels. An even larger capacity region is obtained when the transmitters use non- classical Gaussian states, and an outer bound on the ultimate capacity region is presented as well.
by Brent J. Yen.
Ph.D.
Books on the topic "Optical communication"
Boman, Mogens. Optical fibres - and optical communication. 2nd ed. [Denmark]: Aktieselskabet Nordiske Kabel-og Traadfabriker, 1986.
Find full textKe, Xizheng, and Ke Dong. Optical Wireless Communication. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0382-3.
Full textMukherjee, Biswanath. Optical communication networks. New York: McGraw-Hill, 1997.
Find full textAtef, Mohamed, and Horst Zimmermann. Optical Communication over Plastic Optical Fibers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-30388-3.
Full textKaushal, Hemani, V. K. Jain, and Subrat Kar. Free Space Optical Communication. New Delhi: Springer India, 2017. http://dx.doi.org/10.1007/978-81-322-3691-7.
Full textSergio, Benedetto, and Willner Alan E, eds. Optical fiber communication systems. Boston: Artech House, 1996.
Find full textEugenio, Iannone, ed. Nonlinear optical communication networks. New York: Wiley, 1998.
Find full textJames, Robert Thomas Brent. Coherent optical communication systems. Ottawa: National Library of Canada, 1990.
Find full textAtef, Mohamed. Optical Communication over Plastic Optical Fibers: Integrated Optical Receiver Technology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textWan, Peng-Jun. Multichannel optical networks. New Brunswick, NJ: Rutgers University, 1998.
Find full textBook chapters on the topic "Optical communication"
Conesa, J. L., J. M. Hernandez, and M. Salazar-Palma. "Optical Communication." In Gallium Arsenide Technology in Europe, 85–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78934-2_8.
Full textAzadeh, Mohammad. "Communication Networks." In Optical Networks, 29–60. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0304-4_2.
Full textKe, Xizheng, and Ke Dong. "Ultraviolet Communication." In Optical Wireless Communication, 233–47. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-0382-3_7.
Full textOhya, Masanori, and Dénes Petz. "Optical Communication Processes." In Quantum Entropy and Its Use, 307–17. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-57997-4_19.
Full textIizuka, Keigo. "Fiber Optical Communication." In Engineering Optics, 365–417. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-69251-7_13.
Full textOhtsubo, Junji, and Peter Davis. "Chaotic Optical Communication." In Unlocking Dynamical Diversity, 307–33. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470856211.ch9.
Full textIizuka, Keigo. "Fiber Optical Communication." In Springer Series in Optical Sciences, 341–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-36808-3_13.
Full textIizuka, Keigo. "Fiber Optical Communication." In Engineering Optics, 341–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-662-07032-1_13.
Full textKe, Xizheng, and Jiali Wu. "Coherent Optical Communication." In Optical Wireless Communication Theory and Technology, 43–113. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4823-7_2.
Full textTavakkolnia, Iman, Hossein Kazemi, Elham Sarbazi, and Harald Haas. "Optical Wireless Communication." In Fundamentals of 6G Communications and Networking, 463–98. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37920-8_17.
Full textConference papers on the topic "Optical communication"
Vieira, André G., Luiz F. M. Vieira, and Marcos A. M. Vieira. "Optimal Packet Size in Optical Wireless Communication." In 2024 19th International Symposium on Wireless Communication Systems (ISWCS), 1–6. IEEE, 2024. http://dx.doi.org/10.1109/iswcs61526.2024.10639103.
Full textMellon, Samuel N., Jonathan Wells, Jakob Kunzler, and Jason Schmidt. "Proposing a Standardized Metric for Comparing Free Space Optical Communication Systems." In Propagation Through and Characterization of Atmospheric and Oceanic Phenomena, PTh5D.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/pcaop.2024.pth5d.2.
Full textFuada, Syifaul, Mariella Särestöniemi, and Marcos Katz. "Modelling Optical Wireless Communication for In-Body Communications Systems." In 2024 14th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), 199–204. IEEE, 2024. http://dx.doi.org/10.1109/csndsp60683.2024.10636569.
Full textDeng, Qiuzhuo, Lu Zhang, Hongqi Zhang, Zuomin Yang, Xiaodan Pang, Vjačeslavs Bobrovs, Sergei Popov, et al. "Quantum Noise Secured Terahertz Communications." In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.w2a.33.
Full textToyoda, M., D. Greenwald, C. McLaughlin, P. LaSala, D. Duggins, S. Yoshikado, K. Araki, et al. "Ground station for space optical communication experiments." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.thj7.
Full textYu, Xianbin, Hongqi Zhang, Zuomin Yang, Zhidong Lyu, Hang Yang, Yuqian He, Siqi Liu, et al. "Photonic-wireless Communication and Sensing in the Terahertz Band." In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.w4j.1.
Full textRashidinejad, Amir, Amin Yekani, Tobias A. Eriksson, Antonio Napoli, Robert Maher, Aditya Kakkar, Vince Dominic, et al. "Real-Time Point-to-Multipoint for Coherent Optical Broadcast and Aggregation – Enabled by Digital Subcarrier Multiplexing." In Optical Fiber Communication Conference. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ofc.2023.w3h.1.
Full text"Optical Communication." In 2006 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. IEEE, 2006. http://dx.doi.org/10.1109/isscc.2006.1696126.
Full textDeVito, Larry, and Miki Moyal. "Optical Communication." In 2008 International Solid-State Circuits Conference - (ISSCC). IEEE, 2008. http://dx.doi.org/10.1109/isscc.2008.4523135.
Full textYurke, Bernard. "The Appropriateness of Squeezed Light for Long-Distance Communication." In Optical Amplifiers and Their Applications. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oaa.1991.fa1.
Full textReports on the topic "Optical communication"
Carder, Kendall L., and David K. Costello. Trans-Interface Optical Communication (TIOC). Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada518863.
Full textCarder, Kendall L., and David K. Costello. Trans-Interface Optical Communication (TIOC). Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada570972.
Full textKazovsky, Leonid G. Advanced Optical Fiber Communication Systems. Fort Belvoir, VA: Defense Technical Information Center, February 1993. http://dx.doi.org/10.21236/ada261802.
Full textSimon Cobb. Advanced Electrical, Optical and Data Communication Infrastructure Development. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1032858.
Full textChan, James. Integrated Transceiver Chip Application in Free Space Optical Communication. Fort Belvoir, VA: Defense Technical Information Center, September 2005. http://dx.doi.org/10.21236/ada439002.
Full textHarris, J. S. Semiconductor In-line Fiber Devices for Optical Communication Systems. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada381265.
Full textChow, Peter. Hetero-Junction Pumped Er-Light Emitter for Integrated Optical Communication. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada417917.
Full textWasiczko, Linda M., Harris R. Burris, N. G. Creamer, Rita Mahon, Christopher Moore, Lee Swingen, James Murphy, Mena Stell, Brad E. Pinney, and Peter Goetz. Optical Communication and Navigation for Spacecraft Docking using Modulating Retroreflectors. Fort Belvoir, VA: Defense Technical Information Center, January 2005. http://dx.doi.org/10.21236/ada464970.
Full textHo, Seng-Tiong, Prem Kumar, and Horace P. Yuen. Ultra-High Speed Optical Communication and Switching via Novel Quantum Devices. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada329967.
Full textYuen, Horace P., Prem Kumar, and Sen-Tiong Ho. Ultra-High Speed Optical Communication and Switching via Novel Quantum Devices. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada300165.
Full text