To see the other types of publications on this topic, follow the link: Optical based sensor.

Journal articles on the topic 'Optical based sensor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical based sensor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhengtong Wei, Zhengtong Wei, Zhangqi Song Zhangqi Song, Xueliang Zhang Xueliang Zhang, Yang Yu Yang Yu, and Zhou Meng Zhou Meng. "Miniature temperature sensor based on optical microf iber." Chinese Optics Letters 11, no. 11 (2013): 110602–5. http://dx.doi.org/10.3788/col201311.110602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Yanlu, Zhiping Yang, Mingyu Li, Jian-Jun He, and Qiushun Li. "Thermal-optic tuning cascaded double ring optical sensor based on wavelength interrogation." Chinese Optics Letters 20, no. 1 (2022): 011301. http://dx.doi.org/10.3788/col202220.011301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jones, Thomas P., and Marc D. Porter. "An Optical Sensor Based on Infrared Spectroscopy." Applied Spectroscopy 43, no. 6 (August 1989): 908–11. http://dx.doi.org/10.1366/0003702894203822.

Full text
Abstract:
A thin-film pH sensor based on vibrational spectroscopy has been developed. The sensor was constructed by the immobilization of Congo Red at a base-hydrolyzed cellulose acetate film that had been coated onto a ZnSe internal reflection element. The protonation of the azo groups of Congo Red was monitored as a function of pH with infrared internal reflection spectroscopy. The response characteristics of this sensor demonstrate the potential utility of applying infrared spectroscopy to detect the response of thin film sensors. Opportunities to design sensors based on the molecular specificity of infrared spectroscopy are briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
4

Omar, Mohd Azwadi, Noran Azizan Cholan, Aminuddin Mohd, Mirsa Nurfarhan Mohd Azhan, Rahmat Talib, and Nor Hafizah Ngajikin. "Optical Temperature Sensor based on Sagnac Interferometer." International Journal of Engineering & Technology 7, no. 4.30 (November 30, 2018): 126. http://dx.doi.org/10.14419/ijet.v7i4.30.22073.

Full text
Abstract:
Optical temperature sensors gain interest from the community recently due to their immunity to electromagnetic interference and ruggedness against chemical and mechanical disturbances as opposed to the conventional temperature sensors such as thermocouples and resistance temperature detectors. Optical temperature sensors come with many varieties and Sagnac interferometer is one of them. In this work, an all-fiber temperature sensor is proposed and experimentally demonstrated. The proposed optical temperature utilizes Sagnac interferometer as the temperature head. The underlying mechanism for this sensor is based on the temperature dependence of a polarization maintaining fiber (PMF) in the Sagnac interferometer. The PMF birefringence which is influenced by temperature affects the phase difference of two incoming lights that enter the Sagnac interferometer and this contributes to the shifting of the transmission spectrum. The input light for the sensor characterization is provided by a custom-made amplified spontaneous emission source which comprises of a tunable laser source, a 980 nm laser diode pump, a wavelength division multiplexing coupler and a 10 m long erbium-doped fiber. Experimental results indicate that the temperature does affect the PMF characteristic. As the temperature increases from 30°C to 45°C, the wavelength dip reduced from 1553.8 nm to 1536.78nm. This proposed optical temperature sensor has a sensitivity of-1.0345 nm/°C. The development of this optical temperature sensor is promising especially for the measurement in the harsh environment.
APA, Harvard, Vancouver, ISO, and other styles
5

Penso, Camila M., João L. Rocha, Marcos S. Martins, Paulo J. Sousa, Vânia C. Pinto, Graça Minas, Maria M. Silva, and Luís M. Goncalves. "PtOEP–PDMS-Based Optical Oxygen Sensor." Sensors 21, no. 16 (August 21, 2021): 5645. http://dx.doi.org/10.3390/s21165645.

Full text
Abstract:
The advanced and widespread use of microfluidic devices, which are usually fabricated in polydimethylsiloxane (PDMS), requires the integration of many sensors, always compatible with microfluidic fabrication processes. Moreover, current limitations of the existing optical and electrochemical oxygen sensors regarding long-term stability due to sensor degradation, biofouling, fabrication processes and cost have led to the development of new approaches. Thus, this manuscript reports the development, fabrication and characterization of a low-cost and highly sensitive dissolved oxygen optical sensor based on a membrane of PDMS doped with platinum octaethylporphyrin (PtOEP) film, fabricated using standard microfluidic materials and processes. The excellent mechanical and chemical properties (high permeability to oxygen, anti-biofouling characteristics) of PDMS result in membranes with superior sensitivity compared with other matrix materials. The wide use of PtOEP in sensing applications, due to its advantage of being easily synthesized using microtechnologies, its strong phosphorescence at room temperature with a quantum yield close to 50%, its excellent Strokes Shift as well as its relatively long lifetime (75 µs), provide the suitable conditions for the development of a miniaturized luminescence optical oxygen sensor allowing long-term applications. The influence of the PDMS film thickness (0.1–2.5 mm) and the PtOEP concentration (363, 545, 727 ppm) in luminescent properties are presented. This enables to achieve low detection levels in a gas media range from 0.5% up to 20%, and in liquid media from 0.5 mg/L up to 3.3 mg/L at 1 atm, 25 °C. As a result, we propose a simple and cost-effective system based on a LED membrane photodiode system to detect low oxygen concentrations for in situ applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Chi, Xingqiang, Xiangjun Wang, and Xuan Ke. "Optical Fiber–Based Continuous Liquid Level Sensor Based on Rayleigh Backscattering." Micromachines 13, no. 4 (April 17, 2022): 633. http://dx.doi.org/10.3390/mi13040633.

Full text
Abstract:
This work reports an optical fiber–based continuous liquid level sensor for cryogenic propellant mass gauging, which has significant advantages over the existing liquid level sensors in terms of accuracy, simplicity, and reliability. Based on Rayleigh backscattering coherent optical frequency domain reflectometry, every point of the sensing fiber is a liquid sensor which is able to distinguish liquid and vapor. We obtained a measurement accuracy of 1 mm for the optical fiber sensor by measuring both liquid nitrogen and water levels. For the first time, for practical applications, we experimentally studied the influence of ambient temperature and strain changes on the sensing performance as well as the repeatability of the optical fiber–based liquid level sensor’s measurements.
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Yongzhang, Yiwen Zheng, Haibing Xiao, Dezhi Liang, Yufeng Zhang, Yongqin Yu, Chenlin Du, and Shuangchen Ruan. "Optical Fiber Probe Microcantilever Sensor Based on Fabry–Perot Interferometer." Sensors 22, no. 15 (August 1, 2022): 5748. http://dx.doi.org/10.3390/s22155748.

Full text
Abstract:
Optical fiber Fabry–Perot sensors have long been the focus of researchers in sensing applications because of their unique advantages, including highly effective, simple light path, low cost, compact size, and easy fabrication. Microcantilever-based devices have been extensively explored in chemical and biological fields while the interrogation methods are still a challenge. The optical fiber probe microcantilever sensor is constructed with a microcantilever beam on an optical fiber, which opens the door for highly sensitive, as well as convenient readout. In this review, we summarize a wide variety of optical fiber probe microcantilever sensors based on Fabry–Perot interferometer. The operation principle of the optical fiber probe microcantilever sensor is introduced. The fabrication methods, materials, and sensing applications of an optical fiber probe microcantilever sensor with different structures are discussed in detail. The performances of different kinds of fiber probe microcantilever sensors are compared. We also prospect the possible development direction of optical fiber microcantilever sensors.
APA, Harvard, Vancouver, ISO, and other styles
8

Shi, Chaoying, Xiuhong Liu, Jinhua Hu, Haiyan Han, and Jijun Zhao. "High performance optical sensor based on double compound symmetric gratings." Chinese Optics Letters 20, no. 2 (2022): 021201. http://dx.doi.org/10.3788/col202220.021201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kleber, Florian, Christopher Pramerdorfer, Elisabeth Wetzinger, and Martin Kampel. "Optical Sensor Evaluation for Vision Based Recognition of Electronics Waste." International Journal of Environmental Science and Development 6, no. 12 (2015): 929–33. http://dx.doi.org/10.7763/ijesd.2015.v6.724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lazarova, Katerina, Silvia Bozhilova, Sijka Ivanova, Darinka Christova, and Tsvetanka Babeva. "Flexible and Transparent Polymer-Based Optical Humidity Sensor." Sensors 21, no. 11 (May 25, 2021): 3674. http://dx.doi.org/10.3390/s21113674.

Full text
Abstract:
Thin spin-coated polymer films of amphiphilic copolymer obtained by partial acetalization of poly (vinyl alcohol) are used as humidity-sensitive media. They are deposited on polymer substrate (PET) in order to obtain a flexible humidity sensor. Pre-metallization of substrate is implemented for increasing the optical contrast of the sensor, thus improving the sensitivity. The morphology of the sensors is studied by surface profiling, while the transparency of the sensor is controlled by transmittance measurements. The sensing behavior is evaluated through monitoring of transmittance values at different levels of relative humidity gradually changing in the range 5–95% and the influence of up to 1000 bending deformations is estimated by determining the hysteresis and sensitivity of the flexible sensor after each set of deformations. The successful development of a flexible sensor for optical monitoring of humidity in a wide humidity range is demonstrated and discussed.
APA, Harvard, Vancouver, ISO, and other styles
11

Yunus, Muhammad, Syahdad Aziz, Bunga Tang, Yusuf H. Usman, Irsan Irsan, and Septiana Kurniasari. "Imperfection method based on optical fiber for alcohol content detection sensor." Jurnal Pijar Mipa 18, no. 2 (March 30, 2023): 260–64. http://dx.doi.org/10.29303/jpm.v18i2.4605.

Full text
Abstract:
Testing of optical fiber-based sensors using the imperfection method to detect alcohol contents. The sample results from mixing alcohol and distilled water to produce eight samples with an alcohol content level from 0% to 70%. The greater alcohol content causes the output power of the sensor to decrease due to the increase in the refractive index of alcohol content around the sensor. An increase in the refractive index of alcohol content causes power losses to increase, resulting in lost light intensity being transmitted in optical fiber-based sensors. Power losses are increasing to produce the best characteristics of the sensor. The best sensor is shown in the Gamma configuration at imperfection 3 with a sensitivity value of 0.346 µW/%. The imperfection method is suitable for determining the characteristics of optical fiber-based alcohol detection sensors because it has a high sensitivity.
APA, Harvard, Vancouver, ISO, and other styles
12

Guzowski, Bartlomiej, and Mateusz Łakomski. "Temperature Sensor Based on Periodically Tapered Optical Fibers." Sensors 21, no. 24 (December 14, 2021): 8358. http://dx.doi.org/10.3390/s21248358.

Full text
Abstract:
In this paper, the fabrication and characterization of a temperature sensor based on periodically tapered optical fibers (PTOF) are presented. The relation between the geometry of the sensors and sensing ability was investigated in order to find the relatively simple structure of a sensor. Four types of PTOF structures with two, four, six and eight waists were manufactured with the fusion splicer. For each PTOF type, the theoretical free spectral range (FSR) was calculated and compared with measurements. The experiments were conducted for a temperature range of 20–70 °C. The results proved that the number of the tapered regions in PTOF is crucial, because some of the investigated structures did not exhibit the temperature response. The interference occurring inside the structures with two and four waists was found be too weak and, therefore, the transmission dip was hardly visible. We proved that sensors with a low number of tapered regions cannot be considered as a temperature sensor. Sufficiently more valuable results were obtained for the last two types of PTOF, where the sensor’s sensitivity was equal to 0.07 dB/°C with an excellent linear fitting (R2 > 0.99). The transmission dip shift can be described by a linear function (R2 > 0.97) with a slope α > 0.39 nm/°C.
APA, Harvard, Vancouver, ISO, and other styles
13

Cheung, Long Fung, King Shan Lui, Kenneth Kin Yip Wong, Wing Kin Lee, and Philip W. T. Pong. "A Laboratory-Based Smart Grid Sensor Network Testbed." Applied Mechanics and Materials 479-480 (December 2013): 747–52. http://dx.doi.org/10.4028/www.scientific.net/amm.479-480.747.

Full text
Abstract:
A laboratory-based sensor network testbed for Smart Grid was developed at the Smart Grid and High Power System Laboratory of The University of Hong Kong. The setup is featured by a scaled transmission-line model, visualization of sensor measurement, optical communication network, and integration with global positioning system (GPS). The transmission-line model consists of a power cable and towers in which various types of sensors including magnetic sensors, infrared sensors, strain gauges, and accelerometers are installed to monitor the condition of the transmission line and the transmission towers. Magnetic sensors and infrared sensor are employed as advanced sensors which can provide more accurate and comprehensive information of the transmission line. The sensor data is transferred to the computer for analysis and visualization. Graphical user interface (GUI) was designed in LabVIEW to integrate the data acquisition and display of measurement results including cable position, inclination and vibration of the tower, frequency and waveform of the cable current. The host computer also forms an IP network with five remote computers, via optical fiber and optical interface card, for testing various communication protocols. The topology and connectivity of the network is graphically displayed. The sensor network is integrated with GPS and can perform synchronized measurement with the GPS timing. This sensor network testbed provides a platform for the implementation testing, experimentation, and feasibility evaluation of new sensor applications under test in Smart Grid.
APA, Harvard, Vancouver, ISO, and other styles
14

Monteiro, Catarina S., Maria Raposo, Paulo A. Ribeiro, Susana O. Silva, and Orlando Frazão. "Acoustic Optical Fiber Sensor Based on Graphene Oxide Membrane." Sensors 21, no. 7 (March 27, 2021): 2336. http://dx.doi.org/10.3390/s21072336.

Full text
Abstract:
A Fabry–Pérot acoustic sensor based on a graphene oxide membrane was developed with the aim to achieve a faster and simpler fabrication procedure when compared to similar graphene-based acoustic sensors. In addition, the proposed sensor was fabricated using methods that reduce chemical hazards and environmental impacts. The developed sensor, with an optical cavity of around 246 µm, showed a constant reflected signal amplitude of 6.8 ± 0.1 dB for 100 nm wavelength range. The sensor attained a wideband operation range between 20 and 100 kHz, with a maximum signal-to-noise ratio (SNR) of 32.7 dB at 25 kHz. The stability and sensitivity to temperatures up to 90 °C was also studied. Moreover, the proposed sensor offers the possibility to be applied as a wideband microphone or to be applied in more complex systems for structural analysis or imaging.
APA, Harvard, Vancouver, ISO, and other styles
15

Bigdeli, Arafeh, Forough Ghasemi, Hamed Golmohammadi, Samira Abbasi-Moayed, M. Amin Farahmand Nejad, Nafiseh Fahimi-Kashani, Somayeh Jafarinejad, Maryam Shahrajabian, and M. Reza Hormozi-Nezhad. "Nanoparticle-based optical sensor arrays." Nanoscale 9, no. 43 (2017): 16546–63. http://dx.doi.org/10.1039/c7nr03311g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Xu, Tao, Ning Zhu, Michelle Y. C. Xu, Lech Wosinski, J. Stewart Aitchison, and H. E. Ruda. "Pillar-array based optical sensor." Optics Express 18, no. 6 (March 2, 2010): 5420. http://dx.doi.org/10.1364/oe.18.005420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Grummt, Ulrich-W., Adam Pron, Malgorzata Zagorska, and S. Lefrant. "Polyaniline based optical pH sensor." Analytica Chimica Acta 357, no. 3 (December 1997): 253–59. http://dx.doi.org/10.1016/s0003-2670(97)00572-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Yujie, Ming Zhang, and Yu Zhu. "Research on the estimation method of the point-of-interest (POI) displacement for ultra-precision flexible motion system based on functional optical fiber sensor." Mechanics & Industry 22 (2021): 48. http://dx.doi.org/10.1051/meca/2021047.

Full text
Abstract:
This paper proposes a POI displacement estimation method based on the functional optical fiber sensor and the phase modulation principle to improve the POI displacement estimation accuracy. First, the relation between the object deformation and the optic fiber lightwave phase is explained; the measurement principle of functional optical fiber sensor based on the heterodyne interference principle and its layout optimization method is proposed, and a POI displacement estimation model is presented based on the data approach. Secondly, a beam is taken as the simulation object, the optimal position and length of the optical fiber sensor are determined based on its simulation data. Finally, the experimental device is designed to verify the effectiveness of the POI displacement estimation method based on the optic fiber sensors. The frequency-domain plot of the signals shows that the optical fiber sensors can express the flexible deformation of the analyzed object well. The POI displacement estimation model with the fiber optic sensor signals as one of the inputs is constructed. Through estimating the test data, the error using the optical fiber sensor-based POI displacement estimation method proposed in this paper reduces by more than 61% compared to the rigid body-based assumption estimation method.
APA, Harvard, Vancouver, ISO, and other styles
19

Braunfelds, Janis, Elvis Haritonovs, Ugis Senkans, Inna Kurbatska, Ints Murans, Jurgis Porins, and Sandis Spolitis. "Designing of Fiber Bragg Gratings for Long-Distance Optical Fiber Sensing Networks." Modelling and Simulation in Engineering 2022 (October 5, 2022): 1–14. http://dx.doi.org/10.1155/2022/8331485.

Full text
Abstract:
Most optical sensors on the market are optical fiber Bragg grating (FBG) sensors with low reflectivity (typically 7-40%) and low side-lobe suppression (SLS) ratio (typically SLS <15 dB), which prevents these sensors from being effectively used for long-distance remote monitoring and sensor network solutions. This research is based on designing the optimal grating structure of FBG sensors and estimating their optimal apodization parameters necessary for sensor networks and long-distance monitoring solutions. Gaussian, sine, and raised sine apodizations are studied to achieve the main requirements, which are maximally high reflectivity (at least 90%) and side-lobe suppression (at least 20 dB), as well as maximally narrow bandwidth (FWHM<0.2 nm) and FBGs with uniform (without apodization). Results gathered in this research propose high-efficiency FBG grating apodizations, which can be further physically realized for optical sensor networks and long-distance (at least 40 km) monitoring solutions.
APA, Harvard, Vancouver, ISO, and other styles
20

Huang, Jianwei, Ting Liu, Yeyu Zhang, Chengsen Zhan, Xiaona Xie, Qing Yu, and Dingrong Yi. "Smartphone-Based Optical Fiber Fluorescence Temperature Sensor." Sensors 22, no. 24 (December 8, 2022): 9605. http://dx.doi.org/10.3390/s22249605.

Full text
Abstract:
Optical fiber sensors are one preferred solution for temperature sensing, especially for their capability of real-time monitoring and remote detection. However, many of them still suffer from a huge sensing system and complicated signal demodulate process. In order to solve these problems, we propose a smartphone-based optical fiber fluorescence temperature sensor. All the components, including the laser, filter, fiber coupler, batteries, and smartphone, are integrated into a 3D-printed shell, on the side of which there is a fiber flange used for the sensing probe connection. The fluorescence signal of the rhodamine B solution encapsulated in the sensing probe can be captured by the smartphone camera and extracted into the R value and G value by a self-developed smartphone application. The temperature can be quantitatively measured by the calibrated G/R-temperature relation, which can be unified using the same linear relationship in all solid–liquid–gas environments. The performance verifications prove that the sensor can measure temperature in high accuracy, good stability and repeatability, and has a long conservation time for at least 3 months. The proposed sensor not only can measure the temperature for remote and real-time detection needs, but it is also handheld with a small size of 167 mm × 85 mm × 75 mm supporting on-site applications. It is a potential tool in the temperature sensing field.
APA, Harvard, Vancouver, ISO, and other styles
21

Yang, Hui, Jian Fu, Ruimin Cao, Jiaqi Liu, and Lihui Wang. "A liquid lens-based optical sensor for tactile sensing." Smart Materials and Structures 31, no. 3 (February 2, 2022): 035011. http://dx.doi.org/10.1088/1361-665x/ac4d64.

Full text
Abstract:
Abstract Tactile sensing plays a crucial role in robot manipulation, robot interaction, and health monitoring. Because of high sensitivity, simple structure, and superior interference immunity, optical tactile sensors based on optical imaging or optical conduction have been one of the most active research. Herein, a novel liquid lens-based optical sensor (LLOS) is presented. Different with existed optical tactile sensors, the main body of the proposed sensor belongs to a variable-focus optical lens with a liquid-membrane structure, and its focal length is changed with the contact force, thereby changing the propagation direction of light and affecting the perceived light intensity of the photosensitive element. By conducting some testing experiments, the LLOS demonstrates fast response (about 0.021 s), stable dynamic response characteristics, and good linearity (R-squared is about 0.99), repeated measurement accuracy (<0.006 V), and measurement accuracy (<0.2 N). Hence, the LLOS provides a new and promising method to measure tactile and has potential application in robotics nondestructive grasping and interactive input devices.
APA, Harvard, Vancouver, ISO, and other styles
22

Ma, Hui Cheng. "Key Technology Research of Target Association Based on Electronic Sensor and Optical Sensor." Applied Mechanics and Materials 651-653 (September 2014): 440–43. http://dx.doi.org/10.4028/www.scientific.net/amm.651-653.440.

Full text
Abstract:
In order to safeguard China’s increasingly important sovereignty as well as our maritime rights and interests, monitoring of waters has been given more and more important importance. On such an occasion, electronic sensor and optical sensor appear as two applicable and useful means among all those space borne sensors which are widely used by many countries and regions thanks to their distinctive edges. In this paper, the key technology of target association and its pragmatic application prospect are further studied on the basis of the existing knowledge of electronic sensor and optical sensor.
APA, Harvard, Vancouver, ISO, and other styles
23

S ,, Madhusudhan, Channakeshava K.R ,, and Dr T. Rangaswamy. "Content-Based Image Retrieval System for Optical Fiber Sensor Information Processing." International Journal of Engineering Research 3, no. 6 (June 1, 2014): 398–401. http://dx.doi.org/10.17950/ijer/v3s6/607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mironenko, Aleksandr Yu, Aleksandr A. Sergeev, Aleksandr E. Nazirov, Sergey S. Voznesenskiy, Svetlana Yu Bratskaya, and Anatoliy G. Mirochnik. "HIGHLY SENSITIVE CHITOSAN-BASED OPTICAL FLUORESCENT SENSOR FOR GASEOUS METHYLAMINE DETECTION." Progress on Chemistry and Application of Chitin and its Derivatives XXII (September 30, 2017): 159–65. http://dx.doi.org/10.15259/pcacd.22.16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ursel, Tomasz, and Michał Olinski. "Displacement Estimation Based on Optical and Inertial Sensor Fusion." Sensors 21, no. 4 (February 17, 2021): 1390. http://dx.doi.org/10.3390/s21041390.

Full text
Abstract:
This article aims to develop a system capable of estimating the displacement of a moving object with the usage of a relatively cheap and easy to apply sensors. There is a growing need for such systems, not only for robots, but also, for instance, pedestrian navigation. In this paper, the theory for this idea, including data postprocessing algorithms for a MEMS accelerometer and an optical flow sensor (OFS), as well as the developed complementary filter applied for sensor fusion, are presented. In addition, a vital part of the accelerometer’s algorithm, the zero velocity states detection, is implemented. It is based on analysis of the acceleration’s signal and further application of acceleration symmetrization, greatly improving the obtained displacement. A test stand with a linear guide and motor enabling imposing a specified linear motion is built. The results of both sensors’ testing suggest that the displacement estimated by each of them is highly correct. Fusion of the sensors’ data gives even better outcomes, especially in cases with external disturbance of OFS. The comparative evaluation of estimated linear displacements, in each case related to encoder data, confirms the algorithms’ operation correctness and proves the chosen sensors’ usefulness in the development of a linear displacement measuring system.
APA, Harvard, Vancouver, ISO, and other styles
26

Xu, Cheng, and Zahra Sharif Khodaei. "A Novel Fabry-Pérot Optical Sensor for Guided Wave Signal Acquisition." Sensors 20, no. 6 (March 19, 2020): 1728. http://dx.doi.org/10.3390/s20061728.

Full text
Abstract:
In this paper, a novel hybrid damage detection system is proposed, which utilizes piezoelectric actuators for guided wave excitation and a new fibre optic (FO) sensor based on Fabry-Perot (FP) and Fiber Bragg Grating (FBG). By replacing the FBG sensors with FBG-based FP sensors in the hybrid damage detection system, a higher strain resolution is achieved, which results in higher damage sensitivity and higher reliability in diagnosis. To develop the novel sensor, optimum parameters such as reflectivity, a wavelength spectrum, and a sensor length were chosen carefully through an analytical model of the sensor, which has been validated with experiments. The sensitivity of the new FBG-based FP sensors was compared to FBG sensors to emphasize the superiority of the new sensors in measuring micro-strains. Lastly, the new FBG-based FP sensor was utilized for recording guided waves in a hybrid setup and compared to the conventional FBG hybrid sensor network to demonstrate their improved performance for a structural health monitoring (SHM) application.
APA, Harvard, Vancouver, ISO, and other styles
27

Miao, Jin, Junfeng Wu, Wei Liu, Fen Huang, and Yufeng Wu. "Optical arrangement method of lighting units in switchgear based on partial discharge luminosity distribution characteristics." Journal of Physics: Conference Series 2387, no. 1 (November 1, 2022): 012010. http://dx.doi.org/10.1088/1742-6596/2387/1/012010.

Full text
Abstract:
Abstract Partial discharge optical measurement has the characteristics of high sensitivity and strong anti-interference, but its detection effect is greatly affected by the deployment position of the sensor. Therefore, based on the radiation characteristics and transmission characteristics of optical signals, the deployment position of sensors in equipment is optimized. In this paper, an optimal layout scheme of switch cabinet lighting unit based on the distribution characteristics of partial discharge photometric is proposed. Firstly, the optical simulation model of switchgear cable room is designed, and the discharge light source is set at the typical fault location. According to the optical simulation results, the position sensor with high response intensity is selected for different discharge light sources. In order to prove the effectiveness of the layout scheme, the discharge optical detection experiment of switch cabinet was carried out. The results show that the sensor can detect discharge effectively in the selected installation position.
APA, Harvard, Vancouver, ISO, and other styles
28

Cennamo, Nunzio, Lorena Saitta, Claudio Tosto, Francesco Arcadio, Luigi Zeni, Maria Elena Fragalá, and Gianluca Cicala. "Microstructured Surface Plasmon Resonance Sensor Based on Inkjet 3D Printing Using Photocurable Resins with Tailored Refractive Index." Polymers 13, no. 15 (July 30, 2021): 2518. http://dx.doi.org/10.3390/polym13152518.

Full text
Abstract:
In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.
APA, Harvard, Vancouver, ISO, and other styles
29

Senkans, Ugis, Janis Braunfelds, Ilya Lyashuk, Jurgis Porins, Sandis Spolitis, and Vjaceslavs Bobrovs. "Research on FBG-Based Sensor Networks and Their Coexistence with Fiber Optical Transmission Systems." Journal of Sensors 2019 (November 6, 2019): 1–13. http://dx.doi.org/10.1155/2019/6459387.

Full text
Abstract:
Market forecasts and trends for the usage of fiber optical sensors confirm that demand for them will continue to increase in the near future. This article focuses on the research of fiber Bragg grating (FBG) sensor network, their applications in IoT and structural health monitoring (SHM), and especially their coexistence with existing fiber optical communication system infrastructure. Firstly, the spectrum of available commercial optical FBG temperature sensor was experimentally measured and amplitude-frequency response data was acquired to further develop the simulation model in the environment of RSoft OptSim software. The simulation model included optical sensor network, which is combined with 8-channel intensity-modulated wavelength division multiplexed (WDM) fiber optical data transmission system, where one shared 20 km long ITU-TG.652 single-mode optical fiber was used for transmission of both sensor and data signals. Secondly, research on a minimal allowable channel spacing between sensors’ channels was investigated by using MathWorks MATLAB software, and a new effective and more precise determination algorithm of the exact center of the sensor signal’s peak was proposed. Finally, we experimentally show successfully operating coexistence concept of the spectrum-sliced fiber optical transmission system with embedded scalable FBG sensor network over one shared optical fiber, where the whole system is feed by only one broadband light source.
APA, Harvard, Vancouver, ISO, and other styles
30

Chyad, Radhi M., Mohd Zubir Mat Jafri, and Kamarulazizi Ibrahim. "Nano-Optical Fiber Evanescent Field Sensors." Advanced Materials Research 626 (December 2012): 1027–32. http://dx.doi.org/10.4028/www.scientific.net/amr.626.1027.

Full text
Abstract:
The nanofiber optic evanescent field sensor based on a changed cladding part as a sensor presented numerically. The influences of numerical opening, core radius of the fiber, the wavelength is effected on the light source and the submicron fiber on the sensors are promise to studied in this work. The results pointed out the sensitivity of the sensor increases when the numerical opening of the fiber is increases and the core radius is decreases. The NA of the fiber affects the sensitivity of the sensor. In the uniform core fiber, the increase in the NA increases the sensitivity of the sensor. Therefore, one should choose a fiber with high NA for the design of an evanescent-wave-absorption sensor if the core of the sensing segment uniform in diameter, so that the increase in the penetration depth or number of ray reflections or both, increases the evanescent absorption field and hence the sensitivity of the sensors. Keywords:fiber optic sensor, chemical sensors, biosensors, nanofiber optic.
APA, Harvard, Vancouver, ISO, and other styles
31

Fischer, Jakob, Timo Schuster, Christian Wächter, Michael Luber, Juri Vinogradov, Olaf Ziemann, and Rainer Engelbrecht. "Isolated sensor networks for high-voltage environments using a single polymer optical fiber and LEDs for remote powering as well as data transmission." Journal of Sensors and Sensor Systems 7, no. 1 (March 27, 2018): 193–206. http://dx.doi.org/10.5194/jsss-7-193-2018.

Full text
Abstract:
Abstract. Many applications in high voltage or explosive environments require sensors which are electrically isolated from other components of a system. These sensors need remote powering as well as wireless or isolated data transmission links. A possible solution can be based on optically powered optical sensor links. These typically employ four different photonic components: for the data communication a fast LED as a transmitter and a photo diode as a receiver, furthermore for sensor powering a high-power light source and a photonic power converter. Additionally, two optical fibers are required for optical remote powering and the optical data link. In this paper we demonstrate an optically powered optical sensor link using only low-cost high-brightness LEDs and a single polymer optical fiber (POF) for all of these tasks. Coupling efficiencies, power transmission and modulation bandwidths are analyzed for LEDs with different colors. Potentials for many mW of electrical remote powering and Mbit s−1 sensor data links are demonstrated over 10 m of POF. This approach can be used for almost any electronic sensor with moderate power requirements.
APA, Harvard, Vancouver, ISO, and other styles
32

Ren, Danyang, Yizhe Sun, Junhui Shi, and Ruimin Chen. "A Review of Transparent Sensors for Photoacoustic Imaging Applications." Photonics 8, no. 8 (August 10, 2021): 324. http://dx.doi.org/10.3390/photonics8080324.

Full text
Abstract:
Photoacoustic imaging is a new type of noninvasive, nonradiation imaging modality that combines the deep penetration of ultrasonic imaging and high specificity of optical imaging. Photoacoustic imaging systems employing conventional ultrasonic sensors impose certain constraints such as obstructions in the optical path, bulky sensor size, complex system configurations, difficult optical and acoustic alignment, and degradation of signal-to-noise ratio. To overcome these drawbacks, an ultrasonic sensor in the optically transparent form has been introduced, as it enables direct delivery of excitation light through the sensors. In recent years, various types of optically transparent ultrasonic sensors have been developed for photoacoustic imaging applications, including optics-based ultrasonic sensors, piezoelectric-based ultrasonic sensors, and microelectromechanical system-based capacitive micromachined ultrasonic transducers. In this paper, the authors review representative transparent sensors for photoacoustic imaging applications. In addition, the potential challenges and future directions of the development of transparent sensors are discussed.
APA, Harvard, Vancouver, ISO, and other styles
33

Qi, Yonghong, Minghui Zhao, Bo Li, Ziming Ren, Bing Li, and Xueyong Wei. "A Compact Optical MEMS Pressure Sensor Based on Fabry–Pérot Interference." Sensors 22, no. 5 (March 3, 2022): 1973. http://dx.doi.org/10.3390/s22051973.

Full text
Abstract:
Pressure sensors have important prospects in wind pressure monitoring of transmission line towers. Optical pressure sensors are more suitable for transmission line towers due to its anti-electromagnetic interference. However, the fiber pressure sensor is not a suitable choice due to expensive and bulky. In this paper, a compact optical Fabry–Pérot (FP) pressure sensor for wind pressure measurement was developed by MEMS technology. The pressure sensor consists of a MEMS sensing chip, a vertical-cavity surface-emitting laser (Vcsel), and a photodiode (PD). The sensing chip is combined with an FP cavity and a pressure sensing diaphragm which adopts the square film and is fabricated by Silicon on Insulator (SOI) wafer. To calibrate the pressure sensor, the experimental platform which consists of a digital pressure gauge, a pressure loading machine, a digital multimeter, and a laser driver was set up. The experimental results show that the sensitivity of the diaphragm is 117.5 nm/kPa. The measurement range and sensitivity of the pressure sensor are 0–700 Pa and 115 nA/kPa, respectively. The nonlinearity, repeatability, and hysteresis of the pressure sensor are 1.48%FS, 2.23%FS, and 1.59%FS, respectively, which lead to the pressure accuracy of 3.12%FS.
APA, Harvard, Vancouver, ISO, and other styles
34

Xu, Shaoyi, Qiang Peng, Chuansheng Li, Bo Liang, Junwen Sun, Fangfang Xing, Hongyu Xue, and Ming Li. "Optical Fiber Current Sensors Based on FBG and Magnetostrictive Composite Materials." Applied Sciences 11, no. 1 (December 26, 2020): 161. http://dx.doi.org/10.3390/app11010161.

Full text
Abstract:
Optical fiber current sensors are widely used in the online monitoring of a new generation power system because of their high electrical insulation, wide dynamic range, and strong anti-electromagnetic interference ability. Current sensors, based on fiber Bragg grating (FBG) and giant magnetostrictive material, have the advantages of high reliability of FBG and high magnetostrictive coefficient of giant magnetostrictive material, which can meet the monitoring requirements of digital power systems. However, giant magnetostrictive materials are expensive, fragile, and difficult to mold, so giant magnetostrictive composite materials have replaced giant magnetostrictive materials as the sensitive elements of sensors. High sensitivity, high precision, wide working range, low response time, and low-cost optical fiber current sensors based on magnetostrictive composites have become a research hotspot. In this paper, the working principle of the sensor, the structure of the sensor, and the improvement of magnetostrictive composite materials are mainly discussed. At the same time, this paper points out improvements for the sensor.
APA, Harvard, Vancouver, ISO, and other styles
35

Marques Lameirinhas, Ricardo A., João Paulo N. Torres, and António Baptista. "A Sensor Based on Nanoantennas." Applied Sciences 10, no. 19 (September 29, 2020): 6837. http://dx.doi.org/10.3390/app10196837.

Full text
Abstract:
At the end of the XX century, a new phenomenon was discovered by Ebbesen, the extraordinary optical transmission. He reported that metallic arrays composed of nano holes, also called nanoantennas, can support resonant optical transmissions responsible by the amplification and concentration of electromagnetic radiation. Classical diffraction theories do not predict this extraordinary phenomenon. This article shows the timeline of theories that try to model the interaction between light and metal planes with slits, holes, grooves or apertures. The comparison between theories is done. Furthermore, as the optical response of these nanoantennas is dependent on the complex dielectric function, there is a high probability of successfully using these structures as sensors. This article aimed to verify how the structure parameters (periodicity, hole diameter, nanoantenna thickness and substrate thickness) can influence the optical response in order to tune the spectrum. Using a Finite Element Tool, several 3D simulations aim to conclude about the parameters influence on air–gold–quartz and air–aluminum–quartz structures, being the nanoantenna made with gold and aluminum. Moreover, all the simulations allow us to verify a resonant spectral response and the existence of great values of amplification near the metal surface. This is a clear evidence of a energy exchange due to the generation and propagation of surface plasmon polaritons. Based on the spectra taken from the parameter analysis, a specific structure was chosen to test two different sensors. A temperature sensor and a tissue detection sensor were tested and the simulations are presented. It is concluded that a nanostructure based on a nanoantenna can be used as a sensor for several applications.
APA, Harvard, Vancouver, ISO, and other styles
36

Zhong, Yu Ning, Li Xia Zeng, Shan Ting Ding, and Xiao Li Zhang. "Optimized Design of Sun Position Detection Sensor." Applied Mechanics and Materials 120 (October 2011): 499–503. http://dx.doi.org/10.4028/www.scientific.net/amm.120.499.

Full text
Abstract:
With the object of optical sensor detects the position of the sun, the working principle of the sun position detection system based on four photosensitive devices was analyzed.The sensitive part of this type of sensors was analyzed with optimization. Silicon photocells were selected as optical elements . The main factors and interactions between them which affect the accuracy of the sensor were analyzed using the idea of orthogonal experiment and related software , the optimal combination for the size of the sensor structure was got.
APA, Harvard, Vancouver, ISO, and other styles
37

Han, Xiao, Hongwei Yan, Baojian Liu, and Wen Liu. "Emotional Feeling Evaluation Model in Underwater Environment Based on Wearable Sensor." Mathematical Problems in Engineering 2022 (March 16, 2022): 1–12. http://dx.doi.org/10.1155/2022/2104465.

Full text
Abstract:
Underwater sensor network technologies, as well as devices, are developing rapidly, and underwater IoT devices have been widely used in energy surveys, environmental indicator detection, military surveillance, and disaster event monitoring. The transmission of massive amounts of underwater data to the cloud for processing and analysis has become the dominant processing paradigm, and cloud computing has become a dominant computing paradigm. The preparation strategy of elastomer-coated hydrogel optical fibers for stable optical sensing proposed in this work opens up a new method and approach for developing low-cost and highly sensitive water flow sensors while analyzing the design of wearable smart devices to assess underwater environmental emotion perception evaluation schemes. In this paper, we propose a sensory data acquisition technique for event coverage detection of underwater environmental emotions, observing that an event may correspond to deviations from the normal sensory range of sensory data from multiple adjacent sensor nodes. Distributed edge computing is introduced to assume part of the cloud computing pressure, and an edge prediction-based data acquisition and sensing scheme for underwater sensor networks is proposed to realize the conversion of the acoustic communication transmission part of underwater data into data prediction transmission, thus reducing the energy consumption caused by acoustic communication. The model established in this paper effectively reduces sensor energy consumption while ensuring accurate data transmission and can respond to the underlying demand promptly, which is significantly better than the already existing schemes.
APA, Harvard, Vancouver, ISO, and other styles
38

Widiyatmoko, Bambang, and Mefina Y. Rofianingrum. "Dynamic Characterization of Macrobending Loss Optical Fiber-Based Load Sensor." Journal of Technomaterials Physics 3, no. 1 (February 26, 2021): 74–82. http://dx.doi.org/10.32734/jotp.v3i1.5543.

Full text
Abstract:
The weight of vehicles passing through the road greatly affects road damage, so it is necessary to have a non-stop weighing system or Weight in Motion (WIM). In this study, the dynamic characterization of the WIM sensor was carried out based on the principle of optical fiber macrobending. In this study, a single-mode step-index optical fiber was used as the sensor material and a laser diode with a power of 5 mW and a wavelength of 1,550 nm as a light source. Characterization was carried out by running over the sensor using a motor with three variations of speed, namely 10 km/hour, 15 km/hour, and 20 km/hour. Two different conditions were also carried out, namely, the sensor was directly crushed and the sensor was reinforced in the form of a half-cylinder wooden beam. The test was carried out with three different types of sensors. From the observations, data shows that the addition of a beam can increase the accuracy of the reading as seen from the smaller the difference in the output voltage reading for the same type of sensor and vehicle speed. Besides that, there is a strengthening of the sensor resistance up to 10 times which is known from the sensor output voltage where the voltage at the addition of the beam is 1/10 of the reading without the beam. This is due to an increase in the sensor area exposed to the load.
APA, Harvard, Vancouver, ISO, and other styles
39

Di Patrizio Stanchieri, Guido Di Patrizio, Moustafa Saleh, Andrea De De Marcellis, Ali Ibrahim, Marco Faccio, Maurizio Valle, and Elia Palange. "FPGA-Based Tactile Sensory Platform with Optical Fiber Data Link for Feedback Systems in Prosthetics." Electronics 12, no. 3 (January 27, 2023): 627. http://dx.doi.org/10.3390/electronics12030627.

Full text
Abstract:
In this paper, we propose and validate a tactile sensory feedback system for prosthetic applications based on an optical communication link. The optical link features a low power and wide transmission bandwidth, which makes the feedback system suitable for a large number and variety of tactile sensors. The low-power transmission is derived from the employed UWB-based optical modulation technique. A system prototype, consisting of digital transmitter and receiver boards and acquisition circuits to interface 32 piezoelectric sensors, was implemented and experimentally tested. The system functionality was demonstrated by processing and transmitting data from the piezoelectric sensor at a 100 Mbps data rate through the optical link, measuring a communication energy consumption of 50 pJ/bit. The reported experimental results validate the functionality of the proposed sensory feedback system and demonstrate its real-time operation capabilities.
APA, Harvard, Vancouver, ISO, and other styles
40

Kolar, Prasanna, Patrick Benavidez, and Mo Jamshidi. "Survey of Datafusion Techniques for Laser and Vision Based Sensor Integration for Autonomous Navigation." Sensors 20, no. 8 (April 12, 2020): 2180. http://dx.doi.org/10.3390/s20082180.

Full text
Abstract:
This paper focuses on data fusion, which is fundamental to one of the most important modules in any autonomous system: perception. Over the past decade, there has been a surge in the usage of smart/autonomous mobility systems. Such systems can be used in various areas of life like safe mobility for the disabled, senior citizens, and so on and are dependent on accurate sensor information in order to function optimally. This information may be from a single sensor or a suite of sensors with the same or different modalities. We review various types of sensors, their data, and the need for fusion of the data with each other to output the best data for the task at hand, which in this case is autonomous navigation. In order to obtain such accurate data, we need to have optimal technology to read the sensor data, process the data, eliminate or at least reduce the noise and then use the data for the required tasks. We present a survey of the current data processing techniques that implement data fusion using different sensors like LiDAR that use light scan technology, stereo/depth cameras, Red Green Blue monocular (RGB) and Time-of-flight (TOF) cameras that use optical technology and review the efficiency of using fused data from multiple sensors rather than a single sensor in autonomous navigation tasks like mapping, obstacle detection, and avoidance or localization. This survey will provide sensor information to researchers who intend to accomplish the task of motion control of a robot and detail the use of LiDAR and cameras to accomplish robot navigation.
APA, Harvard, Vancouver, ISO, and other styles
41

Vitiello, Federica. "Performance Analysis of Space Surveillance Using Space Based Optical Sensors." Aerotecnica Missili & Spazio 99, no. 4 (November 5, 2020): 263–73. http://dx.doi.org/10.1007/s42496-020-00063-1.

Full text
Abstract:
AbstractThis paper aims to describe the analysis of the performance of an electro-optical space-based sensor for space surveillance purposes and space debris detection in the geostationary (GEO) ring. Such sensor is considered to be operating on a dawn–dusk Sun-synchronous, circular low Earth orbit at an altitude of 630 Km, while its optical characteristics have been taken from those of the Space-Based Visible (SBV) sensor. Two main simulations have been carried out through the use of the MATLAB software. The first simulation deals with the detection capability of the sensor, which is discussed in terms of detectable visual magnitude when the target of the observation is a diffuse sphere orbiting in the geostationary (GEO) orbit; its minimum detectable size is then determined. In addition, the relative geometry between the Sun, the sensor and the target has also been studied along with the configurations which can limit the visibility of the sensor over the target. The second simulation has been used to evaluate the performance of the sensor in terms of number of detectable GEO targets and duration of the observation when a certain pointing strategy is adopted. In such strategy, two SBV-like sensors are placed on the same orbit, thus creating a constellation in which each sensor points towards a fixed location in the inertial space. These locations have been chosen to be the geosynchronous pinch points.
APA, Harvard, Vancouver, ISO, and other styles
42

Müller, Simone, and Dieter Kranzlmüller. "Dynamic Sensor Matching based on Geomagnetic Inertial Navigation." Journal of WSCG 30, no. 1-2 (2022): 16–25. http://dx.doi.org/10.24132/jwscg.2022.3.

Full text
Abstract:
Optical sensors can capture dynamic environments and derive depth information in near real-time. The quality of these digital reconstructions is determined by factors like illumination, surface and texture conditions, sensing speed and other sensor characteristics as well as the sensor-object relations. Improvements can be obtained by us- ing dynamically collected data from multiple sensors. However, matching the data from multiple sensors requires a shared world coordinate system. We present a concept for transferring multi-sensor data into a commonly ref- erenced world coordinate system: the earth’s magnetic field. The steady presence of our planetary magnetic field provides a reliable world coordinate system, which can serve as a reference for a position-defined reconstruction of dynamic environments. Our approach is evaluated using magnetic field sensors of the ZED 2 stereo camera from Stereolabs, which provides orientation relative to the North Pole similar to a compass. With the help of inertial measurement unit informations, each camera’s position data can be transferred into the unified world coordinate system. Our evaluation reveals the level of quality possible using the earth magnetic field and allows a basis for dynamic and real-time-based applications of optical multi-sensors for environment detection.
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Miao, Jiangfan Shi, Chenglong Liao, Qingyun Tian, Chuanyi Wang, Shuai Chen, and Ling Zang. "Perylene Imide-Based Optical Chemosensors for Vapor Detection." Chemosensors 9, no. 1 (December 22, 2020): 1. http://dx.doi.org/10.3390/chemosensors9010001.

Full text
Abstract:
Perylene imide (PI) molecules and materials have been extensively studied for optical chemical sensors, particularly those based on fluorescence and colorimetric mode, taking advantage of the unique features of PIs such as structure tunability, good thermal, optical and chemical stability, strong electron affinity, strong visible light absorption and high fluorescence quantum yield. PI-based optical chemosensors have now found broad applications in gas phase detection of chemicals, including explosives, biomarkers of some food and diseases (such as organic amines (alkylamines and aromatic amines)), benzene homologs, organic peroxides, phenols and nitroaromatics, etc. In this review, the recent research on PI-based fluorometric and colorimetric sensors, as well as array technology incorporating multiple sensors, is reviewed along with the discussion of potential applications in environment, health and public safety areas. Specifically, we discuss the molecular design and aggregate architecture of PIs in correlation with the corresponding sensor performances (including sensitivity, selectivity, response time, recovery time, reversibility, etc.). We also provide a perspective summary highlighting the great potential for future development of PIs optical chemosensors, especially in the sensor array format that will largely enhance the detection specificity in complexed environments.
APA, Harvard, Vancouver, ISO, and other styles
44

Khonina, Svetlana N., Nikolay L. Kazanskiy, and Muhammad A. Butt. "Optical Fibre-Based Sensors—An Assessment of Current Innovations." Biosensors 13, no. 9 (August 22, 2023): 835. http://dx.doi.org/10.3390/bios13090835.

Full text
Abstract:
Optical fibre sensors are an essential subset of optical fibre technology, designed specifically for sensing and measuring several physical parameters. These sensors offer unique advantages over traditional sensors, making them gradually more valuable in a wide range of applications. They can detect extremely small variations in the physical parameters they are designed to measure, such as analytes in the case of biosensing. This high sensitivity allows them to detect subtle variations in temperature, pressure, strain, the refractive index of analytes, vibration, and other environmental factors with exceptional accuracy. Moreover, these sensors enable remote sensing capabilities. Since light signals are used to carry information, the sensing elements can be placed at distant or inaccessible sites and still communicate the data back to the central monitoring system without signal degradation. In recent times, different attractive configurations and approaches have been proposed to enhance the sensitivity of the optical fibre-based sensor and are briefly explained in this review. However, we believe that the choice of optical fibre sensor configuration should be designated based on the specific application. As these sensors continue to evolve and improve, they will play an increasingly vital role in critical monitoring and control applications across various industries.
APA, Harvard, Vancouver, ISO, and other styles
45

Zhou, Lingjun, Yang Yu, Huimin Huang, Yuyu Tao, Kui Wen, Guofeng Li, Junbo Yang, and Zhenrong Zhang. "Salinity Sensing Characteristics Based on Optical Microfiber Coupler Interferometer." Photonics 7, no. 3 (September 21, 2020): 77. http://dx.doi.org/10.3390/photonics7030077.

Full text
Abstract:
In this paper, we report a novel and compact sensor based on an optic microfiber coupler interferometer (OMCI) for seawater salinity application. The OMCI device is fabricated by connecting Faraday rotating mirrors to the two out-ports of the microfiber coupler, respectively. The sensor signal processing is based on a wavelength demodulation technique. We theoretically analyze the sensing characteristics with different device structure parameters. Besides, the results show that the date reading error decreases with the thinner waist region and longer arm difference. Through the experiment, the reflection spectra red-shifted as the sea water salinity increased; the highest response sensitivity of the OMCI salinity sensor reached 303.7 pm/‰ for a range of 16.6–23.8‰, and the resolution was less than 0.03‰. This study provides a new technical solution for the development of practical optical fiber seawater salinity sensors.
APA, Harvard, Vancouver, ISO, and other styles
46

Li, Wenchao, Yonggui Yuan, Jun Yang, and Libo Yuan. "Review of Optical Fiber Sensor Network Technology Based on White Light Interferometry." Photonic Sensors 11, no. 1 (January 22, 2021): 31–44. http://dx.doi.org/10.1007/s13320-021-0613-x.

Full text
Abstract:
AbstractOptical fiber sensor networks (OFSNs) provide powerful tools for large-scale buildings or long-distance sensing, and they can realize distributed or quasi-distributed measurement of temperature, strain, and other physical quantities. This article provides some optical fiber sensor network technologies based on the white light interference technology. We discuss the key issues in the fiber white light interference network, including the topology structure of white light interferometric fiber sensor network, the node connection components, and evaluation of the maximum number of sensors in the network. A final comment about further development prospects of fiber sensor network is presented.
APA, Harvard, Vancouver, ISO, and other styles
47

Sun, Kaixiang, Jiukai Fang, Yanpeng Shi, Shengnan Shi, Shan Zhang, Jinmei Song, Meiping Li, Xiaodong Wang, and Fuhua Yang. "Terahertz Refractive Index Sensor Based on Enhanced Extraordinary Optical Transmission." Crystals 12, no. 11 (November 11, 2022): 1616. http://dx.doi.org/10.3390/cryst12111616.

Full text
Abstract:
This paper presents a structure for refractive index sensors in the terahertz (THz) band. The THZ sensor is studied in simulation, utilizing the strong local electromagnetic field intensity produced by the enhanced extraordinary optical transmission. Depending on the different sensing positions of the sensor, their sensing basis is also different, such as Mie scattering, surface plasmon polaritons, etc. The sensing sensitivity based on Mie scattering can reach 51.56 GHz/RIU; meanwhile the sensing sensitivity based on surface plasmon polaritons is only 5.13 GHz/RIU. The sensor can also detect the thickness of the analyte, with the lowest detectable height of 0.2 µm. Additionally, we find that the sensitivity can be increased by replacing the silicon particle with the analyte.
APA, Harvard, Vancouver, ISO, and other styles
48

Listewnik, Paulina, Mikhael Bechelany, Paweł Wierzba, and Małgorzata Szczerska. "Optical-Fiber Microsphere-Based Temperature Sensors with ZnO ALD Coating—Comparative Study." Sensors 21, no. 15 (July 22, 2021): 4982. http://dx.doi.org/10.3390/s21154982.

Full text
Abstract:
This study presents the microsphere-based fiber-optic sensor with the ZnO Atomic Layer Deposition coating thickness of 100 nm and 200 nm for temperature measurements. Metrological properties of the sensor were investigated over the temperature range from 100 °C to 300 °C, with a 10 °C step. The interferometric signal was used to monitor the integrity of the microsphere and its attachment to the connecting fiber. For the sensor with a 100 nm coating, a spectrum shift of the reflected signal and the optical power of the reflected signal were used to measure temperature, while only the optical power of the reflected signal was used in the sensor with a 200 nm coating. The R2 coefficient of the discussed sensors indicates a linear fit of over 0.99 to the obtained data. The sensitivity of the sensors, investigated in this study, equals 103.5 nW/°C and 19 pm/°C or 11.4 nW/°C for ZnO thickness of 200 nm and 100 nm, respectively.
APA, Harvard, Vancouver, ISO, and other styles
49

Guoyu Tang, Guoyu Tang, Jue Wei Jue Wei, Wei Zhou Wei Zhou, Ruiqin Fan Ruiqin Fan, Mingyu Wu Mingyu Wu, and Xiaofeng Xu Xiaofeng Xu. "Multi-hole plastic optical fiber force sensor based on femtosecond laser micromachining." Chinese Optics Letters 12, no. 9 (2014): 090604–90608. http://dx.doi.org/10.3788/col201412.090604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hagan, David H., and Jesse H. Kroll. "Assessing the accuracy of low-cost optical particle sensors using a physics-based approach." Atmospheric Measurement Techniques 13, no. 11 (November 26, 2020): 6343–55. http://dx.doi.org/10.5194/amt-13-6343-2020.

Full text
Abstract:
Abstract. Low-cost sensors for measuring particulate matter (PM) offer the ability to understand human exposure to air pollution at spatiotemporal scales that have previously been impractical. However, such low-cost PM sensors tend to be poorly characterized, and their measurements of mass concentration can be subject to considerable error. Recent studies have investigated how individual factors can contribute to this error, but these studies are largely based on empirical comparisons and generally do not examine the role of multiple factors simultaneously. Here, we present a new physics-based framework and open-source software package (opcsim) for evaluating the ability of low-cost optical particle sensors (optical particle counters and nephelometers) to accurately characterize the size distribution and/or mass loading of aerosol particles. This framework, which uses Mie theory to calculate the response of a given sensor to a given particle population, is used to estimate the fractional error in mass loading for different sensor types given variations in relative humidity, aerosol optical properties, and the underlying particle size distribution. Results indicate that such error, which can be substantial, is dependent on the sensor technology (nephelometer vs. optical particle counter), the specific parameters of the individual sensor, and differences between the aerosol used to calibrate the sensor and the aerosol being measured. We conclude with a summary of likely sources of error for different sensor types, environmental conditions, and particle classes and offer general recommendations for the choice of calibrant under different measurement scenarios.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography