Journal articles on the topic 'Optical and Photonic Systems'

To see the other types of publications on this topic, follow the link: Optical and Photonic Systems.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Optical and Photonic Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Harris, Nicholas C., Darius Bunandar, Mihir Pant, Greg R. Steinbrecher, Jacob Mower, Mihika Prabhu, Tom Baehr-Jones, Michael Hochberg, and Dirk Englund. "Large-scale quantum photonic circuits in silicon." Nanophotonics 5, no. 3 (August 1, 2016): 456–68. http://dx.doi.org/10.1515/nanoph-2015-0146.

Full text
Abstract:
AbstractQuantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today’s classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes with higher fidelity and phase stability. The silicon-on-insulator (SOI) nanophotonics platform offers new possibilities for quantum optics, including the integration of bright, nonclassical light sources, based on the large third-order nonlinearity (χ(3)) of silicon, alongside quantum state manipulation circuits with thousands of optical elements, all on a single phase-stable chip. How large do these photonic systems need to be? Recent theoretical work on Boson Sampling suggests that even the problem of sampling from e30 identical photons, having passed through an interferometer of hundreds of modes, becomes challenging for classical computers. While experiments of this size are still challenging, the SOI platform has the required component density to enable low-loss and programmable interferometers for manipulating hundreds of spatial modes.Here, we discuss the SOI nanophotonics platform for quantum photonic circuits with hundreds-to-thousands of optical elements and the associated challenges. We compare SOI to competing technologies in terms of requirements for quantum optical systems. We review recent results on large-scale quantum state evolution circuits and strategies for realizing high-fidelity heralded gates with imperfect, practical systems. Next, we review recent results on silicon photonics-based photon-pair sources and device architectures, and we discuss a path towards large-scale source integration. Finally, we review monolithic integration strategies for single-photon detectors and their essential role in on-chip feed forward operations.
APA, Harvard, Vancouver, ISO, and other styles
2

Matsuda, Nobuyuki, and Hiroki Takesue. "Generation and manipulation of entangled photons on silicon chips." Nanophotonics 5, no. 3 (August 1, 2016): 440–55. http://dx.doi.org/10.1515/nanoph-2015-0148.

Full text
Abstract:
AbstractIntegrated quantum photonics is now seen as one of the promising approaches to realize scalable quantum information systems. With optical waveguides based on silicon photonics technologies, we can realize quantum optical circuits with a higher degree of integration than with silica waveguides. In addition, thanks to the large nonlinearity observed in silicon nanophotonic waveguides, we can implement active components such as entangled photon sources on a chip. In this paper, we report recent progress in integrated quantum photonic circuits based on silicon photonics. We review our work on correlated and entangled photon-pair sources on silicon chips, using nanoscale silicon waveguides and silicon photonic crystal waveguides. We also describe an on-chip quantum buffer realized using the slow-light effect in a silicon photonic crystal waveguide. As an approach to combine the merits of different waveguide platforms, a hybrid quantum circuit that integrates a silicon-based photon-pair source and a silica-based arrayed waveguide grating is also presented.
APA, Harvard, Vancouver, ISO, and other styles
3

Liñares, Jesús, Xesús Prieto-Blanco, Gabriel M. Carral, and María C. Nistal. "Quantum Photonic Simulation of Spin-Magnetic Field Coupling and Atom-Optical Field Interaction." Applied Sciences 10, no. 24 (December 10, 2020): 8850. http://dx.doi.org/10.3390/app10248850.

Full text
Abstract:
In this work, we present the physical simulation of the dynamical and topological properties of atom-field quantum interacting systems by means of integrated quantum photonic devices. In particular, we simulate mechanical systems used, for example, for quantum processing and requiring a very complex technology such as a spin-1/2 particle interacting with an external classical time-dependent magnetic field and a two-level atom under the action of an external classical time-dependent electric (optical) field (light-matter interaction). The photonic device consists of integrated optical waveguides supporting two collinear or codirectional modes, which are coupled by integrated optical gratings. We show that the single-photon quantum description of the dynamics of this photonic device is a quantum physical simulation of both aforementioned interacting systems. The two-mode photonic device with a single-photon quantum state represents the quantum system, and the optical grating corresponds to an external field. Likewise, we also present the generation of Aharonov–Anandan geometric phases within this photonic device, which also appear in the simulated systems. On the other hand, this photonic simulator can be regarded as a basic brick for constructing more complex photonic simulators. We present a few examples where optical gratings interacting with several collinear and/or codirectional modes are used in order to illustrate the new possibilities for quantum simulation.
APA, Harvard, Vancouver, ISO, and other styles
4

Chigrinov, Vladimir, Jiatong Sun, and Xiaoqian Wang. "Photoaligning and Photopatterning: New LC Technology." Crystals 10, no. 4 (April 20, 2020): 323. http://dx.doi.org/10.3390/cryst10040323.

Full text
Abstract:
We demonstrate a physical model of photoalignment and photopatterning based on rotational diffusion in solid azo-dye nanolayers. We also highlight the new applications of photoalignment and photopatterning in display and photonics such as: (i) liquid crystal (LC) E-paper devices, including optically rewritable LC E-paper on flexible substrates as 3D E-paper, as well as optically rewritable technology for photonics devices; (ii) photonics LC devices, such as LC Switches, polarization controllers and polarization rotators, variable optical attenuators, LC filled photonic crystal fiber, switchable diffraction grating; (iii) patterned micro-polarizer array using photo-alignment technology for image sensor; (iv) electrically tunable liquid crystal q-plates; (v) electrically switchable liquid crystal Fresnel lens; (vi) liquid crystal optical elements with integrated Pancharatnam-Berry phases. We are sure, that in the field of (LC), the main point is no longer display research, but new photonic applications of LC are emerging in telecommunication, fiber optical communication systems, sensors, switchable lenses, LC light converters and other LC photonics devices.
APA, Harvard, Vancouver, ISO, and other styles
5

Ozer, Zafer, Amirullah M. Mamedov, and Ekmel Ozbay. "BaTiO3 based photonic time crystal and momentum stop band." Ferroelectrics 557, no. 1 (March 11, 2020): 105–11. http://dx.doi.org/10.1080/00150193.2020.1713355.

Full text
Abstract:
Temporally periodic photonic crystals develop an ω-k dispersion relation with momentum band gaps. While conventional photonic crystals induce forbidden bands in the frequency spectrum of photons, photonic time crystals create forbidden regions in the momentum spectrum of photons. This effect allows for enhanced control over many optical processes that require both photonic energy and momentum conservations such as nonlinear harmonic generation. The simulation results show that more intensive scatter fields can obtained in photonic space time crystal. Also, we investigate topological phase transitions of photonic time crystals systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Jianfeng, Wenyao Liang, and Zhi-Yuan Li. "Revealing photonic Lorentz force as the microscopic origin of topological photonic states." Nanophotonics 9, no. 10 (January 9, 2020): 3217–26. http://dx.doi.org/10.1515/nanoph-2019-0428.

Full text
Abstract:
AbstractCharged particles like electrons moving in a magnetic field encounter Lorentz force, which governs the formation of electronic topological edge states in quantum Hall effect systems. Here we show that photons transporting in magneto-optical materials and structures also encounter a physical effect called photonic Lorentz force via the indirect interaction with the magneto-optical medium assisted effective magnetic field. This effect can induce half-cycle spiral motion of light at the surface of a homogeneous metallic magneto-optical medium and inhomogeneous magneto-optical photonic crystals, and it governs the intriguing one-way transport properties of robustness and immunity against defects, disorders, and obstacles. Thus, photonic Lorentz force serves as the fundamental microscopic origin of macroscopic photonic topological states, much the same as classical Lorentz force does to electronic topological states.
APA, Harvard, Vancouver, ISO, and other styles
7

Subramania, G., K. Constant, R. Biswas, M. M. Sigalas, and K. M. Ho. "Optical photonic crystals fabricated from colloidal systems." Applied Physics Letters 74, no. 26 (June 28, 1999): 3933–35. http://dx.doi.org/10.1063/1.124228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

NUMAI, T. "SEMICONDUCTOR WAVELENGTH TUNABLE OPTICAL FILTERS." Journal of Nonlinear Optical Physics & Materials 02, no. 04 (October 1993): 643–59. http://dx.doi.org/10.1142/s0218199193000383.

Full text
Abstract:
Wavelength-division multiplexing (WDM) lightwave transmission systems and wavelength-division (WD) photonic switching systems are attractive for improvement in line capacity for lightwave telecommunication services, because they utilize a huge wavelength (frequency) domain as signal channels. Wavelength tunable optical filters are key devices for these WDM and WD systems in direct detection scheme. In particular, semiconductor wavelength tunable optical filters are suitable for monolithic integration with photonic devices such as semiconductor lasers, switches and detectors. Also, the switching speed of wavelength is faster than that of other optical filters. This paper briefly summarizes the state-of-the-art semiconductor wavelength tunable optical filters and their applications to WD photonic switching systems.
APA, Harvard, Vancouver, ISO, and other styles
9

Romaniuk, Ryszard S. "Space and High Energy Experiments Advanced Electronic Systems 2012." International Journal of Electronics and Telecommunications 58, no. 4 (December 1, 2012): 441–62. http://dx.doi.org/10.2478/v10177-012-0060-0.

Full text
Abstract:
Abstract This paper is a research survey of the WILGA Symposium work. It presents a digest of technical effort results shown by young researchers from different universities during the Jubilee XXXth SPIE-IEEE-Photonics Society of Poland Wilga 2012 symposium on Photonics and Internet Engineering. Topical tracks of the symposium embraced: nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-ofthe sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1]-[60]. This paper is the first part of the digest focused on astronomy, space, astroparticle physics, accelerators, and high energy physics experiments.
APA, Harvard, Vancouver, ISO, and other styles
10

Spector, Steven, and Cheryl Sorace-Agaskar. "Silicon photonics devices for integrated analog signal processing and sampling." Nanophotonics 3, no. 4-5 (August 1, 2014): 313–27. http://dx.doi.org/10.1515/nanoph-2013-0036.

Full text
Abstract:
AbstractSilicon photonics offers the possibility of a reduction in size weight and power for many optical systems, and could open up the ability to build optical systems with complexities that would otherwise be impossible to achieve. Silicon photonics is an emerging technology that has already been inserted into commercial communication products. This technology has also been applied to analog signal processing applications. MIT Lincoln Laboratory in collaboration with groups at MIT has developed a toolkit of silicon photonic devices with a focus on the needs of analog systems. This toolkit includes low-loss waveguides, a high-speed modulator, ring resonator based filter bank, and all-silicon photodiodes. The components are integrated together for a hybrid photonic and electronic analog-to-digital converter. The development and performance of these devices will be discussed. Additionally, the linear performance of these devices, which is important for analog systems, is also investigated.
APA, Harvard, Vancouver, ISO, and other styles
11

Glass, A. M. "Materials for Photonic Switching and Information Processing." MRS Bulletin 13, no. 8 (August 1988): 16–20. http://dx.doi.org/10.1557/s0883769400064629.

Full text
Abstract:
In electronic processors, heat dissipation and interconnection delay are serious design and performance limiting factors. Why then consider photonic components where both the energy and size of the photon are large (˜1 eV and ˜1 μm, respectively) and the required nonlinear interactions between electric or magnetic fields and photons for switching or modulation are small? There are several answers to this question. First, the wide bandwidth of optical communications systems is taxing the current capabilities of electronic switching technologies. Even a slow optical switch can switch a very wide bandwidth optical signal from one fiber to another. External optical modulators will likely be required in ultrawide bandwidth communications because of basic limitations on direct modulation of lasers. Because of the weak electromagnetic interaction and low dispersion, optical interconnection of electronic circuits offers considerable advantages in high speed computer architectures. Some of these applications would appear to be relatively near term since they build on current capabilities of optical communication.Longer term and more speculative are applications of photonics to computation and image processing — areas where electronics technology is already mature. Current research can be divided into two groups — ultrafast processing and parallel processing. The first group concentrates on processing with ultra-fast optical pulses. Optical pulses as short as 6 fs — orders of magnitude shorter than any electronic pulses — have been generated in the research laboratory. High processing rates are achievable by serial processing of high repetition rate ultrashort pulses. This approach requires ultrafast switches, which in turn requires materials with ultrafast nonlinear optical response time. Indeed, the shortest electrical signals are now measured by optical sampling techniques.
APA, Harvard, Vancouver, ISO, and other styles
12

Ota, Yasutomo, Kenta Takata, Tomoki Ozawa, Alberto Amo, Zhetao Jia, Boubacar Kante, Masaya Notomi, Yasuhiko Arakawa, and Satoshi Iwamoto. "Active topological photonics." Nanophotonics 9, no. 3 (January 28, 2020): 547–67. http://dx.doi.org/10.1515/nanoph-2019-0376.

Full text
Abstract:
AbstractTopological photonics emerged as a novel route to engineer the flow of light. Topologically protected photonic edge modes, which are supported at the perimeters of topologically nontrivial insulating bulk structures, are of particular interest as they may enable low-loss optical waveguides immune to structural disorder. Very recently, there has been a sharp rise of interest in introducing gain materials into such topological photonic structures, primarily aiming at revolutionizing semiconductor lasers with the aid of physical mechanisms existing in topological physics. Examples of remarkable realizations are topological lasers with unidirectional light output under time-reversal symmetry breaking and topologically protected polariton and micro/nanocavity lasers. Moreover, the introduction of gain and loss provides a fascinating playground to explore novel topological phases, which are in close relevance to non-Hermitian and parity-time symmetric quantum physics and are, in general, difficult to access using fermionic condensed matter systems. Here, we review the cutting-edge research on active topological photonics, in which optical gain plays a pivotal role. We discuss recent realizations of topological lasers of various kinds, together with the underlying physics explaining the emergence of topological edge modes. In such demonstrations, the optical modes of the topological lasers are determined by the dielectric structures and support lasing oscillation with the help of optical gain. We also address recent research on topological photonic systems in which gain and loss, themselves, essentially influence topological properties of the bulk systems. We believe that active topological photonics provides powerful means to advance micro/nanophotonics systems for diverse applications and topological physics, itself, as well.
APA, Harvard, Vancouver, ISO, and other styles
13

KOSHINO, KAZUKI, and HAJIME ISHIHARA. "TWO-PHOTON NONLINEAR INTERACTION MEDIATED BY CAVITY QUANTUM ELECTRODYNAMICS SYSTEMS." International Journal of Modern Physics B 20, no. 18 (July 20, 2006): 2451–90. http://dx.doi.org/10.1142/s0217979206034704.

Full text
Abstract:
Exploiting the field-amplification effect of a cavity, the possibility of optical nonlinearity by only two photons was indicated experimentally. In the present article, we review our recent analysis of the two-photon dynamics in a cavity quantum electrodynamics (QED) system. Since a cavity-QED system is highly dispersive around its resonances, the shapes of photonic pulses are significantly deformed through interaction with the system. Thus, the present analysis is based on a formalism beyond single-mode approximations. The external photon field is treated rigorously as a continuum, which enables us to handle the two-photon wavefunction in the space representation. The degree of optical nonlinearity in a two-photon state is quantified by comparing the output wavefunction with the linear output wavefunction. It is revealed that the semiclassical optical response theory can be applied for evaluation of the two-photon optical nonlinearity. The two-photon nonlinearity appears not purely as a phase shift in the output wavefunction. The degradation of the fidelity between the output wavefunction and the linear output wavefunction always occurs, which hinders the application of this nonlinear effect as a quantum phase gate. The optimum condition for maximizing the two-photon nonlinearity is clarified, suggesting that pulse shape control is more essential than the Q-value control of the cavity QED system.
APA, Harvard, Vancouver, ISO, and other styles
14

You, Chenglong, Apurv Chaitanya Nellikka, Israel De Leon, and Omar S. Magaña-Loaiza. "Multiparticle quantum plasmonics." Nanophotonics 9, no. 6 (April 17, 2020): 1243–69. http://dx.doi.org/10.1515/nanoph-2019-0517.

Full text
Abstract:
AbstractA single photon can be coupled to collective charge oscillations at the interfaces between metals and dielectrics forming a single surface plasmon. The electromagnetic near-fields induced by single surface plasmons offer new degrees of freedom to perform an exquisite control of complex quantum dynamics. Remarkably, the control of quantum systems represents one of the most significant challenges in the field of quantum photonics. Recently, there has been an enormous interest in using plasmonic systems to control multiphoton dynamics in complex photonic circuits. In this review, we discuss recent advances that unveil novel routes to control multiparticle quantum systems composed of multiple photons and plasmons. We describe important properties that characterize optical multiparticle systems such as their statistical quantum fluctuations and correlations. In this regard, we discuss the role that photon-plasmon interactions play in the manipulation of these fundamental properties for multiparticle systems. We also review recent works that show novel platforms to manipulate many-body light-matter interactions. In this spirit, the foundations that will allow nonexperts to understand new perspectives in multiparticle quantum plasmonics are described. First, we discuss the quantum statistical fluctuations of the electromagnetic field as well as the fundamentals of plasmonics and its quantum properties. This discussion is followed by a brief treatment of the dynamics that characterize complex multiparticle interactions. We apply these ideas to describe quantum interactions in photonic-plasmonic multiparticle quantum systems. We summarize the state-of-the-art in quantum devices that rely on plasmonic interactions. The review is concluded with our perspective on the future applications and challenges in this burgeoning field.
APA, Harvard, Vancouver, ISO, and other styles
15

Zhang, Shu, Lachlan J. Gibson, Alexander B. Stilgoe, Itia A. Favre-Bulle, Timo A. Nieminen, and Halina Rubinsztein-Dunlop. "Ultrasensitive rotating photonic probes for complex biological systems." Optica 4, no. 9 (September 12, 2017): 1103. http://dx.doi.org/10.1364/optica.4.001103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Chenlei, Dajian Liu, and Daoxin Dai. "Multimode silicon photonics." Nanophotonics 8, no. 2 (November 23, 2018): 227–47. http://dx.doi.org/10.1515/nanoph-2018-0161.

Full text
Abstract:
AbstractMultimode silicon photonics is attracting more and more attention because the introduction of higher-order modes makes it possible to increase the channel number for data transmission in mode-division-multiplexed (MDM) systems as well as improve the flexibility of device designs. On the other hand, the design of multimode silicon photonic devices becomes very different compared with the traditional case with the fundamental mode only. Since not only the fundamental mode but also the higher-order modes are involved, one of the most important things for multimode silicon photonics is the realization of effective mode manipulation, which is not difficult, fortunately because the mode dispersion in multimode silicon optical waveguide is very strong. Great progresses have been achieved on multimode silicon photonics in the past years. In this paper, a review of the recent progresses of the representative multimode silicon photonic devices and circuits is given. The first part reviews multimode silicon photonics for MDM systems, including on-chip multichannel mode (de)multiplexers, multimode waveguide bends, multimode waveguide crossings, reconfigurable multimode silicon photonic integrated circuits, multimode chip-fiber couplers, etc. In the second part, we give a discussion about the higher-order mode-assisted silicon photonic devices, including on-chip polarization-handling devices with higher-order modes, add-drop optical filters based on multimode Bragg gratings, and some emerging applications.
APA, Harvard, Vancouver, ISO, and other styles
17

Wu, Jing-Nuo, Wen-Feng Hsieh, Hsin-Chien Huang, and Szu-Cheng Cheng. "Dynamics of the Energy Relaxation and Decoherence of a Photon-Atom Bound State in an Anisotropic Photonic Crystal." Advances in Condensed Matter Physics 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/980698.

Full text
Abstract:
An atom embedded inside photonic crystals can form a photon-atom bound state if the emission frequency of the excited atom is lying inside the photonic-band gap of photonic crystals. We studied the dynamics of the energy relaxation and decoherence of a QPAB, qubit made by a photon-atom bound state in photonic crystals. Dynamics of these measurements are solved analytically through the fractional calculus which has been shown to be appropriate mathematical method for the optical systems with non-Markovian dynamics. From these dynamics, we find that the losses of energy, coherence, and information of a QPAB are inhibited. As compared with those qubits without forming photon-atom bound states, the energy relaxation and decoherence rates of these QPABs are strongly suppressed. Other systems suitable for realizing these properties are discussed.
APA, Harvard, Vancouver, ISO, and other styles
18

Chin, Lip Ket, Yuzhi Shi, and Ai-Qun Liu. "Optical Forces in Silicon Nanophotonics and Optomechanical Systems: Science and Applications." Advanced Devices & Instrumentation 2020 (October 26, 2020): 1–14. http://dx.doi.org/10.34133/2020/1964015.

Full text
Abstract:
Light-matter interactions have been explored for more than 40 years to achieve physical modulation of nanostructures or the manipulation of nanoparticle/biomolecule. Silicon photonics is a mature technology with standard fabrication techniques to fabricate micro- and nano-sized structures with a wide range of material properties (silicon oxides, silicon nitrides, p- and n-doping, etc.), high dielectric properties, high integration compatibility, and high biocompatibilities. Owing to these superior characteristics, silicon photonics is a promising approach to demonstrate optical force-based integrated devices and systems for practical applications. In this paper, we provide an overview of optical force in silicon nanophotonic and optomechanical systems and their latest technological development. First, we discuss various types of optical forces in light-matter interactions from particles or nanostructures. We then present particle manipulation in silicon nanophotonics and highlight its applications in biological and biomedical fields. Next, we discuss nanostructure mechanical modulation in silicon optomechanical devices, presenting their applications in photonic network, quantum physics, phonon manipulation, physical sensors, etc. Finally, we discuss the future perspective of optical force-based integrated silicon photonics.
APA, Harvard, Vancouver, ISO, and other styles
19

Vos, W. L., and A. Polman. "Optical Probes inside Photonic Crystals." MRS Bulletin 26, no. 8 (August 2001): 642–46. http://dx.doi.org/10.1557/mrs2001.160.

Full text
Abstract:
The spontaneous emission of an atom is not a property of the atom only; it also depends on the local optical surroundings. The simplest demonstration of this effect was provided by the early experiments of Drexhage, who studied the emission rate of luminescent europium ions close to a mirror. It was found that while the spectral distribution of the emission remained constant, the emission rate was dependent on the position of the Eu3+ ions relative to the mirror. This effect is due to interference of the optical modes incident to and reflected at the mirror. Since then, the modified spontaneous emission of atoms in cavities has been studied extensively. More recently, the control of spontaneous emission in solid-state systems has become of great interest because it enables the tailoring of the emission properties of optical materials. It was shown how the spontaneous-emission rate of optical probe ions or dyes inside dielectric films is modified by the presence of a dielectric interface, in a dielectric multilayer, or a microcavity. The dependence of the decay rate on the optical surroundings in these one-dimensional systems can be described in terms of Fermi's “golden rule,” which states that the decay rate is proportional to the local optical density of states (DOS). The spatial variation in the DOS is due to the interference of optical modes reflected and refracted at the dielectric interface(s).
APA, Harvard, Vancouver, ISO, and other styles
20

Park, Hyundai, Alexander W. Fang, Di Liang, Ying-Hao Kuo, Hsu-Hao Chang, Brian R. Koch, Hui-Wen Chen, Matthew N. Sysak, Richard Jones, and John E. Bowers. "Photonic Integration on the Hybrid Silicon Evanescent Device Platform." Advances in Optical Technologies 2008 (June 9, 2008): 1–17. http://dx.doi.org/10.1155/2008/682978.

Full text
Abstract:
This paper reviews the recent progress of hybrid silicon evanescent devices. The hybrid silicon evanescent device structure consists of III-V epitaxial layers transferred to silicon waveguides through a low-temperature wafer bonding process to achieve optical gain, absorption, and modulation efficiently on a silicon photonics platform. The low-temperature wafer bonding process enables fusion of two different material systems without degradation of material quality and is scalable to wafer-level bonding. Lasers, amplifiers, photodetectors, and modulators have been demonstrated with this hybrid structure and integration of these individual components for improved optical functionality is also presented. This approach provides a unique way to build photonic active devices on silicon and should allow application of silicon photonic integrated circuits to optical telecommunication and optical interconnects.
APA, Harvard, Vancouver, ISO, and other styles
21

Krochin-Yepez, Pedro-Andrei, Ulrike Scholz, and Andre Zimmermann. "CMOS-Compatible Measures for Thermal Management of Phase-Sensitive Silicon Photonic Systems." Photonics 7, no. 1 (January 1, 2020): 6. http://dx.doi.org/10.3390/photonics7010006.

Full text
Abstract:
To date, several photonic applications have been demonstrated without considerable thermal management efforts. However, in phase-sensitive photonic applications, thermal management becomes of utmost importance. Thermal management of photonic systems requires not only efficient heat dissipation, but also reduction of on-chip temperature gradients. Particularly in highly integrated systems, in which several components are integrated within a single photonic integrated circuit, the reduction of on-chip temperature gradients is necessary to guarantee the correct functionality of the system. Due to their high integration density as well as their extreme temperature sensitivity, optical phased arrays are ideal examples of a system, where thermal management is required. Ideally, thermal management solutions of such systems should not require additional power for operation. Therefore, it is desired to improve the heat dissipation and to reduce temperature gradients by structural modifications of the photonic circuit. Furthermore, to cope with the advantages of silicon photonics, thermal management solutions must be compatible with series fabrication processes. In this work, complementary metal–oxide–semiconductor (CMOS)-compatible measures for thermal management of silicon photonic integrated circuits are proposed and validated by characterization of in-house fabricated thermal demonstrators. The proposed concepts are extremely efficient not only in reducing temperature gradients, but also in improving the heat dissipation from integrated heat sources.
APA, Harvard, Vancouver, ISO, and other styles
22

Zhou, Hengyun, Jong Yeon Lee, Shang Liu, and Bo Zhen. "Exceptional surfaces in PT-symmetric non-Hermitian photonic systems." Optica 6, no. 2 (February 11, 2019): 190. http://dx.doi.org/10.1364/optica.6.000190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Glass, Alastair M. "Photonic Materials: Introduction." MRS Bulletin 13, no. 8 (August 1988): 14–15. http://dx.doi.org/10.1557/s0883769400064617.

Full text
Abstract:
Optical technologies have advanced dramatically in recent years. In just two decades the transparency of optical fibers has improved by four orders of magnitude. Semiconductor lasers have evolved from a new invention to highly reliable, high performance commercial devices for wide bandwidth optical communications. New approaches to higher frequency modulation, wider bandwidth transmission, more sensitive detection and optical amplification are constantly being developed. Fundamental limitations are sufficiently far removed from current capabilities that considerable further progress can be anticipated. These advances have provided the stimulus for a much broader investigation of the potential of optics in future information technologies in which optics and electronics play complementary roles. This rapidly developing field is referred to as “photonics.” Increasing attention is now being paid to applying optics to wide bandwidth switching systems and to exploring the potential of optics for image processing and computation.Past progress in optical communication can be traced largely to the dramatic progress in optical fiber and compound semiconductor materials technologies. Likewise, future opportunities in photonic switching and information processing will depend critically on the development of improved photonic materials. The future role of optics in these conventionally electronic technologies, and the extent of that role, depends on whether materials can be designed and fabricated with the required characteristics.
APA, Harvard, Vancouver, ISO, and other styles
24

Pustelny, Tadeusz. "The 13th conference on Integrated Optics - Sensors, Sensing Structures and Methods IOS'2018." Photonics Letters of Poland 10, no. 1 (March 31, 2018): 1. http://dx.doi.org/10.4302/plp.v10i1.807.

Full text
Abstract:
The conference covers the topical areas of optics, optoelectronics and photonics in the following aspects: fundamental and applied research, physics and technical, materials, components and devices, circuits and systems, technological and design, construction and manufacturing of photonic devices and systems, and metrology.
APA, Harvard, Vancouver, ISO, and other styles
25

Ahmed, Moustafa, Yas Al-Hadeethi, Ahmed Bakry, Hamed Dalir, and Volker J. Sorger. "Integrated photonic FFT for photonic tensor operations towards efficient and high-speed neural networks." Nanophotonics 9, no. 13 (June 26, 2020): 4097–108. http://dx.doi.org/10.1515/nanoph-2020-0055.

Full text
Abstract:
AbstractThe technologically-relevant task of feature extraction from data performed in deep-learning systems is routinely accomplished as repeated fast Fourier transforms (FFT) electronically in prevalent domain-specific architectures such as in graphics processing units (GPU). However, electronics systems are limited with respect to power dissipation and delay, due to wire-charging challenges related to interconnect capacitance. Here we present a silicon photonics-based architecture for convolutional neural networks that harnesses the phase property of light to perform FFTs efficiently by executing the convolution as a multiplication in the Fourier-domain. The algorithmic executing time is determined by the time-of-flight of the signal through this photonic reconfigurable passive FFT ‘filter’ circuit and is on the order of 10’s of picosecond short. A sensitivity analysis shows that this optical processor must be thermally phase stabilized corresponding to a few degrees. Furthermore, we find that for a small sample number, the obtainable number of convolutions per {time, power, and chip area) outperforms GPUs by about two orders of magnitude. Lastly, we show that, conceptually, the optical FFT and convolution-processing performance is indeed directly linked to optoelectronic device-level, and improvements in plasmonics, metamaterials or nanophotonics are fueling next generation densely interconnected intelligent photonic circuits with relevance for edge-computing 5G networks by processing tensor operations optically.
APA, Harvard, Vancouver, ISO, and other styles
26

Osawa, Shuto, David S. Simon, and Alexander V. Sergienko. "Directionally-Unbiased Unitary Optical Devices in Discrete-Time Quantum Walks." Entropy 21, no. 9 (August 31, 2019): 853. http://dx.doi.org/10.3390/e21090853.

Full text
Abstract:
The optical beam splitter is a widely-used device in photonics-based quantum information processing. Specifically, linear optical networks demand large numbers of beam splitters for unitary matrix realization. This requirement comes from the beam splitter property that a photon cannot go back out of the input ports, which we call “directionally-biased”. Because of this property, higher dimensional information processing tasks suffer from rapid device resource growth when beam splitters are used in a feed-forward manner. Directionally-unbiased linear-optical devices have been introduced recently to eliminate the directional bias, greatly reducing the numbers of required beam splitters when implementing complicated tasks. Analysis of some originally directional optical devices and basic principles of their conversion into directionally-unbiased systems form the base of this paper. Photonic quantum walk implementations are investigated as a main application of the use of directionally-unbiased systems. Several quantum walk procedures executed on graph networks constructed using directionally-unbiased nodes are discussed. A significant savings in hardware and other required resources when compared with traditional directionally-biased beam-splitter-based optical networks is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
27

Woliński, Tomasz, Sławomir Ertman, Katarzyna Rutkowska, Daniel Budaszewski, Marzena Sala-Tefelska, Miłosz Chychłowski, Kamil Orzechowski, Karolina Bednarska, and Piotr Lesiak. "Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology." Photonics Letters of Poland 11, no. 2 (July 1, 2019): 22. http://dx.doi.org/10.4302/plp.v11i2.907.

Full text
Abstract:
Research activities in the area of photonic liquid crystal fibers carried out over the last 15 years at Warsaw University of Technology (WUT) have been reviewed and current research directions that include metallic nanoparticles doping to enhance electro-optical properties of the photonic liquid crystal fibers are presented. Full Text: PDF ReferencesT.R. Woliński et al., "Propagation effects in a photonic crystal fiber filled with a low-birefringence liquid crystal", Proc. SPIE, 5518, 232-237 (2004). CrossRef F. Du, Y-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett. 85, 2181-2183 (2004). CrossRef T.T. Larsen, A. Bjraklev, D.S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express, 11, 20, 2589-2596 (2003). CrossRef T.R. Woliński et al., "Tunable properties of light propagation in photonic liquid crystal fibers", Opto-Electron. Rev. 13, 2, 59-64 (2005). CrossRef M. Chychłowski, S. Ertman, T.R. Woliński, "Splay orientation in a capillary", Phot. Lett. Pol. 2, 1, 31-33 (2010). CrossRef T.R. Woliński et al., "Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics", Opto-Electron. Rev. 14, 4, 329-334 (2006). CrossRef T.R. Woliński et al., "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 985-991 (2006). CrossRef T.R. Woliński et al., "Photonic Liquid Crystal Fibers for Sensing Applications", IEEE Trans. Inst. Meas. 57, 8, 1796-1802 (2008). CrossRef T.R. Woliński, et al., "Multi-Parameter Sensing Based on Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 502: 220-234., (2009). CrossRef T.R. Woliński, Xiao G and Bock WJ Photonics sensing: principle and applications for safety and security monitoring, (New Jersey, Wiley, 147-181, 2012). CrossRef T.R. Woliński et al., "Propagation effects in a polymer-based photonic liquid crystal fiber", Appl. Phys. A 115, 2, 569-574 (2014). CrossRef S. Ertman et al., "Optofluidic Photonic Crystal Fiber-Based Sensors", J. Lightwave Technol., 35, 16, 3399-3405 (2017). CrossRef S. Ertman et al., "Recent Progress in Liquid-Crystal Optical Fibers and Their Applications in Photonics", J. Lightwave Technol., 37, 11, 2516-2526 (2019). CrossRef M.M. Tefelska et al., "Electric Field Sensing With Photonic Liquid Crystal Fibers Based on Micro-Electrodes Systems", J. Lightwave Technol., 33, 2, 2405-2411, (2015). CrossRef S. Ertman et al., "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol., 30, 8, 1208-1214 (2012). CrossRef K. Mileńko, S. Ertman, T. R. Woliński, "Numerical analysis of birefringence tuning in high index microstructured fiber selectively filled with liquid crystal", Proc. SPIE - The International Society for Optical Engineering, 8794 (2013). CrossRef O. Jaworska and S. Ertman, "Photonic bandgaps in selectively filled photonic crystal fibers", Phot. Lett. Pol., 9, 3, 79-81 (2017). CrossRef I.C. Khoo, S.T.Wu, "Optics and Nonlinear Optics of Liquid Crystals", World Scientific (1993). CrossRef P. Lesiak et al., "Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles", Proc. SPIE 10228, 102280N (2017). CrossRef K. Rutkowska, T. Woliński, "Modeling of light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 2, 3, 107 (2010). CrossRef K. Rutkowska, L-W. Wei, "Assessment on the applicability of finite difference methods to model light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 4, 4, 161 (2012). CrossRef K. Rutkowska, U. Laudyn, P. Jung, "Nonlinear discrete light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 5, 1, 17 (2013). CrossRef M. Murek, K. Rutkowska, "Two laser beams interaction in photonic crystal fibers infiltrated with highly nonlinear materials", Photon. Lett. Poland 6, 2, 74 (2014). CrossRef M.M. Tefelska et al., "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst., 558, 184-193, (2012). CrossRef M.M. Tefelska et al., "Propagation Effects in Photonic Liquid Crystal Fibers with a Complex Structure", Acta Phys. Pol. A, 118, 1259-1261 (2010). CrossRef K. Orzechowski et al., "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017). CrossRef H. Yoshida et al., "Heavy meson spectroscopy under strong magnetic field", Phys. Rev. E 94, 042703 (2016). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef C.-W. Chen et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978-23984 (2012). CrossRef C.-H. Lee et al., "Polarization-independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber", Appl. Opt. 52, 4849-4853 (2013). CrossRef D. Poudereux et al., "Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase", Proc. SPIE 9290 (2014). CrossRef K. Orzechowski et al., "Optical properties of cubic blue phase liquid crystal in photonic microstructures", Opt. Express 27, 10, 14270-14282 (2019). CrossRef M. Wahle, J. Ebel, D. Wilkes, H.S. Kitzerow, "Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers", Opt. Express 24, 20, 22718-22729 (2016). CrossRef K. Orzechowski et al., "Investigation of the Kerr effect in a blue phase liquid crystal using a wedge-cell technique", Phot. Lett. Pol. 9, 2, 54-56 (2017). CrossRef M.M. Sala-Tefelska et al., "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215 (2018). CrossRef M.M. Sala-Tefelska et al., "The influence of orienting layers on blue phase liquid crystals in rectangular geometries", Phot. Lett. Pol. 10, 4, 100-102 (2018). CrossRef P. G. de Gennes JP. The Physics of Liquid Crystals. (Oxford University Press 1995). CrossRef L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (New York, NY: Springer New York 1994). CrossRef D. Budaszewski, A.J. Srivastava, V.G. Chigrinov, T.R. Woliński, "Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres", Liq. Cryst., 46 2, 272-280 (2019). CrossRef V. G. Chigrinov, V. M. Kozenkov, H-S. Kwok. Photoalignment of Liquid Crystalline Materials (Chichester, UK: John Wiley & Sons, Ltd 2008). CrossRef M. Schadt et al., "Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers", Jpn. J. Appl. Phys.31, 2155-2164 (1992). CrossRef D. Budaszewski et al., "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 4679 (2014). CrossRef D. Budaszewski, et al., "Photo‐aligned photonic ferroelectric liquid crystal fibers", J. Soc. Inf. Disp. 23, 196-201 (2015). CrossRef O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, "Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles", Top Curr Chem 318, 331-392 (2012). CrossRef A. Siarkowska et al., "Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers", Photonics Lett. Pol. 8 1, 29-31 (2016). CrossRef A. Siarkowska et al., "Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles", Beilstein J. Nanotechnol. 8, 2790-2801 (2017). CrossRef D. Budaszewski et al., "Nanoparticles-enhanced photonic liquid crystal fibers", J. Mol. Liq. 267, 271-278 (2018). CrossRef D. Budaszewski et al., "Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles", Opt. Exp. 27, 10, 14260-14269 (2019). CrossRef
APA, Harvard, Vancouver, ISO, and other styles
28

Minin, Igor V., Cheng-Yang Liu, Yury E. Geints, and Oleg V. Minin. "Recent Advances in Integrated Photonic Jet-Based Photonics." Photonics 7, no. 2 (June 11, 2020): 41. http://dx.doi.org/10.3390/photonics7020041.

Full text
Abstract:
The study of accelerating Airy-family beams has made significant progress, not only in terms of numerical and experimental investigations, but also in conjunction with many potential applications. However, the curvature of such beams (and hence their acceleration) is usually greater than the wavelength. Relatively recently, a new type of localized wave beams with subwavelength curvature, called photonic hooks, was discovered. This paper briefly reviews the substantial literature concerning photonic jet and photonic hook phenomena, based on the photonic jet principle. Meanwhile, the photonic jet ensemble can be produced by optical wave diffraction at 2D phase diffraction gratings. The guidelines of jets’ efficient manipulation, through the variation of both the shape and spatial period of diffraction grating rulings, are considered. Amazingly, the mesoscale dielectric Janus particle, with broken shape or refractive index symmetry, is used to generate the curved photonic jet—a photonic hook—emerging from its shadow-side surface. Using the photonic hook, the resolution of optical scanning systems can be improved to develop optomechanical tweezers for moving nanoparticles, cells, bacteria and viruses along curved paths and around transparent obstacles. These unique properties of photonic jets and hooks combine to afford important applications for low-loss waveguiding, subdiffraction-resolution nanopatterning and nanolithography.
APA, Harvard, Vancouver, ISO, and other styles
29

Vitukhnovsky, A. G., D. A. Chubich, D. A. Kolymagin, and R. D. Zvagelsky. "Features of DLW-STED nanolithography for quantum optics." EPJ Web of Conferences 220 (2019): 01014. http://dx.doi.org/10.1051/epjconf/201922001014.

Full text
Abstract:
The report proposes a discussion of the effective combination of two current trends: the additive 3D printing method and the development of multicomponent photonic schemes, as well as the development of the foundations of additive scalable and flexible optical technology for creating interconnects and optical structures, which can solve problems such as the creation of interchip optical compounds, various optical and quantum-optical systems on a chip (resonators, modulators, photon detectors, single-photon radiation sources, etc.).
APA, Harvard, Vancouver, ISO, and other styles
30

HAFEZI, M. "SYNTHETIC GAUGE FIELDS WITH PHOTONS." International Journal of Modern Physics B 28, no. 02 (December 15, 2013): 1441002. http://dx.doi.org/10.1142/s0217979214410021.

Full text
Abstract:
In this article, we review the recent progress in the implementation of synthetic gauge fields for photons and the investigation of new photonic phenomena, such as non-equilibrium quantum Hall physics. In the first part, we discuss the implementation of magnetic-like Hamiltonians in coupled resonator systems and provide a pedagogical connection between the transfer matrix approach and the couple mode theory to evaluate the system Hamiltonian. In the second part, we discuss the investigation of nonequilibrium fractional quantum Hall physics in photonic systems. In particular, we show that driven strongly interacting photons exhibit interesting many-body behaviors which can be probed using the conventional optical measurement techniques.
APA, Harvard, Vancouver, ISO, and other styles
31

Pilozzi, L., N. Tomassini, D. Schiumarini, and A. D'Andrea. "Optical properties and photonic modes in patterned semiconductor systems." Materials Science and Engineering: C 26, no. 5-7 (July 2006): 956–60. http://dx.doi.org/10.1016/j.msec.2005.09.061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Benisty, Henri, Maxime Rattier, and Ségolène Olivier. "Two-dimensional photonic crystals: new feasible confined optical systems." Comptes Rendus Physique 3, no. 1 (January 2002): 89–102. http://dx.doi.org/10.1016/s1631-0705(02)01300-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shieh, W., and L. Maleki. "Phase noise of optical interference in photonic RF systems." IEEE Photonics Technology Letters 10, no. 11 (November 1998): 1617–19. http://dx.doi.org/10.1109/68.726768.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Pavarelli, Nicola, Jun Su Lee, Marc Rensing, Carmelo Scarcella, Shiyu Zhou, Peter Ossieur, and Peter A. OBrien. "Optical and Electronic Packaging Processes for Silicon Photonic Systems." Journal of Lightwave Technology 33, no. 5 (March 1, 2015): 991–97. http://dx.doi.org/10.1109/jlt.2015.2390675.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Preussler, Stefan, Fabian Schwartau, Joerg Schoebel, and Thomas Schneider. "Photonic Components for Signal Generation and Distribution for Large Aperture Radar in Autonomous Driving." Frequenz 73, no. 11-12 (November 26, 2019): 399–408. http://dx.doi.org/10.1515/freq-2019-0143.

Full text
Abstract:
Abstract Fully autonomous driving, even under bad weather conditions, requires use of multiple sensor systems including radar imaging. Microwave photonics, especially the optical generation and distribution of radar signals, can overcome many of the electronic disadvantages. This article will give an overview about several photonic components and how they could be incorporated into a photonic synchronized radar system, where all the complexity is shifted to a central station. A first proof-of-concept radar experiment with of the shelf telecommunication equipment shows an angular resolution of 1.1°. Furthermore an overview about possible photonic electronic integration is given, leading to comprising low complexity transmitter and receiver chips.
APA, Harvard, Vancouver, ISO, and other styles
36

Leon-Saval, Sergio G., Alexander Argyros, and Joss Bland-Hawthorn. "Photonic lanterns." Nanophotonics 2, no. 5-6 (December 16, 2013): 429–40. http://dx.doi.org/10.1515/nanoph-2013-0035.

Full text
Abstract:
AbstractMultimode optical fibers have been primarily (and almost solely) used as “light pipes” in short distance telecommunications and in remote and astronomical spectroscopy. The modal properties of the multimode waveguides are rarely exploited and mostly discussed in the context of guiding light. Until recently, most photonic applications in the applied sciences have arisen from developments in telecommunications. However, the photonic lantern is one of several devices that arose to solve problems in astrophotonics and space photonics. Interestingly, these devices are now being explored for use in telecommunications and are likely to find commercial use in the next few years, particularly in the development of compact spectrographs. Photonic lanterns allow for a low-loss transformation of a multimode waveguide into a discrete number of single-mode waveguides and vice versa, thus enabling the use of single-mode photonic technologies in multimode systems. In this review, we will discuss the theory and function of the photonic lantern, along with several different variants of the technology. We will also discuss some of its applications in more detail. Furthermore, we foreshadow future applications of this technology to the field of nanophotonics.
APA, Harvard, Vancouver, ISO, and other styles
37

Kawanishi, Tetsuya, Atsushi Kanno, Pham Tien Dat, Toshimasa Umezawa, and Naokatsu Yamamoto. "Photonic Systems and Devices for Linear Cell Radar." Applied Sciences 9, no. 3 (February 7, 2019): 554. http://dx.doi.org/10.3390/app9030554.

Full text
Abstract:
This paper reviews linear cell radar systems, which are radar systems consisting of many antenna units connected by radio-over-fiber to monitor linear-shaped areas. A linear cell system using a millimeter-wave band can provide high-resolution imaging for foreign object detection on runways. Electro-optic devices play important roles in linear cell systems to provide a conversion between optical and electric signals. This paper describes overviews of such devices including light sources, photodetectors, and optical modulators, etc.
APA, Harvard, Vancouver, ISO, and other styles
38

Morozov, Oleg, Airat Sakhabutdinov, Vladimir Anfinogentov, Rinat Misbakhov, Artem Kuznetsov, and Timur Agliullin. "Multi-Addressed Fiber Bragg Structures for Microwave-Photonic Sensor Systems." Sensors 20, no. 9 (May 9, 2020): 2693. http://dx.doi.org/10.3390/s20092693.

Full text
Abstract:
The new theory and technique of Multi-Addressed Fiber Bragg Structure (MAFBS) usage in Microwave Photonics Sensor Systems (MPSS) is presented. This theory is the logical evolution of the theory of Addressed Fiber Bragg Structure (AFBS) usage as sensors in MPSS. The mathematical model of additive response from a single MAFBS is presented. The MAFBS is a special type of Fiber Bragg Gratings (FBG), the reflection spectrum of which has three (or more) narrow notches. The frequencies of narrow notches are located in the infrared range of electromagnetic spectrum, while differences between them are located in the microwave frequency range. All cross-differences between optical frequencies of single MAFBS are called the address frequencies set. When the additive optical response from a single MAFBS, passed through an optic filter with an oblique amplitude–frequency characteristic, is received on a photodetector, the complex electrical signal, which consists of all cross-frequency beatings of all optical frequencies, which are included in this optical signal, is taken at its output. This complex electrical signal at the photodetector’s output contains enough information to determine the central frequency shift of the MAFBS. The method of address frequencies analysis with the microwave-photonic measuring conversion method, which allows us to define the central frequency shift of a single MAFBS, is discussed in the work.
APA, Harvard, Vancouver, ISO, and other styles
39

Rechcińska, Katarzyna, Mateusz Król, Rafał Mazur, Przemysław Morawiak, Rafał Mirek, Karolina Łempicka, Witold Bardyszewski, et al. "Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities." Science 366, no. 6466 (November 7, 2019): 727–30. http://dx.doi.org/10.1126/science.aay4182.

Full text
Abstract:
Spin-orbit interactions lead to distinctive functionalities in photonic systems. They exploit the analogy between the quantum mechanical description of a complex electronic spin-orbit system and synthetic Hamiltonians derived for the propagation of electromagnetic waves in dedicated spatial structures. We realize an artificial Rashba-Dresselhaus spin-orbit interaction in a liquid crystal–filled optical cavity. Three-dimensional tomography in energy-momentum space enabled us to directly evidence the spin-split photon mode in the presence of an artificial spin-orbit coupling. The effect is observed when two orthogonal linear polarized modes of opposite parity are brought near resonance. Engineering of spin-orbit synthetic Hamiltonians in optical cavities opens the door to photonic emulators of quantum Hamiltonians with internal degrees of freedom.
APA, Harvard, Vancouver, ISO, and other styles
40

ZANISHEVSKAYA, A. A., A. V. MALININ, V. V. TUCHIN, YU S. SKIBINA, and I. YU SILOKHIN. "PHOTONIC CRYSTAL WAVEGUIDE BIOSENSOR." Journal of Innovative Optical Health Sciences 06, no. 02 (April 2013): 1350008. http://dx.doi.org/10.1142/s1793545813500089.

Full text
Abstract:
The hollow core photonic crystal waveguide biosensor is designed and described. The biosensor was tested in experiments for artificial sweetener identification in drinks. The photonic crystal waveguide biosensor has a high sensitivity to the optical properties of liquids filling up the hollow core. The compactness, good integration ability to different optical systems and compatibility for use in industrial settings make such biosensor very promising for various biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
41

WEISBUCH, C., H. BENISTY, and R. HOUDRÉ. "MICROCAVITIES, PHOTONIC CRYSTALS AND SEMICONDUCTORS: FROM BASIC PHYSICS TO APPLICATIONS IN LIGHT EMITTERS." International Journal of High Speed Electronics and Systems 10, no. 01 (March 2000): 339–54. http://dx.doi.org/10.1142/s0129156400000362.

Full text
Abstract:
Photon confined systems in the form of microcavities and photonic crystals overcome the main stumbling block to high efficiency light emitters, i.e. the extraction of photons from high-index materials. On the more fundamental side, they lead to the modification of lifetime for sharp transitions (the Purcell effect), recently observed for quantum dots in micropillars, and to strong light-matter coupling for quantum wells embedded in planar microcavities.
APA, Harvard, Vancouver, ISO, and other styles
42

Tang, Jie, Yi-Ran Liu, Li-Jiang Zhang, Xing-Chang Fu, Xiao-Mei Xue, Guang Qian, Ning Zhao, and Tong Zhang. "Flexible Thermo-Optic Variable Attenuator based on Long-Range Surface Plasmon-Polariton Waveguides." Micromachines 9, no. 8 (July 26, 2018): 369. http://dx.doi.org/10.3390/mi9080369.

Full text
Abstract:
A flexible thermo-optic variable attenuator based on long-range surface plasmon-polariton (LRSPP) waveguide for microwave photonic application was investigated. Low-loss polymer materials and high-quality silver strip were served as cladding layers and core layer of the LRSPP waveguide, respectively. By using finite element method (FEM), the thermal distribution and the optical field distribution have been carefully optimized. The fabricated device was characterized by end-fire excitation with a 1550 nm laser. The transmission performance of high-speed data and microwave modulated optical signal was measured while using a broadband microwave photonics link. The results indicated that the propagation loss of the LRSPP waveguide was about 1.92 dB/cm. The maximum attenuation of optical signal was about 28 dB at a driving voltage of 4.17 V, and the variable attenuation of microwave signals was obviously observed by applying different driving voltage to the heater. This flexible plasmonic variable attenuator is promising for chip-scale interconnection in high-density photonic integrated circuits and data transmission and amplitude control in microwave photonic systems.
APA, Harvard, Vancouver, ISO, and other styles
43

Antonik, Piotr, Serge Massar, and Guy Van Der Sande. "Photonic reservoir computing using delay dynamical systems." Photoniques, no. 104 (September 2020): 45–48. http://dx.doi.org/10.1051/photon/202010445.

Full text
Abstract:
The recent progress in artificial intelligence has spurred renewed interest in hardware implementations of neural networks. Reservoir computing is a powerful, highly versatile machine learning algorithm well suited for experimental implementations. The simplest highperformance architecture is based on delay dynamical systems. We illustrate its power through a series of photonic examples, including the first all optical reservoir computer and reservoir computers based on lasers with delayed feedback. We also show how reservoirs can be used to emulate dynamical systems. We discuss the perspectives of photonic reservoir computing.
APA, Harvard, Vancouver, ISO, and other styles
44

Zhang, Shu, Lachlan J. Gibson, Alexander B. Stilgoe, Itia A. Favre-Bulle, Timo A. Nieminen, and Halina Rubinsztein-Dunlop. "Ultrasensitive rotating photonic probes for complex biological systems: erratum." Optica 4, no. 11 (November 3, 2017): 1372. http://dx.doi.org/10.1364/optica.4.001372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Zibar, Darko, Francesco Da Ros, Giovanni Brajato, and Uiara C. de Moura. "Toward Intelligence in Photonic Systems." Optics and Photonics News 31, no. 3 (March 1, 2020): 34. http://dx.doi.org/10.1364/opn.31.3.000034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Armelles, Gaspar, and Alfonso Cebollada. "Active photonic platforms for the mid-infrared to the THz regime using spintronic structures." Nanophotonics 9, no. 9 (July 13, 2020): 2709–29. http://dx.doi.org/10.1515/nanoph-2020-0250.

Full text
Abstract:
AbstractSpintronics and Photonics constitute separately two disciplines of huge scientific and technological impact. Exploring their conceptual and practical overlap offers vast possibilities of research and a clear scope for the corresponding communities to merge and consider innovative ideas taking advantage of each other’s potentials. As an example, here we review the magnetic field modification of the optical response of photonic systems fabricated out of spintronic materials, or in which spintronic components are incorporated. This magnetic actuation is due to the Magneto Refractive Effect (MRE), which accounts for the change in the optical constants of a spintronic system due to the magnetic field induced modification of the electrical resistivity. Due to the direct implication of conduction electrons in this phenomenon, this change in the optical constants covers from the mid-infrared to the THz regime. After introducing the non-expert reader into the spintronic concepts relevant to this work, we then present the MRE exhibited by a variety of spintronic systems, and finally show the different applications of this property in the generation of active spintronic-photonic platforms.
APA, Harvard, Vancouver, ISO, and other styles
47

Pascual, M. Deseada Gutierrez, Vidak Vujicic, Jules Braddell, Frank Smyth, Prince Anandarajah, and Liam Barry. "Photonic Integrated Gain Switched Optical Frequency Comb for Spectrally Efficient Optical Transmission Systems." IEEE Photonics Journal 9, no. 3 (June 2017): 1–8. http://dx.doi.org/10.1109/jphot.2017.2678478.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kaijage, Shubi F., Yoshinori Namihira, Nguyen H. Hai, Feroza Begum, S. M. Abdur Razzak, Tatsuya Kinjo, Kazuya Miyagi, and Nianyu Zou. "Dispersion Compensating Square Photonic Crystal Fiber for Optical Communication Systems." IEEJ Transactions on Electronics, Information and Systems 129, no. 4 (2009): 601–7. http://dx.doi.org/10.1541/ieejeiss.129.601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Lu Chao, Chen Wenyue, and J. F. Shiang. "Photonic mixers and image-rejection mixers for optical SCM systems." IEEE Transactions on Microwave Theory and Techniques 45, no. 8 (1997): 1478–80. http://dx.doi.org/10.1109/22.618458.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mitrokhin, V. P., A. A. Ivanov, A. Yu Men’shikova, A. V. Yakimanskii, M. V. Alfimov, and A. M. Zheltikov. "Highly refractive three-dimensional photonic crystals for optical sensing systems." Nanotechnologies in Russia 5, no. 7-8 (August 2010): 538–42. http://dx.doi.org/10.1134/s1995078010070141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography