Dissertations / Theses on the topic 'Optical and Photonic Systems'

To see the other types of publications on this topic, follow the link: Optical and Photonic Systems.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Optical and Photonic Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lethbridge, Alfred John. "Bio-inspired optical systems." Thesis, University of Exeter, 2013. http://hdl.handle.net/10871/14727.

Full text
Abstract:
This thesis presents an investigation into some of the structural colours that are produced in nature. There are many animals and plants that produce structural colour, with a particularly high structural colour diversity in insects. Of the species that exhibit structural colours, three species are the subjects for investigation of this thesis. Those comprise a group of beetles from South-East Asia, Torynorrhina flammea, a buttery, Parides sesostris and a fruit, Margaritaria nobilis, both from South American rainforests. The structures that produce the vivid colours of these species were analysed using electron microscopy. This information aided the design and creation of three inorganic, synthetic replicas of the natural structures. The fruit of Margaritaria nobilis was structurally analysed, yielding the discovery of a novel multilayer fibre. These fibres were cylindrical in design and were found to be layered together producing the epidermis of the fruit. The multilayer structure produced a vivid blue colour appearance, which is believed to offer a selective advantage because the colour deceives birds into thinking that the fruit contains nutritious flesh. This selective advantage earns M. nobilis the label of mimetic fruit. The structure found within the M. nobilis fruit epidermis inspired the synthesis of a structure which comprises single cylindrical multilayer fibres. The synthetic fibres were manufactured from elastic materials which allow the structure to be deformed under strain and, therefore, a change in colour can be observed. As the structure was stretched, this made the layers get thinner and, therefore, the colour of the fibre blue-shifted. The fibre was able to be stretched to over twice its original length which yields a shift in peak reflected wavelength of over 200 nm. Four beetles from the Torynorrhina flammea species were investigated with the aim of replicating the nanostructures responsible for their colour appearance. The initial interest in the beetles came from their strikingly vivid colour appearances. The structure responsible for the vivid colours in all four of the subspecies is a multilayer with high structural order and over 100 laminae. Both of these attributes contribute to the saturation of the colours exhibited. The multilayer was found to be intersected by an array of rods, the long axis of which is orthogonal to the surface. The rods are believed to be the cause of an interesting diffraction phenomenon exhibited by the beetles. Using imaging scatterometry, the structure was found to diffract the colour produced by the multilayers into an annulus around a specularly reflected white spot. This inspired the synthesis of a multilayer permeated with an array of holes with the aim of replicating a system that could reproduce the annular pattern of colour reflection. The initial synthesised system comprised a quarter-wave stack with a perfectly ordered hexagonal array of holes permeating the surface orthogonally. The sample displayed the scattering characteristics of a hexagonal array, and the reflection spectra of the multilayer stack. When disordered hexagonal arrays were milled into the structure with a focussed ion beam, the scattering pattern started to show more of the green colour from the multilayer and less of the ordered scattering pattern. The highly disordered, synthesised structure displayed no hexagonal scattering pattern, but instead it showed a highly scattered bluish-green colouration. One sample was created by directly mapping out the array of holes using an image of the original array from one of the beetle samples. This sample was expected the same annular diffraction pattern as the beetles, however, the sample instead exhibited the same scattering pattern as the highly disordered array. Some structurally coloured systems in nature have more than one light scattering structure, all of which contribute to the overall colour of the system. For complicated systems such as this, it is necessary to devise a technique to characterise the individual scattering structures separately. One such species that displays a complex, multicomponent system is Parides sesostris. The male of the species displays bright green patches on the dorsal side of the forewings which are made up of thousands of green wing scales. These green scales contain a 3D gyroid poly-crystal at centre with a membrane layer surrounding the underside of each scale and a scattering structure on top. Using focussed ion beam milling techniques allowed the individual characterisation of each of these structures. The gyroid poly-crystal was found to reflect not green but blue wavelengths. This led to the discovery by another group [1] that the scales contain at least one type of fluorophore. The removal of the membrane structure and some of the gyroid poly-crystal from the base of the scale resulted in the change of the overall scale structure from green to cyan. This suggests that the membrane maybe a significant source of fluorescence. Computational modelling, without fluorescence, suggests that the addition of the membrane layer to the gyroid does not shift the band-gap wavelengths; however, the overall reflection intensity does increase. The scattering structure on the top side of each scale is comprised a bi-grating which sits on top of the 3D gyroid structure. The long periodicity of the bi-grating protrudes above the surface, resulting in the very top layer of the scale to be a mono-grating. This whole structure decreases the angular-dependence of the colour by efficiently scattering the incident light into the gyroid and also scattering the reflected light from the gyroid, resulting in a double-scattering. FIB-milling was used to isolate the scattering part of the structure. Analysis of this component of the structure revealed that it was not a source of the green colour itself; however, it did show the characteristic scattering pattern of a mono-grating. The small periodicity of the bi-grating did not produce a scattering pattern since the periodicity is too small to produce optical diffraction at normal incidence. To characterise the effect of the fluorophores, the whole scale structure was photo-bleached using ultra-violet radiation for two months with the aim of destroying the fluorophores contained within the structure. The expected result occurred which was the blue-shifting of the peak reflected wavelengths. However, it could not be confirmed whether or not the photo-bleaching reduced the physical size of the light scattering structures which would, in theory, result in a blue-shift of the peak reflected wavelengths. The male P. sesostris green wing scales were also the subject for investigation for trying to make inorganic replicas of the gyroid-polycrystal. A surface sol-gel coating process was utilised to coat the green wing scales with titania. This coating process was performed using a few different methods. Half of the samples were coated with TiO2 and the other half with tin-doped TiO2. Half of each of these samples had their surfaces dendritically amplified before the coating processes and the other half were left untreated. The samples were coated with 25 surface sol-gel (SSG) cycles of each treatment at a time. After each 25 cycle treatment the samples were optically characterised. The total number of cycles applied to the samples at the end was 150. The addition of layers of titania resulted in a general red-shift that was higher for the tin-doped titania samples than for the titania samples. Another general trend found was that the samples that had their surfaces dendritically amplified, produced a lower red-shift in peak wavelength. This was contrary to the hypothesis that the amplification process was supposed to aid the SSG coating process and, therefore, increases the red-shift in peak wavelength.
APA, Harvard, Vancouver, ISO, and other styles
2

Cheung, King-yin Henry. "Applications of photonic parametric processors in optical communication systems." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39558514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cheung, King-yin Henry, and 張景然. "Applications of photonic parametric processors in optical communication systems." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39558514.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

El, Shazli Abdalla. "The synchronization of time-slotted photonic star networks /." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99759.

Full text
Abstract:
Photonics is a technology capable of supporting very high bit-rates of data. However, with the current state of photonic technologies logic and memory functions are very difficult to implement in the photonic domain. In photonic star networks using time division multiplexing (such as the Agile All Photonic Network), timeslots from the edges of the network have to arrive at the star point at exactly the same instant to be switched because they cannot be buffered in the photonic domain. The switching requires that the time at which the timeslots are transmitted must be coordinated and tightly controlled. This thesis addresses methods of synchronizing the components at the edge of the network to compensate for heterogeneous propagation delays between the edges and the star point. Different methods of providing this compensation are described and assessed in terms of their capabilities and performance.
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Jia, and 李佳. "Photonic microwave processor based on fiber optical parametric amplifier." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43085374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Li, Jia. "Photonic microwave processor based on fiber optical parametric amplifier." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43085374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ogah, Oshoriamhe F. "Free-carrier effects in polycrystalline silicon-on-insulator photonic devices /." Online version of thesis, 2010. http://hdl.handle.net/1850/11979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gest, Johann. "Discrete fiber Raman amplifiers for agile all-photonic networks." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103199.

Full text
Abstract:
This thesis is dedicated to the study of gain transients of discrete fiber Raman amplifiers and to the all-optical gain-clamping technique which is used to mitigate those transients.
First, we study the standing-wave and the traveling-wave gain-clamping techniques when applied to a single discrete fiber Raman amplifier in the context of WDM channel add and drop. We take into account the operational regime of the amplifier and the location of the surviving channel in the amplification band. We demonstrate that the gain-clamped amplifier has to be operated in a regime below the critical regime to ensure that gain-clamping will be in effect. The efficiency of gain-clamping also depends on the feedback level of the lasing signal and on the implementation.
Next, we investigate the dynamic behaviour of a single discrete fiber Raman amplifier fed by multi-channel packet traffic. Our study shows that the efficiency of the gain-clamping technique to reduce the gain transients is dependent upon the operational regime of the amplifier and the packet duration. However, we also demonstrate that gain-clamping is not required to control the gain transients as the gain variations of the unclamped amplifier are small enough to be neglected.
We then theoretically analyse the dynamic response of cascades of discrete fiber Raman amplifiers subject to WDM channel add and drop. We consider cascades of mixed unclamped and gain-clamped amplifiers, varying the number and the position of the gain-clamped amplifiers in the cascade and taking into account the location of the surviving channel and the operational regime of the amplifiers. Our results show that the location of the gain-clamped amplifiers in a mixed cascade affects the transient characteristics and that it is possible to control the transients within tolerable limits.
Finally, we investigate the gain transients that occur in hybrid amplifiers in the presence of channel add and drop. We demonstrate that the gain-clamping technique can be used to mitigate the gain transients in hybrid amplifiers and that the surviving channel location does not influence the transient characteristics, contrary to the case of single and cascaded fiber Raman amplifiers.
APA, Harvard, Vancouver, ISO, and other styles
9

Caicedo, Roque Jose Manuel. "Magneto-Optical spectroscopy of complex systems. Magnetic oxides and photonic crystals." Doctoral thesis, Universitat Autònoma de Barcelona, 2012. http://hdl.handle.net/10803/96793.

Full text
Abstract:
La primera parte de esta tesis esta dividida en tres capítulos, en los cuales se introducen los conceptos básicos de magnetoóptica y detalles experimentales. Seguidamente se discuten los resultados experimentales en los siguientes cuatro capítulos los cuales forman la segunda parte. La tercera parte incluye apéndices, información complementaria y bibliografía. El primer capitulo llamado Conceptos Básicos introduce al lector en los fundamentos de la magnetoóptica. El segundo capitulo, Transiciones Metal-Aislante, presenta las propiedades básicas de las manganitas y la magnetita. El capitulo de Detalles Experimentales describe las diferentes configuraciones elipsometricas , así como metodologías usadas en esta tesis. La segunda parte incluye un estudio magnetoóptico detallado de manganitas ferromagnéticas y magnetita abarcando el rango óptico entre el ultravioleta y en infra-rojo cercano. Se estudio la influencia del acople electrón-fonon en los espectros magnetoópticos por medio de medidas sistemáticas sobre magnanitas con diferentes composiciones químicas y diferentes interacciones entre electrón-red. Se estableció una conexión directa entre la magneto-resistencia e interacción electrón-red, mediante el extenso análisis de diferentes óxidos magnéticos, entre los cuales se encuentran manganitas y magnetita. Se introduce el concepto de cristal magnetofónico como un sistema periódicamente ordenado con algun componente magnético. Con el objetivo de estudiar la respuesta magnetoóptica intrínseca de los materiales y compararla con la respuesta fotónica, se estudiaron soluciones coloidales como un sistema aleatorio (no ordenado), además demostramos el potencial de la espectroscopia magnetoóptica en el análisis dispersiones de nanoparticulas magnética extremadamente diluidas. En el capitulo de cristales magnetofónicos se describen los mecanismos subyacentes a la interacción de la luz con un medio con modulación periódica de la permitividad. En particular nosotros analizamos la modificación espectral de la respuesta magnetoóptica debida a efectos fotónicos. El documento finaliza con un conjunto de apéndices de información complementaria donde se describe exhaustivamente el sistema de caracterización magnetoóptica que se construyo.
APA, Harvard, Vancouver, ISO, and other styles
10

Shen, Pengbo. "Optical frequency comb generator and millimetre-wave photonic local-oscillator systems." Thesis, University of Kent, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.445795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Adawi, Ali Mohammad Ahmad. "Optical studies of three dimensional confinement in photonic and electronic systems." Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Fu, Ling, and n/a. "Fibre-optic nonlinear optical microscopy and endoscopy." Swinburne University of Technology, 2007. http://adt.lib.swin.edu.au./public/adt-VSWT20070521.155004.

Full text
Abstract:
Cancer is a major health problem in the world today. Almost all cancers have a significantly better chance for therapy and recovery if detected at their early stage. The capability to perform disease diagnosis at an early stage requires high-resolution imaging that can visualise the physiological and morphological changes at a cellular level. However, resolving powers of current medical imaging systems are limited to sub-millimeter sizes. Furthermore, the majority of cancers are associated with morphological and functional alterations of cells in epithelial tissue, currently assessed by invasive and time-consuming biopsy. Optical imaging enables visualisations of tissue microstructures at the level of histology in non-invasive means. Optical imaging is suitable for detecting neoplastic changes with sub-cellular resolution in vivo without the need for biopsy. Nonlinear optical microscopy based on multi-photon absorption and higher harmonic generation has provided spectacular sights into visualisation of cellular events within live tissue due to advantages of an inherent sectioning ability, the relatively deep optical penetration, and the direct visualisation of intrinsic indicators. Two-photon excited uorescence (TPEF) from intrinsic cell components and second harmonic from asymmetric supermolecular structures can provide complementary information regarding functionalities and morphologies in tissue environments, thus enabling premalignant diagnosis by detecting the very earliest changes in cellular structures. During the past sixteen years, nonlinear optical microscopy has evolved from a photonic novelty to a well-established laboratory tool. At present, in vivo imaging and long-term bedside studies by use of nonlinear optical microscopy have been limited due to the fact that the lack of the compact nonlinear optical instrument/imaging technique forces the performance of nonlinear optical microscopy with bulk optics on the bench top. Rapid developments of fibre-optics components in terms of growing functionalities and decreasing sizes provide enormous opportunities for innovation in nonlinear optical microscopy. Fibre-based nonlinear optical endoscopy will be the soul instrumentation to permit the cellular imaging within hollow tissue tracts or solid organs that are inaccessible with a conventional optical microscope. Lots of efforts have been made for development of miniaturised nonlinear optical microscopy. However, there are major challenges remaining to create a nonlinear optical endoscope applicable within internal cavities of a body. First, an excitation laser beam with an ultrashort pulse width should be delivered eciently to a remote place where ecient collection of faint nonlinear optical signals from biological samples is required. Second, laser-scanning mechanisms adopted in such a miniaturised instrumentation should permit size reduction to a millimeter scale and enable fast scanning rates for monitoring biological processes. Finally, the design of a nonlinear optical endoscope based on micro-optics must maintain great exibility and compact size to be incorporated into endoscopes to image internal organs. Although there are obvious diculties, development of fibre-optic nonlinear optical microscopy/endoscopy would be indispensible to innovate conventional nonlinear optical microscopy, and therefore make a significant impact on medical diagnosis. The work conducted in this thesis demonstrates the new capability of nonlinear optical endoscopy based on a single-mode fibre (SMF) coupler or a double-clad photonic crystal fibre (PCF), a microelectromechanical system (MEMS) mirror, and a gradientindex (GRIN) lens. The feasibility of all-fibre nonlinear optical endoscopy is also demonstrated by the further integration of a double-clad PCF coupler. The thesis concentrates on the following key areas in order to exploit and understand the new imaging modality. It has been known from the previous studies that an SMF coupler is suitable for twoii photon excitation by transmitting near infrared illumination and collecting uorescence at visible wavelength as well. Although second harmonic generation (SHG) wavelength is farther away from the designed wavelength of the fibre coupler than that of normal TPEF, it is demonstrated in this thesis that both SHG and TPEF signals can be collected simultaneously and eciently through an SMF coupler with axial resolution of 1.8 um and 2.1 um, respectively. The fibre coupler shows a unique feature of linear polarisation preservation along the birefringent axis over the near infrared and the visible wavelength regions. Therefore, SHG polarisation anisotropy can be potentially extracted for probing the orientation of structural proteins in tissue. Furthermore, this thesis shows the characterisation of nonlinear optical microscopy based on the separation distance of an SMF coupler and a GRIN lens. Consequently, the collection of nonlinear signals has been optimised after the investigation of the intrinsic trade-off between signal level and axial resolution. These phenomena have been theoretically explored in this thesis through formalisation and numerical analysis of the three-dimensional (3D) coherent transfer function for a SHG microscope based on an SMF coupler. It has been discovered that a fibreoptic SHG microscope exhibits the same spatial frequency passband as that of a fibreoptic reection-mode non-uorescence microscope. When the numerical aperture of the fibre is much larger than the convergent angle of the illumination on the fibre aperture, the performance of fibre-optic SHG microscopy behaves as confocal SHG microscopy. Furthermore, it has been shown in both analysis and experiments that axial resolution in fibre-optic SHG microscopy is dependent on the normalised fibre spot size parameters. For a given illumination wavelength, axial resolution has an improvement of approximately 7% compared with TPEF microscopy using an SMF coupler. Although an SMF enables the delivery of a high quality laser beam and an enhanced sectioning capability, the low numerical aperture and the finite core size of an SMF give rise to a restricted sensitivity of a nonlinear optical microscope system. The key innovation demonstrated in this thesis is a significant signal enhancement of a nonlinear optical endoscope by use of a double-clad PCF. This thesis has characterised properties of our custom-designed double-clad PCF in order to construct a 3D nonlinear optical microscope. It has been shown that both the TPEF and SHG signal levels in a PCF-based system that has an optical sectioning property for 3D imaging can be significantly improved by two orders of magnitude in comparison with those in an SMF-based microscope. Furthermore, in contrast with the system using an SMF, simultaneous optimisations of axial resolution and signal level can be obtained by use of double-clad PCFs. More importantly, using a MEMS mirror as the scanning unit and a GRIN lens to produce a fast scanning focal spot, the concept of nonlinear optical endoscopy based on a double-clad PCF, a MEMS mirror and a GRIN lens has been experimentally demonstrated. The ability of the nonlinear optical endoscope to perform high-resolution 3D imaging in deep tissue has also been shown. A novel three-port double-clad PCF coupler has been developed in this thesis to achieve self-alignment and further replace bulk optics for an all-fibre endoscopic system. The double-clad PCF coupler exhibits the property of splitting the laser power as well as the separation of a near infrared single-mode beam from a visible multimode beam, showing advantages for compact nonlinear optical microscopy that cannot be achieved from an SMF coupler. A compact nonlinear optical microscope based on the doubleclad PCF coupler has been constructed in conjunction with a GRIN lens, demonstrating high-resolution 3D TPEF and SHG images with the axial resolution of approximately 10 m. Such a PCF coupler can be useful not only for a fibre-optic nonlinear optical probe but also for double-clad fibre lasers and amplifiers. The work presented in this thesis has led to the possibility of a new imaging device to complement current non-invasive imaging techniques and optical biopsy for cancer detection if an ultrashort-pulsed fibre laser is integrated and the commercialisation of the system is achieved. This technology will enable in vivo visualisations of functional and morphological changes of tissue at the microscopic level rather than direct observations with a traditional instrument at the macroscopic level. One can anticipate the progress in bre-optic nonlinear optical imaging that will propel imaging applications that require both miniaturisation and great functionality.
APA, Harvard, Vancouver, ISO, and other styles
13

Milián, Enrique Carles. "Optimisation of nonlinear photonic devices: design of optical fibre spectra and plasmonic systems." Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/14670.

Full text
Abstract:
El propósito de esta tesis es diseñar y optimizar dispositivos fotónicos en el régimen no lineal. En particular, se han elegido dos tipos de dispositivos, que se clasifican según los fenómenos físicos de interés. La primera clase corresponde a fibras convencionales o de cristal fotónico, diseñadas para que la dinámica temporal de los paquetes de onda que se propagan en su interior genere espectros con las características deseadas, en el contexto del supercontinuo. La segunda clase explota la fenomenología espacial asociada a las ondas electromagnéticas que se propagan sobre la superficie de un metal. Estas ondas permiten, desde diseñar dispositivos tipo chip fotónico cuyas dimensiones típicas están muy por debajo de la longitud de onda de la luz, hasta la generación de estados no lineales híbridos de dinámica singular. Todos estos efectos tienen lugar dentro del marco proporcionado por las ecuaciones de Maxwell macroscópicas, las cuales han sido resueltas numéricamente. En algunos casos se emplean grandes aproximaciones teóricas para estudiar sistemas 1D, mientras que en otros se integran directamente en 3D. En el caso en el que la optimización del dispositivo resulta no trivial tras haber adquirido un conocimiento teórico profundo del mismo, se emplea una novedosa herramienta numérica que nace de la combinación de algoritmos genéticos con plataforma Grid.
Milián Enrique, C. (2012). Optimisation of nonlinear photonic devices: design of optical fibre spectra and plasmonic systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14670
Palancia
APA, Harvard, Vancouver, ISO, and other styles
14

Harding, Philip James. "Photonic crystals modified by optically resonant systems." Enschede : University of Twente [Host], 2008. http://doc.utwente.nl/59011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Parsons, Earl Ryan. "All-Optical Clock Recovery, Photonic Balancing, and Saturated Asymmetric Filtering For Fiber Optic Communication Systems." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/194287.

Full text
Abstract:
In this dissertation I investigated a multi-channel and multi-bit rate all-optical clock recovery device. This device, a birefringent Fabry-Perot resonator, had previously been demonstrated to simultaneously recover the clock signal from 10 wavelength channels operating at 10 Gb/s and one channel at 40 Gb/s. Similar to clock signals recovered from a conventional Fabry-Perot resonator, the clock signal from the birefringent resonator suffers from a bit pattern effect. I investigated this bit pattern effect for birefringent resonators numerically and experimentally and found that the bit pattern effect is less prominent than for clock signals from a conventional Fabry-Perot resonator.I also demonstrated photonic balancing which is an all-optical alternative to electrical balanced detection for phase shift keyed signals. An RZ-DPSK data signal was demodulated using a delay interferometer. The two logically opposite outputs from the delay interferometer then counter-propagated in a saturated SOA. This process created a differential signal which used all the signal power present in two consecutive symbols. I showed that this scheme could provide an optical alternative to electrical balanced detection by reducing the required OSNR by 3 dB.I also show how this method can provide amplitude regeneration to a signal after modulation format conversion. In this case an RZ-DPSK signal was converted to an amplitude modulation signal by the delay interferometer. The resulting amplitude modulated signal is degraded by both the amplitude noise and the phase noise of the original signal. The two logically opposite outputs from the delay interferometer again counter-propagated in a saturated SOA. Through limiting amplification and noise modulation this scheme provided amplitude regeneration and improved the Q-factor of the demodulated signal by 3.5 dB.Finally I investigated how SPM provided by the SOA can provide a method to reduce the in-band noise of a communication signal. The marks, which represented data, experienced a spectral shift due to SPM while the spaces, which consisted of noise, did not. A bandpass filter placed after the SOA then selected the signal and filtered out what was originally in-band noise. The receiver sensitivity was improved by 3 dB.
APA, Harvard, Vancouver, ISO, and other styles
16

Schröder, Tim. "Integrated photonic systems for single photon generation and quantum applications." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16723.

Full text
Abstract:
Im Rahmen der vorliegenden Dissertation wurden neuartige integrierte Einzelphotonenquellen (EPQ) und ihre Anwendung für die Quanteninformationsverarbeitung entwickelt und untersucht. Die Erzeugung von Einzelphotonen basiert auf einzelnen Defektzentren in nanometergroßen Diamantkristallen mit einzigartigen optischen Eigenschaften: Stabilität bei Zimmertemperatur ohne optisches Blinken. Diamantkristalle mit Größen bis unter 20nm wurden mit neuartigen „pick-and-place“ Techniken (z.B. mit einem Atomkraftmikroskop) in komplexe photonische Strukturen integriert. Zwei unterschiedliche Ansätze für die Realisierung der neuartigen EPQ wurden verfolgt. Beim ersten werden fluoreszierende Diamantkristalle in nano- und mikrometergroße Faser-basierte oder resonante Strukturen in einem „bottom-up“ Ansatz integriert, dadurch werden zusätzliche optische Komponenten überflüssig und das Gesamtsystem ultra-stabil und wartungsfrei. Der zweite Ansatz beruht auf einem Festkörperimmersionsmikroskop (FIM). Seine Festkörperimmersionslinse wirkt wie eine dielektrische Antenne für die Emission der Defektzentren. Es ermöglicht die höchsten bisher erreichten Photonenzählraten von Stickstoff-Fehlstellen von bis zu 2.4Mcts/s und Einsammeleffizienzen von bis zu 4.2%. Durch Anwendung des FIM bei cryogenen Temperaturen wurden neuartige Anwendungen und fundamentale Untersuchungen möglich, weil Photonenraten signifikant erhöht wurden. Die Bestimmung der spektralen Diffusionszeit eines einzelnen Defektzentrums (2.2µs) gab neue Erkenntnisse über die Ursachen von spektraler Diffusion. Spektrale Diffusion ist eine limitierende Eigenschaft für die Realisierung von Quanteninformationsanwendungen. Das Tisch-basierte FIM wurde außerdem als kompakte mobile EPQ mit Ausmaßen von nur 7x19x23cm^3 realisiert. Es wurde für ein Quantenkryptographie-Experiment implementiert, zum ersten Mal mit Siliziumdefektzentren. Des Weiteren wurde ein neues Konzept für die Erzeugung von infraroten EPQ entwickelt und realisiert.
The presented thesis covers the development and investigation of novel integrated single photon (SP) sources and their application for quantum information schemes. SP generation was based on single defect centers in diamond nanocrystals. Such defect centers offer unique optical properties as they are room temperature stable, non-blinking, and do not photo-bleach over time. The fluorescent nanocrystals are mechanically stable, their size down to 20nm enabled the development of novel nano-manipulation pick-and-place techniques, e.g., with an atomic force microscope, for integration into photonic structures. Two different approaches were pursued to realize novel SP sources. First, fluorescent diamond nanocrystals were integrated into nano- and micrometer scaled fiber devices and resonators, making them ultra-stable and maintenance free. Secondly, a solid immersion microscope (SIM) was developed. Its solid immersion lens acts as a dielectric antenna for the emission of defect centers, enabling the highest photon rates of up to 2.4Mcts/s and collection efficiencies of up to 4.2% from nitrogen vacancy defect centers achieved to date. Implementation of the SIM at cryogenic temperatures enabled novel applications and fundamental investigations due to increased photon rates. The determination of the spectral diffusion time of a single nitrogen vacancy defect center (2.2µs) gave new insights about the mechanisms causing spectral diffusion. Spectral diffusion is a limiting property for quantum information applications. The table-top SIM was integrated into a compact mobile SP system with dimension of only 7x19x23cm^3 while still maintaining record-high stable SP rates. This makes it interesting for various SP applications. First, a quantum key distribution scheme based on the BB84 protocol was implemented, for the first time also with silicon vacancy defect centers. Secondly, a conceptually novel scheme for the generation of infrared SPs was introduced and realized.
APA, Harvard, Vancouver, ISO, and other styles
17

Pauwels, Jaël. "High performance optical reservoir computing based on spatially extended systems." Doctoral thesis, Universite Libre de Bruxelles, 2021. https://dipot.ulb.ac.be/dspace/bitstream/2013/331699/3/thesis.pdf.

Full text
Abstract:
In this thesis we study photonic computation within the framework of reservoir computing. Inspired by the insight that the human brain processes information by generating patterns of transient neuronal activity excited by input sensory signals, reservoir computing exploits the transient dynamics of an analogue nonlinear dynamical system to solve tasks that are hard to solve by algorithmic approaches. Harnessing the massive parallelism offered by optics, we consider a generic class of nonlinear dynamical systems which are suitable for reservoir computing and which we label photonic computing liquids. These are spatially extended systems which exhibit dispersive or diffractive signal coupling and nonlinear signal distortion. We demonstrate that a wide range of optical systems meet these requirements and allow for elegant and performant imple- mentations of optical reservoirs. These advances address the limitations of current photonic reservoirs in terms of scalability, ease of implementation and the transition towards truly all-optical computing systems.We start with an abstract presentation of a photonic computing liquid and an in-depth analysis of what makes these kinds of systems function as potent reservoir computers. We then present an experimental study of two photonic reservoir computers, the first based on a diffractive free-space cavity, the second based on a fiber-loop cavity. These systems allow us to validate the promising concept of photonic computing liquids, to investigate the effects of symme- tries in the neural interconnectivity and to demonstrate the effectiveness of weak and distributed optical nonlinearities. We also investigate the ability to recover performance lost due to uncontrolled parameters variations in unstable operating environments by introducing an easily scalable way to expand a reservoir’s output layer. Finally, we show how to exploit random diffraction in a strongly dispersive optical system, including applications in optical telecom- munications. In the conclusion we discuss future perspectives and identify the characteristic of the optical systems that we consider most promising for the future of photonic reservoir computing.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
18

Piqueras, Ruipérez Miguel Ángel. "Photonic Vector Processing Techniques for Radiofrequency Signals." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/63264.

Full text
Abstract:
[EN] The processing of radiofrequency signals using photonics means is a discipline that appeared almost at the same time as the laser and the optical fibre. Photonics offers the capability of managing broadband radiofrequency (RF) signals thanks to its low transmission attenuation, a variety of linear and non-linear phenomena and, recently, the potential to implement integrated photonic subsystems. These features open the door for the implementation of multiple functionalities including optical transportation, up and down frequency conversion, optical RF filtering, signal multiplexing, de-multiplexing, routing and switching, optical sampling, tone generation, delay control, beamforming and photonic generation of digital modulations, and even a combination of several of these functionalities. This thesis is focused on the application of vector processing in the optical domain to radiofrequency signals in two fields of application: optical beamforming, and photonic vector modulation and demodulation of digital quadrature amplitude modulations. The photonic vector control enables to adjust the amplitude and phase of the radiofrequency signals in the optical domain, which is the fundamental processing that is required in different applications such as beamforming networks for direct radiating array (DRA) antennas and multilevel quadrature modulation. The work described in this thesis include different techniques for implementing a photonic version of beamforming networks for direct radiating arrays (DRA) known as optical beamforming networks (OBFN), with the objectives of providing a precise control in terrestrial applications of broadband signals at very high frequencies above 40 GHz in communication antennas, optimizing the size and mass when compared with the electrical counterparts in space application, and presenting new photonic-based OBFN functionalities. Thus, two families of OBFNs are studied: fibre-based true time delay architectures and integrated networks. The first allow the control of broadband signals using dispersive optical fibres with wavelength division multiplexing techniques and advanced functionalities such as direction of arrival estimation in receiving architectures. In the second, passive OBFNs based on monolithically-integrated Optical Butler Matrices are studied, including an ultra-compact solution using optical heterodyne techniques in silicon-on-insulator (SOI) material, and an alternative implementing a homodyne counterpart in germanium doped silica material. In this thesis, the application of photonic vector processing to the generation of quadrature digital modulations has also been investigated. Multilevel modulations are based on encoding digital information in discrete states of phase and amplitude of an electrical signal to enhance spectral efficiency, as for instance, in quadrature modulation. The signal process required for generating and demodulating this kind of signals involves vector processing (phase and amplitude control) and frequency conversion. Unlike the common electronic or digital implementation, in this thesis, different photonic based signal processing techniques are studied to produce digital modulation (photonic vector modulation, PVM) and demodulation (PVdM). These techniques are of particular interest in the case of broadband signals where the data rate required to be managed is in the order of gigabit per second, for applications like wireless backhauling of metro optical networks (known as fibre-to-the-air). The techniques described use optical dispersion in optical fibres, wavelength division multiplexing and photonic up/down conversion. Additionally, an optical heterodyne solution implemented monolithically in a photonic integrated circuit (PIC) is also described.
[ES] El procesamiento de señales de radiofrecuencia (RF) utilizando medios fotónicos es una disciplina que apareció casi al mismo tiempo que el láser y la fibra óptica. La fotónica ofrece la capacidad de manipular señales de radiofrecuencia de banda ancha, una baja atenuación, procesados basados en una amplia variedad de fenómenos lineales y no lineales y, recientemente, el potencial para implementar subsistemas fotónicos integrados. Estas características ofrecen un gran potencial para la implementación de múltiples funcionalidades incluyendo transporte óptico, conversión de frecuencia, filtrado óptico de RF, multiplexación y demultiplexación de señales, encaminamiento y conmutación, muestreo óptico, generación de tonos, líneas de retardo, conformación de haz en agrupaciones de antenas o generación fotónica de modulaciones digitales, e incluso una combinación de varias de estas funcionalidades. Esta tesis se centra en la aplicación del procesamiento vectorial en el dominio óptico de señales de radiofrecuencia en dos campos de aplicación: la conformación óptica de haces y la modulación y demodulación vectorial fotónica de señales digitales en cuadratura. El control fotónico vectorial permite manipular la amplitud y fase de las señales de radiofrecuencia en el dominio óptico, que es el procesamiento fundamental que se requiere en diferentes aplicaciones tales como las redes de conformación de haces para agrupaciones de antenas y en la modulación en cuadratura. El trabajo descrito en esta tesis incluye diferentes técnicas para implementar una versión fotónica de las redes de conformación de haces de en agrupaciones de antenas, conocidas como redes ópticas de conformación de haces (OBFN). Se estudian dos familias de redes: arquitecturas de retardo en fibra óptica y arquitecturas integradas. Las primeras permiten el control de señales de banda ancha utilizando fibras ópticas dispersivas con técnicas de multiplexado por división de longitud de onda y funcionalidades avanzadas tales como la estimación del ángulo de llegada de la señal en la antena receptora. En la segunda, se estudian redes de conformación pasivas basadas en Matrices de Butler ópticas integradas, incluyendo una solución ultra-compacta utilizando técnicas ópticas heterodinas en silicio sobre aislante (SOI), y una alternativa homodina en sílice dopado con germanio. En esta tesis, también se han investigado técnicas de procesado vectorial fotónico para la generación de modulaciones digitales en cuadratura. Las modulaciones multinivel codifican la información digital en estados discretos de fase y amplitud de una señal eléctrica para aumentar su eficiencia espectral, como por ejemplo la modulación en cuadratura. El procesado necesario para generar y demodular este tipo de señales implica el procesamiento vectorial (control de amplitud y fase) y la conversión de frecuencia. A diferencia de la implementación electrónica o digital convencional, en esta tesis se estudian diferentes técnicas de procesado fotónico tanto para la generación de modulaciones digitales (modulación vectorial fotónica, PVM) como para su demodulación (PVdM). Esto es de particular interés en el caso de señales de banda ancha, donde la velocidad de datos requerida es del orden de gigabits por segundo, para aplicaciones como backhaul inalámbrico de redes ópticas metropolitanas (conocida como fibra hasta el aire). Las técnicas descritas se basan en explotar la dispersión cromática de la fibra óptica, la multiplexación por división de longitud de onda y la conversión en frecuencia. Además, se presenta una solución heterodina implementada monolíticamente en un circuito integrado fotónico (PIC).
[CAT] El processament de senyals de radiofreqüència (RF) utilitzant mitjans fotònics és una disciplina que va aparèixer gairebé al mateix temps que el làser i la fibra òptica. La fotònica ofereix la capacitat de manipular senyals de radiofreqüència de banda ampla, una baixa atenuació, processats basats en una àmplia varietat de fenòmens lineals i no lineals i, recentment, el potencial per implementar subsistemes fotònics integrats. Aquestes característiques ofereixen un gran potencial per a la implementació de múltiples funcionalitats incloent transport òptic, conversió de freqüència, filtrat òptic de RF, multiplexació i demultiplexació de senyals, encaminament i commutació, mostreig òptic, generació de tons, línies de retard, conformació de feix en agrupacions d'antenes i la generació fotònica de modulacions digitals, i fins i tot una combinació de diverses d'aquestes funcionalitats. Aquesta tesi es centra en l'aplicació del processament vectorial en el domini òptic de senyals de radiofreqüència en dos camps d'aplicació: la conformació òptica de feixos i la modulació i demodulació vectorial fotònica de senyals digitals en quadratura. El control fotònic vectorial permet manipular l'amplitud i la fase dels senyals de radiofreqüència en el domini òptic, que és el processament fonamental que es requereix en diferents aplicacions com ara les xarxes de conformació de feixos per agrupacions d'antenes i en modulació multinivell. El treball descrit en aquesta tesi inclou diferents tècniques per implementar una versió fotònica de les xarxes de conformació de feixos en agrupacions d'antenes, conegudes com a xarxes òptiques de conformació de feixos (OBFN), amb els objectius de proporcionar un control precís en aplicacions terrestres de senyals de banda ampla a freqüències molt altes per sobre de 40 GHz en antenes de comunicacions, optimitzant la mida i el pes quan es compara amb els homòlegs elèctrics en aplicacions espacials, i la presentació de noves funcionalitats fotòniques per agrupacions d'antenes. Per tant, s'estudien dues famílies de OBFNs: arquitectures de retard en fibra òptica i arquitectures integrades. Les primeres permeten el control de senyals de banda ampla utilitzant fibres òptiques dispersives amb tècniques de multiplexació per divisió en longitud d'ona i funcionalitats avançades com ara l'estimació de l'angle d'arribada del senyal a l'antena receptora. A la segona, s'estudien xarxes de conformació passives basades en Matrius de Butler òptiques en fotònica integrada, incloent una solució ultra-compacta utilitzant tècniques òptiques heterodinas en silici sobre aïllant (SOI), i una alternativa homodina en sílice dopat amb germani. D'altra banda, també s'ha investigat en aquesta tesi tècniques de processament vectorial fotònic per a la generació de modulacions digitals en quadratura. Les modulacions multinivell codifiquen la informació digital en estats discrets de fase i amplitud d'un senyal elèctric per augmentar la seva eficiència espectral, com ara la modulació en quadratura. El processat necessari per generar i desmodular aquest tipus de senyals implica el processament vectorial (control d'amplitud i fase) i la conversió de freqüència. A diferència de la implementació electrònica o digital convencional, en aquesta tesi s'estudien diferents tècniques de processament fotònic tant per a la generació de modulacions digitals (modulació vectorial fotònica, PVM) com per la seva demodulació (PVdM). Això és de particular interès en el cas de senyals de banda ampla, on la velocitat de dades requerida és de l'ordre de gigabits per segon, per a aplicacions com backhaul sense fils de xarxes òptiques metropolitanes (coneguda com fibra fins l'aire). Les tècniques descrites es basen en explotar la dispersió cromàtica de la fibra òptica, la multiplexació per divisió en longitud d'ona i la conversió en freqüència. A més, es prese
Piqueras Ruipérez, MÁ. (2016). Photonic Vector Processing Techniques for Radiofrequency Signals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63264
TESIS
APA, Harvard, Vancouver, ISO, and other styles
19

Vargas, German R. "Silicon Photonic Device for Wavelength Sensing and Monitoring." FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/734.

Full text
Abstract:
Over the last decade advances and innovations from Silicon Photonics technology were observed in the telecommunications and computing industries. This technology which employs Silicon as an optical medium, relies on current CMOS micro-electronics fabrication processes to enable medium scale integration of many nano-photonic devices to produce photonic integrated circuitry. However, other fields of research such as optical sensor processing can benefit from silicon photonics technology, specially in sensors where the physical measurement is wavelength encoded. In this research work, we present a design and application of a thermally tuned silicon photonic device as an optical sensor interrogator. The main device is a micro-ring resonator filter of 10 $\mu m$ of diameter. A photonic design toolkit was developed based on open source software from the research community. With those tools it was possible to estimate the resonance and spectral characteristics of the filter. From the obtained design parameters, a 7.8 x 3.8 mm optical chip was fabricated using standard micro-photonics techniques. In order to tune a ring resonance, Nichrome micro-heaters were fabricated on top of the device. Some fabricated devices were systematically characterized and their tuning response were determined. From measurements, a ring resonator with a free-spectral-range of 18.4 nm and with a bandwidth of 0.14 nm was obtained. Using just 5 mA it was possible to tune the device resonance up to 3 nm. In order to apply our device as a sensor interrogator in this research, a model of wavelength estimation using time interval between peaks measurement technique was developed and simulations were carried out to assess its performance. To test the technique, an experiment using a Fiber Bragg grating optical sensor was set, and estimations of the wavelength shift of this sensor due to axial strains yield an error within 22 pm compared to measurements from spectrum analyzer. Results from this study implies that signals from FBG sensors can be processed with good accuracy using a micro-ring device with the advantage of ts compact size, scalability and versatility. Additionally, the system also has additional applications such as processing optical wavelength shifts from integrated photonic sensors and to be able to track resonances from laser sources.
APA, Harvard, Vancouver, ISO, and other styles
20

Hussein, Ali Abdulsattar. "Photonic Integrated Circuits Utilizing Nano-Electromechanical Systems on Silicon-on-Insulator Platform for Software Defined Networking in Elastic Optical Networks: New Insights Into Phased Array Systems, Tunable WDM, and Cascaded FIR and IIR Architectures." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39592.

Full text
Abstract:
Optical communications systems operate at the limits of their margins to respond to increasing capacity demands. Some of the signal processing functions required must soon operate at speeds beyond electronic implementation. Optical signal processors are fundamentally analog which requires precise control of the operating state. Programmable optical components are consequently essential. The thesis explores and elucidates the properties of meshes of generalized Mach-Zehnder interferometers (GMZIs) amenable to silicon (Si) photonics integration that are based on multimode interference couplers with programmability achieved via voltage controlled phase-shift elements within the interferometer arms to perform a variety of finite impulse response (FIR) and infinite impulse response (IIR) signal processing functions. The thesis presents a novel class of integrated photonic phased array systems with a single-stage, multistage, and feedback architectures. The designed photonic integrated systems utilize nano-electromechanical-system (NEMS) operated phase shifters of cascaded free suspended slot waveguides that are compact and require a small amount of power to operate. The structure of the integrated photonic phased array switch (IPPAS) elements is organized such that it brings the NEMS-operated phase shifters to the exterior sides of the construction; facilitating electrical connection. The transition slot couplers used to interconnect the phase shifters to the rest of the silicon structure are designed to enable biasing one of the silicon beams of each phase shifter from an electrode located at the side of the phase shifter. The other silicon beam of each phase shifter is biased through the rest of the silicon structure of the fabric, which is taken as a ground. Phased array processors of 2×2 and 4×4 multiple-input-multiple-output (MIMO) ports are conveniently designed within reasonable footprints native to the current fabrication technologies. The response of the single-stage 4×4 broadband IPPAS element is determined, and its phase synthesis states required for single-throw, double-throw and broadcast routing operations are predicted. The transmission responses of the single-stage wavelength division multiplexing (WDM) processors of 2×2 and 4×4 MIMO ports are simulated. The wavelength steering capability of the transmission interferograms by applying progressive phase shifts through the array of NEMS-operated phase shift elements of the single-stage 4×4 WDM (de)multiplexer is demonstrated. The advantages of cascading broadband and WDM phased array sections are articulated through several study cases. Five different cascaded phased array architectures are trialed for the construction of non-blocking 4×4 IPPAS broadband switches that are essential elements in the construction of universal photonic processors. A cascaded 2×2 WDM (de)multiplexer that can set the bandwidth of the (de)multiplexed cyclic channels into a binary number of programmable values is demonstrated. The envelope and wavelength modulations of the transmission responses utilizing a cascaded forward structure of three 2×2 sections that can be utilized for the (de)multiplexing of different bandwidth channels are demonstrated providing individual wavelength steering capability of the narrowband and wideband channels and the individual wavelength steering capability of the slow envelope and wavelength modulating functions. Innovative universal 2×2 and 4×4 cascaded phased array processors of advanced high-order architectures that can function as both non-blocking broadband routers and tunable WDM (de)multiplexers with spectrum steering and bandwidth control of the (de)multiplexed demands are introduced. The multimode interference (MMI) coupler is utilized for the construction of several IIR feedback photonic processors. Tunable photonic feedback processors have the advantage of using less number of MMI couplers compared to their counterparts of FIR forward-path processors saving on the footprint and loss merits. A passive feedback 2×2 (de)multiplexer made of a 4×4 MMI coupler and two loopback paths is proposed. The inclusion of an imbalance in the lengths of the loopback paths of the same symmetrical feedback (de)multiplexer is demonstrated to achieve wavelength modulation of the (de)multiplexed transmission responses that are useful for the (de)multiplexing of different bandwidth channels. Several newly introduced IIR feedback architectures are demonstrated to function similarly as their counterparts of FIR forward-path processors as binary bandwidth variable (de)multiplexers, envelope and wavelength modulation (de)multiplexers, and universal feedback processors. The investigation provided in this thesis is also supported with dynamic zero-pole evolution analysis in the complex plane of analysis of the studied FIR and IIR photonic processors to enhance understanding the principle of operation. This research expands the prospective for constructing innovative silicon-on-insulator (SOI) based optical processors for applications in modern optical communication systems and programmable elastic optical networks (EONs).
APA, Harvard, Vancouver, ISO, and other styles
21

Liyanage, Chinthaka. "Specific property analysis of thin-film semiconductors for effective optical logical operations." Connect to full text in OhioLINK ETD Center, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1217089206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Orlandi, Piero <1984&gt. "Silicon Photonics Integrated Circuits for Flexible Optical Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6507/.

Full text
Abstract:
This dissertation deals with the design and the characterization of novel reconfigurable silicon-on-insulator (SOI) devices to filter and route optical signals on-chip. Design is carried out through circuit simulations based on basic circuit elements (Building Blocks, BBs) in order to prove the feasibility of an approach allowing to move the design of Photonic Integrated Circuits (PICs) toward the system level. CMOS compatibility and large integration scale make SOI one of the most promising material to realize PICs. The concepts of generic foundry and BB based circuit simulations for the design are emerging as a solution to reduce the costs and increase the circuit complexity. To validate the BB based approach, the development of some of the most important BBs is performed first. A novel tunable coupler is also presented and it is demonstrated to be a valuable alternative to the known solutions. Two novel multi-element PICs are then analysed: a narrow linewidth single mode resonator and a passband filter with widely tunable bandwidth. Extensive circuit simulations are carried out to determine their performance, taking into account fabrication tolerances. The first PIC is based on two Grating Assisted Couplers in a ring resonator (RR) configuration. It is shown that a trade-off between performance, resonance bandwidth and device footprint has to be performed. The device could be employed to realize reconfigurable add-drop de/multiplexers. Sensitivity with respect to fabrication tolerances and spurious effects is however observed. The second PIC is based on an unbalanced Mach-Zehnder interferometer loaded with two RRs. Overall good performance and robustness to fabrication tolerances and nonlinear effects have confirmed its applicability for the realization of flexible optical systems. Simulated and measured devices behaviour is shown to be in agreement thus demonstrating the viability of a BB based approach to the design of complex PICs.
APA, Harvard, Vancouver, ISO, and other styles
23

Al-Dabbagh, Rasha Khalid Mohammed. "A photonic generation and transmission system for millimetre-wave futuristic communications." Thesis, Brunel University, 2018. http://bura.brunel.ac.uk/handle/2438/16249.

Full text
Abstract:
In this thesis, a fully millimetre-wave (mm-wave) generation and transmission system is proposed for futuristic communications. Significant challenges have been dealt with regarding the proposed system, including designing the mm-wave generation and transmission technique, and its application in cellular networks. These challenges are presented through five main contributions and validated via Optiwave Design Software and MATLAB simulation tools. Firstly, three novel photonic generation methods are proposed and designed based on the characteristics of Brillouin fibre laser and the Stimulated Brillouin Scattering (SBS) effects with phase modulation. The mm-wave carriers are successfully generated with a tuning capability from 5 to 90 GHz. Also, these carriers are with good Signal to Noise Ratio (SNR) up to 51 dB, and low noise signal power of about -40 dBm. The impact of these methods is obtaining stable mm-waves appropriate for Radio over Fibre (RoF) transmission systems in 5G optical networks. Secondly, a full-duplex RoF system with the generation of a 64 GHz mm-wave is proposed. Successful transmission of the mm-wave over a fibre link is achieved for up to 100 km of fibre with a data rate of 5 Gbits/s. The main impact of this system is cost reduction and performance improvement by simplifying mm-wave generation and transmission over fibre. Also, it ensures a useful communication link for small cell networks. Thirdly, a hybrid Fibre/Free-space optical (FSO) system for the generation and transmission of 64 GHz mm-wave is proposed. This optical system provides a low latency communication link and overcomes mm-wave high path losses. A successful mm-wave transmission is achieved over a 10 km fibre length, and 2 km FSO link length with a good Bit Error Rate (BER) of about 1.5×10-13 and a data rate of 10 Gbits/s. This system increases the network coverage area by transmitting the mm-wave over the FSO link to the areas with natural obstacles the laying of fibre cables impossible. Also, it can be used as an effective solution under emergency disaster conditions. Fourthly, a comprehensive study of the wireless propagation performance for different mm-wave bands (28, 60, and 73 GHz) as cellular networks is investigated and compared with the 2.4 GHz Ultra-High Frequency band (UHF). A map-based scenario is proposed for the deployment of Base Stations (BSs) within the Brunel University London Campus map to consider real blockage effects. This investigation involved specifying which mm-wave spectrum can enhance the futuristic cellular networks, by evaluating the coverage and rate trends. Comparative results show that the 73 GHz bands can achieve the higher rate with good coverage and the lowest interference effects than the other mm-wave bands. Finally, a simplified path loss model is proposed to estimate precisely the 28 GHz mm-wave performance, which is considered a key component in 5G networks in outdoor applications. The proposed path loss model captures the diffraction and specular reflection impacts on mm-wave wireless propagation.
APA, Harvard, Vancouver, ISO, and other styles
24

Alipour, Motaallem Seyed Payam. "Reconfigurable integrated photonic circuits on silicon." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51792.

Full text
Abstract:
Integrated optics as a platform for signal processing offers significant benefits such as large bandwidth, low loss, and a potentially high degree of reconfigurability. Silicon (Si) has unique advantages as a material platform for integration, as well as properties such as a strong thermo-optic mechanism that allows for the realization of highly reconfigurable photonic systems. Chapter 1 is devoted to the discussion of these advantages, and Chapter 2 provides the theoretical background for the analysis of integrated Si-photonic devices. The thermo-optic property of Si, while proving extremely useful in facilitating reconfiguration, can turn into a nuisance when there is a need for thermally stable devices on the photonic chip. Chapter 3 presents a technique for resolving this issue without relying on a dynamic temperature stabilization process. Temperature-insensitive (or “athermal”) Si microdisk resonators with low optical loss are realized by using a polymer overlayer whose thermo-optic property is opposite to that of Si, and TiO2 is introduced as an alternative to polymer to deal with potential CMOS-compatibility issues. Chapter 4 demonstrates an ultra-compact, low-loss, fully reconfigurable, and high-finesse integrated photonic filter implemented on a Si chip, which can be used for RF-photonic as well as purely optical signal processing purposes. A novel, thermally reconfigurable reflection suppressor is presented in Chapter 5 for on-chip feedback elimination which can be critical for mitigating spurious interferences and protecting lasers from disturbance. Chapter 6 demonstrates a novel device for on-chip control of optical fiber polarization. Chapter 7 deals with select issues in the implementation of Si integrated photonic circuits. Chapter 8 concludes the dissertation.
APA, Harvard, Vancouver, ISO, and other styles
25

Fan, Shu-Hao. "Convergence of millimeter-wave and photonic interconnect systems for very-high-throughput digital communication applications." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42888.

Full text
Abstract:
In the past, radio-frequency signals were commonly used for low-speed wireless electronic systems, and optical signals were used for multi-gigabit wired communication systems. However, as the emergence of new millimeter-wave technology introduces multi-gigabit transmission over a wireless radio-frequency channel, the borderline between radio-frequency and optical systems becomes blurred. As a result, there come ample opportunities to design and develop next-generation broadband systems to combine the advantages of these two technologies to overcome inherent limitations of various broadband end-to-end interconnect systems in signal generation, recovery, synchronization, and so on. For the transmission distances of a few centimeters to thousands of kilometers, the convergence of radio-frequency electronics and optics to build radio-over-fiber systems ushers in a new era of research for the upcoming very-high-throughput broadband services. Radio-over-fiber systems are believed to be the most promising solution to the backhaul transmission of the millimeter-wave wireless access networks, especially for the license-free, very-high-throughput 60-GHz band. Adopting radio-over-fiber systems in access or in-building networks can greatly extend the 60-GHz signal reach by using ultra-low loss optical fibers. However, such high frequency is difficult to generate in a straightforward way. In this dissertation, the novel techniques of homodyne and heterodyne optical-carrier suppressions for radio-over-fiber systems are investigated and various system architectures are designed to overcome these limitations of 60-GHz wireless access networks, bringing the popularization of multi-gigabit wireless networks to become closer to the reality. In addition to the advantages for the access networks, extremely high spectral efficiency, which is the most important parameter for long-haul networks, can be achieved by radio-over-fiber signal generation. As a result, the transmission performance of spectrally efficient radio-over-fiber signaling, including orthogonal frequency division multiplexing and orthogonal wavelength division multiplexing, is broadly and deeply investigated. On the other hand, radio-over-fiber is also used for the frequency synchronization that can resolve the performance limitation of wireless interconnect systems. A novel wireless interconnects assisted by radio-over-fiber subsystems is proposed in this dissertation. In conclusion, multiple advantageous facets of radio-over-fiber systems can be found in various levels of end-to-end interconnect systems. The rapid development of radio-over-fiber systems will quickly change the conventional appearance of modern communications.
APA, Harvard, Vancouver, ISO, and other styles
26

Meng, Fanfan. "Clock generation for silicon photonics based optical communication systems." Thesis, University of Southampton, 2018. https://eprints.soton.ac.uk/423549/.

Full text
Abstract:
As communications data traffic continues to increase, electronic interconnects over short reaches are struggling to keep up with the bandwidth and power consumption requirements. One of the technology trends is to migrate from copper to optical based interconnects where silicon Photonics (SiP) technology has emerged as an excellent technical solution to meet the performance and cost requirements of these short-reach applications. The clock generation system is a critical module that none of the communication systems can overlook. However, the reported clock generation solutions utilized in SiP transceivers inherit limitations from traditional electronic interconnects, where the clock signals are limited by the frequency tuning range, system settling time and the number of clock phases. The motivation for this PhD project is to build a novel clock generation system that can be fully integrated with future SiP transceiver and the innovation has been realized in various aspects of the work. Firstly, a novel high-speed ring-based voltage-controlled oscillator (VCO) is proposed using inductor peaking. The proposed VCO topology was validated with four design examples fabricated in different CMOS processes nodes (130nm and 65nm) and measured results show close agreement with theoretical analysis. The figure of merit (FOM) of 203 is the best combination of frequency and tuning range currently. Secondly, a dedicated phase locked loop (PLL) structure combined with the inductor peaking VCO was created, focussing on the requirements of frequency controllability and system settling time for SiP communication system. A programmable frequency range of more than 25GHz has been achieved using a 40nm process while the measured phase locking time is always less than half of a microsecond. Finally, with the mainstream CMOS process for analogue circuits design migrating towards to 28nm High-k/Metal Gate (HKMG), design methodologies on the proposed VCO have been realized in order to adapt this evolution. Two specific design cases have been implemented to fully utilize the advantages of new CMOS process and mitigate the side-effects of 28nm HKMG process.
APA, Harvard, Vancouver, ISO, and other styles
27

Rajarajan, Muttukrishnan. "Computer modelling of compact photonics devices for optical communications." Thesis, University of London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Miles, Alexander Ashton. "Hybrid Optical Systems: From Nanometer to Multi-Meter Scales." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/596135.

Full text
Abstract:
Hybridizing, in general, is the approach of combining multiple technologies, materials, or designs such to mitigate the drawbacks and enhance the benefits. The result of this combination can be referred to as a hybrid. The projects described in this work concern a number of these hybrids. The collection of projects are limited to optical applications, but are otherwise enormously different. There is perhaps no better way to illustrate this breadth than their characteristic length-scale. That is, the general size of the elements being hybridized. Ten orders of magnitude lie between the smallest system described and largest systems. At the several-nanometer scale, a single component of a composite optical material. Diamond possesses a unique combination of refractive and dispersive optical properties, making it an attractive optical material. Unfortunately, the lowest cost diamond available possesses large amounts of impurities and color. In an attempt to remove the visible color from commercially available detonation-origin nanodiamond powders we developed a facile three-step cleaning process. This process and the resulting qualities of the nanodiamond are discussed. At tens to hundreds of nanometers scale, we have worked to optimize a complete composite material system; a combination of Polystyrene-b-poly (2-vinyl pyridine) (PS-b-P2VP), a block co-polymer with self-assembly properties, and controlled size iron platinum (FePt) nanoparticles. The applications in mind are magnetic field sensors, used in medical testing and physical experiments, and fiber optic isolators, used extensively in telecommunications networks. These composites exhibited commercially significant Verdet constants in room temperature Faraday rotation measurements, and possess processing benefits over the current state-of-the-art magneto-optically active materials. Several behaviors with respect to wavelength, particle loading, and primary particle size are discussed. At the micron to centimeter scale, we have designed and characterized a high-speed fiber-optic switch for telecommunications networks capable of reconfiguring 100 times faster than currently available technologies with comparable port counts. The switch is an unconventional hybrid of the micron-scale optics of single-mode fiber modes, and the centimeter scale of free-space holography. Built primarily using off-the-shelf components and a commercially available digital micro-mirror device (DMD), the switch is protocol and bit-rate agnostic, robust against random mirror failure, and provides the basic building block for a fully reconfigurable optical add drop multiplexer (ROADM).Finally, at the scale of several meters, we address a system that hybridizes two established methods for harvesting solar energy. Sunlight can be captured as electricity using photovoltaics (PV), as well as heat, often called concentrated solar power (CSP). Each approach has benefits and drawbacks which will be discussed. A system possessing the peak efficiency of PV, with the deployable storage of CSP, would most effectively meet demand around the clock. In order to combine these technologies, we have developed an approach for designing a dichroic coating to optimize performance of such a system utilizing multi-junction photovoltaic cells while diverting unused light to heat collection. Through careful design substantial improvement to system efficiencies are shown to be possible.
APA, Harvard, Vancouver, ISO, and other styles
29

Rontani, Damien. "Nonlinear dynamics of photonic components. Chaos cryptography and multiplexing." Phd thesis, Supélec, 2011. http://tel.archives-ouvertes.fr/tel-00783267.

Full text
Abstract:
With the rapid development of optical communications and the increasing amount of data exchanged, it has become utterly important to provide effective architectures to protect sensitive data. The use of chaotic optoelectronic devices has already demonstrated great potential in terms of additional computational security at the physical layer of the optical network. However, the determination of the security level and the lack of a multi-user framework are two hurdles which have prevented their deployment on a large scale. In this thesis, we propose to address these two issues. First, we investigate the security of a widely used chaotic generator, the external cavity semiconductor laser (ECSL). This is a time-delay system known for providing complex and high-dimensional chaos, but with a low level of security regarding the identification of its most critical parameter, the time delay. We perform a detailed analysis of the influence of the ECSL parameters to devise how higher levels of security can be achieved and provide a physical interpretation of their origin. Second, we devise new architectures to multiplex optical chaotic signals and realize multi-user communications at high bit rates. We propose two different approaches exploiting known chaotic optoelectronic devices. The first one uses mutually coupled ECSL and extends typical chaos-based encryption strategies, such as chaos-shift keying (CSK) and chaos modulation (CMo). The second one uses an electro-optical oscillator (EOO) with multiple delayed feedback loops and aims first at transposing coded-division multiple access (CDMA) and then at developing novel strategies of encryption and decryption, when the time-delays of each feedback loop are time- dependent.
APA, Harvard, Vancouver, ISO, and other styles
30

O'Brien, Daniel Gerard, and n/a. "Broadband matching and distortion performance relating to multiple subcarrier multiplexed photonic systems." University of Canberra. Information Sciences & Engineering, 1992. http://erl.canberra.edu.au./public/adt-AUC20060821.095055.

Full text
Abstract:
This thesis describes the outcome of study to investigate methods of broadband matching to photonic devices such as lasers and high speed detectors. The thesis is divided into two areas of interest relating to the design of broadband fiber optic links. The first area is the application of numerical methods and commensurate line methods to the design of compact equalisers which allow an improved transducer power gain over a wide band. It is shown that physically small equalisers can yield an improvement of 4 dB over a 2 GHz bandwidth. The second area considered is the distortion inherent in a laser diode. Detailed measurements of the second order and intermodulation products are given. A small signal perturbation analysis is presented which helps to explain the observed distortion products. The results of numerical simulation of the distortion using a state variable implementation of the full rate equations and related first, second and intermodulation equations is presented and possible methods of reducing the distortion are explored. It is shown that in principle the distortion could be reduced by pre-generating the distortion and adding an inverted form of the distortion to the transmitted signal. The distortion can then be corrected in the fiber and simulation studies suggest that an improvement of 13 dB optical or 26 dB electrical may be possible.
APA, Harvard, Vancouver, ISO, and other styles
31

Grujic, Thomas. "Non-equilibrium strongly-correlated quantum dynamics in photonic resonator arrays." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:6ca48890-b5ab-4572-9430-c3c0c7bd8d72.

Full text
Abstract:
Strong effective photon-photon interactions mediated by atom-photon couplings have been routinely achievable in QED setups for some time now. Recently, there have been several proposals to push the physics of interacting photons into many- body distributed architectures. The essential idea is to coherently couple together arrays of QED resonators, such that photons can hop between resonators while interacting with each other inside each resonator. These proposed structures have attracted intense theoretical attention while simultaneously inspiring experimental efforts to realise this novel regime of strongly-correlated many-body states of light. A central challenge of both theoretical and practical importance is to understand the physics of such coupled resonator arrays (CRAs) beyond equilibrium, when unavoidable (or sometimes even desired) photon loss processes are accounted for. This thesis presents several studies whose purpose can roughly be divided in two aims. The first part studies just what constitutes a valid physical and computational representation of non-equilibrium driven-dissipative CRAs. Addressing these ques- tions constitutes essential groundwork for further investigations of CRA phenomena, as numerical experiments are likely to guide and interpret near-future experimen- tal array observations. The relatively small body of existing work on CRAs out of equilibrium has often truncated their full, rich physics. It is important to establish the effects and validity of these approximations. To this end we introduce powerful numerical algorithms capable of efficiently simulating the full dynamics of CRAs, and use them to characterise the non-equilibrium steady states of arrays reached under the combined influence of dissipation and pumping. Having established the rigour necessary to realistically describe CRAs, we exam- ine two novel phenomena observable in near-future small arrays. Firstly we relate a counter-intuitive ‘super bunching’ in the statistics of photons emitted from arrays engineered to demonstrate strong effective photon-photon repulsion at the single and two-photon level, to an interplay between the underlying eigen-structure and details of the non-equilibrium operation. Secondly we characterise a dynamical phenomenon in which domains of ‘frozen’ photons remain trapped in sufficiently nonlinear arrays. Finally we present a preliminary characterisation of a previously unexplored phase diagram of arrays under coherent two-photon pumping. Com- petition between the coherence injected by the pumping, photon interactions and delocalisation processes lead to interesting new physical signatures.
APA, Harvard, Vancouver, ISO, and other styles
32

Burrow, Guy Matthew. "Pattern-integrated interference lithography: single-exposure formation of photonic-crystal lattices with integrated functional elements." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44804.

Full text
Abstract:
A new type of photolithography, Pattern-Integrated Interference Lithography (PIIL), was demonstrated. PIIL is the first-ever integration of pattern imaging with interference lithography in a single-exposure step. The result is an optical-intensity distribution composed of a subwavelength periodic lattice with integrated functional circuit elements. To demonstrate the PIIL method, a Pattern-Integrated Interference Exposure System (PIIES) was developed that incorporates a projection imaging capability in a novel three-beam interference configuration. The purpose of this system was to fabricate, in a single-exposure step, representative photonic-crystal structures. Initial experimental results have confirmed the PIIL concept, demonstrating the potential application of PIIL in nano-electronics, photonic crystals, biomedical structures, optical trapping, metamaterials, and in numerous subwavelength structures. In the design of the PIIES configuration, accurate motif geometry models were developed for the 2D plane-group symmetries possible via linearly-polarized three-beam interference, optimized for maximum absolute contrast and primitive-lattice-vector direction equal contrast. Next, a straightforward methodology was presented to facilitate a thorough analysis of effects of parametric constraints on interference-pattern symmetries, motif geometries, and their absolute contrasts. With this information, the design of the basic PIIES configuration was presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane. Appropriate performance metrics were defined in order to quantify the characteristics of the resulting photonic-crystal structure.
APA, Harvard, Vancouver, ISO, and other styles
33

Cheung, Ka-yi, and 張嘉兒. "Optical parametric processes in biophotonics and microwave photonics applications." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2010. http://hub.hku.hk/bib/B45207835.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tafur, Sergio. "Computational study of the near field spontaneous creation of photonic states coupled to few level systems." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5053.

Full text
Abstract:
Models of the spontaneous emission and absorption of photons coupled to the electronic states of quantum dots, molecules, N-V (single nitrogen vacancy) centers in diamond, that can be modeled as artificial few level atoms, are important to the development of quantum computers and quantum networks. A quantum source modeled after an effective few level system is strongly dependent on the type and coupling strength the allowed transitions. These selection rules are subject to the Wigner-Eckert theorem which specifies the possible transitions during the spontaneous creation of a photonic state and its subsequent emission. The model presented in this dissertation describes the spatio-temporal evolution of photonic states by means of a Dirac-like equation for the photonic wave function within the region of interaction of a quantum source. As part of this aim, we describe the possibility to shift from traditional electrodynamics and quantum electrodynamics, in terms of electric and magnetic fields, to one in terms of a photonic wave function and its operators. The mapping between these will also be presented herein. It is further shown that the results of this model can be experimentally verified. The suggested method of verification relies on the direct comparison of the calculated density matrix or Wigner function, associated with the quantum state of a photon, to ones that are experimentally reconstructed through optical homodyne tomography techniques. In this non-perturbative model we describe the spontaneous creation of photonic state in a non-Markovian limit which does not implement the Weisskopf-Wigner approximation. We further show that this limit is important for the description of how a single photonic mode is created from the possibly infinite set of photonic frequencies vsubscript k] that can be excited in a dielectric-cavity from the vacuum state.; We use discretized central-difference approximations to the space and time partial derivatives, similar to finite-difference time domain models, to compute these results. The results presented herein show that near field effects need considered when describing adjacent quantum sources that are separated by distances that are small with respect to the wavelength of their spontaneously created photonic states. Additionally, within the future scope of this model, we seek results in the Purcell and Rabi regimes to describe enhanced spontaneous emission events from these few-level systems, as embedded in dielectric cavities. A final goal of this dissertation is to create novel computational and theoretical models that describe single and multiple photon states via single photon creation and annihilation operators.
ID: 030423393; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 220-233).
Ph.D.
Doctorate
Physics
Sciences
APA, Harvard, Vancouver, ISO, and other styles
35

Muravsky, Alexander. "Photoalignment in optical rewritable (ORW) e-paper and photonics : physics & application /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20MURAVS.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

DeLong, Kenneth Wayne. "Two-photon absorption and color centers: Effects on all-optical switching." Diss., The University of Arizona, 1990. http://hdl.handle.net/10150/185023.

Full text
Abstract:
This dissertation explores the effects of two-photon absorption and color center induced absorption on all-optical switching devices. The amount of allowable two-photon absorption was quantified by the parameter T = 2βλ/n₂, where λ is the operating wavelength, β is the two-photon absorption coefficient, and n₂ is the nonlinear refractive index coefficient, the latter two being measured at λ. If the value of T exceeds unity, the operation of all-optical switching devices is in general degraded beyond usable regimes. This result was demonstrated by numerical experiments on systems of equations modelling a nonlinear directional coupler, a prototypical all-optical switching device. The value of T was measured in two fibers, one made of lead silicate glass, and one made of TiO₂-doped silica. We find the value of T to be greater than unity at a wavelength of 1.06 μm in both fibers. Significant color center formation was seen in the lead glass fiber. These color centers were created through two-photon absorption and destroyed through one-photon absorption. Color center induced absorption was seen to mimic two-photon absorption in certain regimes. The nonlinear optical response of semiconductor-doped glasses, an example of a one-photon resonant nonlinearity, was studied. A relaxation time which is dependent on the carrier density was found to be important when modelling the response of these glasses.
APA, Harvard, Vancouver, ISO, and other styles
37

Lekki, John Daniel. "Quantum optical communications system for micro robots." Diss., Connect to online resource - MSU authorized users, 2008.

Find full text
Abstract:
Thesis (Ph.D.)--Michigan State University. Dept. of Electrical and Computer Engineering, 2008.
Title from PDF t.p. (viewed on July 23, 2009) Includes bibliographical references (p. 177-181). Also issued in print.
APA, Harvard, Vancouver, ISO, and other styles
38

Yazgan, Ayhan. "Performance Analysis and Link Design of Long Haul Coherent Optical OFDM Systems." Thesis, Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-15209.

Full text
Abstract:
Orthogonal Frequency Division Multiplexing (OFDM) is a suitable solution due to its many advantages known in wireless communications. On the other hand, optical communications is also used as a backbone to transmit and receive large data rates with economical and good performance. Recently, fiber optical communication and OFDM method are combined to obtain both advantages in a communication link. Coherent optical OFDM (CO-OFDM) has recently been proposed against the chromatic dispersion effect in electrical domain. According to the ITU-T standards there are 111 channels (C and L bands) can be used (191.4 to 185.9 THz) at 50 GHz spacing. Thanks to Wavelength Division Multiplexing, even we use only one RF carrier, we can reach 1.7 Tb/s (111*16 Gb/s) using only one optical cable and utilizing C and L bands. In this research, CO-OFDM technique is modeled and simulated by designing a Monte Carlo simulation. In this simulation, dispersion, data rate, SNR-BER and BER-Distance variations are calculated and results are given in graphical forms. These graphics show the performance of the CO-OFDM system in 5, 8 and 16 Gb/s at different distances for one RF carrier and one optical carrier. It is also shown that how to get 64 Gb/s data rate using the same structure with one optical carrier.
APA, Harvard, Vancouver, ISO, and other styles
39

Harvey, Michael D. "Hybrid material systems for micro-optical devices : the synthesis and characterisation of dye doped mesostructured TiO2, low refractive index mesoporous SiO2 and the analysis of thin films made thereof /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19323.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zou, Ding, and Ivan B. Djordjevic. "FPGA-Based Rate-Compatible LDPC Codes for the Next Generation of Optical Transmission Systems." IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 2016. http://hdl.handle.net/10150/621685.

Full text
Abstract:
In this paper, we propose a rate-compatible forward error-correcting (FEC) scheme based on low-density-parity check (LDPC) codes together with its software reconfigurable unified field-programmable gate array (FPGA) architecture. By FPGA emulation, we demonstrate that the proposed class of rate-compatible LDPC codes based on puncturing and generalized LDPC coding with an overhead from 25% to 46% provides a coding gain ranging from 12.67 to 13.8 dB at a post-FEC bit-error rate (BER) of 10(-15). As a result, the proposed rate-compatible codes represent one of the strong FEC candidates of soft-decision FEC for both short-haul and long-haul optical transmission systems.
APA, Harvard, Vancouver, ISO, and other styles
41

Bilbeisi, Hana. "Time-slotted scheduling for agile all-photonics networks : performance and complexity." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112558.

Full text
Abstract:
Schedulers in optical switches are still electronic, the performance of these units has a significant impact on the performance of the network and could form a bottleneck in high speed networks, such as AAPN. Four time-slotted scheduling algorithms are investigated in this study, PIM, iSlip, PHM and Adapted-SRA. The study addresses the performance of AAPN for each of the algorithms, and evaluates the hardware complexity, estimating the running time of the algorithms. Performance measures were collected from an OPNET model, designed to emulate AAPN. Furthermore, hardware complexity and timing constraints were evaluated through hardware simulations, for iSlip, and through analysis for the rest of the algorithms. iSlip confirmed its feasibility by meeting the 10us timing constraint set by AAPN. The study revealed the superiority of iSlip and PHM over PIM and Adapted-SRA.
APA, Harvard, Vancouver, ISO, and other styles
42

Chaoulov, Vesselin. "DESIGN AND ASSESSMENT OF COMPACT OPTICAL SYSTEMS TOWARDS SPECIAL EFFECTS IMAGING." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2811.

Full text
Abstract:
A main challenge in the field of special effects is to create special effects in real time in a way that the user can preview the effect before taking the actual picture or movie sequence. There are many techniques currently used to create computer-simulated special effects, however current techniques in computer graphics do not provide the option for the creation of real-time texture synthesis. Thus, while computer graphics is a powerful tool in the field of special effects, it is neither portable nor does it provide work in real-time capabilities. Real-time special effects may, however, be created optically. Such approach will provide not only real-time image processing at the speed of light but also a preview option allowing the user or the artist to preview the effect on various parts of the object in order to optimize the outcome. The work presented in this dissertation was inspired by the idea of optically created special effects, such as painterly effects, encoded in images captured by photographic or motion picture cameras. As part of the presented work, compact relay optics was assessed, developed, and a working prototype was built. It was concluded that even though compact relay optics can be achieved, further push for compactness and cost-effectiveness was impossible in the paradigm of bulk macro-optics systems. Thus, a paradigm for imaging with multi-aperture micro-optics was proposed and demonstrated for the first time, which constitutes one of the key contributions of this work. This new paradigm was further extended to the most general case of magnifying multi-aperture micro-optical systems. Such paradigm allows an extreme reduction in size of the imaging optics by a factor of about 10 and a reduction in weight by a factor of about 500. Furthermore, an experimental quantification of the feasibility of optically created special effects was completed, and consequently raytracing software was developed, which was later commercialized by SmARTLens(TM). While the art forms created via raytracing were powerful, they did not predict all effects acquired experimentally. Thus, finally, as key contribution of this work, the principles of scalar diffraction theory were applied to optical imaging of extended objects under quasi-monochromatic incoherent illumination in order to provide a path to more accurately model the proposed optical imaging process for special effects obtained in the hardware. The existing theoretical framework was generalized to non-paraxial in- and out-of-focus imaging and results were obtained to verify the generalized framework. In the generalized non-paraxial framework, even the most complex linear systems, without any assumptions for shift invariance, can be modeled and analyzed.
Ph.D.
Other
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO, and other styles
43

Vaupel, Andreas. "High Energy, High Average Power, Picosecond Laser Systems to Drive Few-Cycle OPCPA." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5881.

Full text
Abstract:
The invention of chirped-pulse amplification (CPA) in 1985 led to a tremendous increase in obtainable laser pulse peak intensities. Since then, several table-top, Ti:sapphire-based CPA systems exceeding the 100 TW-level with more than 10 W average power have been developed and several systems are now commercially available. Over the last decade, the complementary technology of optical parametric chirped-pulse amplification (OPCPA) has improved in its performance to a competitive level. OPCPA allows direct amplification of an almost-octave spanning bandwidth supporting few-cycle pulse durations at center wavelengths ranging from the visible to the mid-IR. The current record in peak power from a table-top OPCPA is 16 TW and the current record average power is 22 W. High energy, few-cycle pulses with stabilized carrier-envelope phase (CEP) are desired for applications such as high-harmonic generation (HHG) enabling attoscience and the generation keV-photon bursts. This dissertation conceptually, numerically and experimentally describes essential aspects of few-cycle OPCPA, and the associated pump beam generation. The main part of the conducted research was directed towards the few-cycle OPCPA facility developed in the Laser Plasma Laboratory at CREOL (University of Central Florida, USA) termed HERACLES. This facility was designed to generate few-cycle pulses in the visible with mJ-level pulse energy, W-level average power and more than 100 GW peak power. Major parts of the implementation of the HERACLES facility are presented. The pump generation beam of the HERACLES system has been improved in terms of pulse energy, average power and stability over the last years. It is based on diode-pumped, solid-state amplifiers with picosecond duration and experimental investigations are presented in detail. A robust system has been implemented producing mJ-level pulse energies with ~100 ps pulse duration at kHz repetition rates. Scaling of this system to high power (>30 W) and high peak power (50-MW-level) as well as ultra-high pulse energy (>160 mJ) is presented. The latter investigation resulted in the design of an ultra-high energy system for OPCPA pumping. Following this, a new OPCPA facility was designed termed PhaSTHEUS, which is anticipated to reach ultra-high intensities. Another research effort was conducted at CELIA (Univerist&"233; de Bordeaux 1, France) and aimed towards a previously unexplored operational regime of OPCPA with ultra-high repetition rates (10 MHz) and high average power. A supercontinuum seed beam generation has been established with an output ranging from 1.3 to 1.9 ?m and few ps duration. The pump beam generation has been implemented based on rod-type fiber amplifiers producing more than 37 W average power and 370 kW peak power. The utility of this system as an OPCPA pump laser is presented along with the OPA design. The discussed systems operate in radically different regimes in terms of peak power, average power, and repetition rate. The anticipated OPCPA systems with few-cycle duration enable a wide range of novel experimental studies in attoscience, ultrafast materials processing, filamentation, LIBS and coherent control.
Ph.D.
Doctorate
Optics and Photonics
Optics and Photonics
Optics
APA, Harvard, Vancouver, ISO, and other styles
44

Hasegawa, Keisuke 1977. "The effect of geometry and surface morphology on the optical properties of metal-dielectric systems." Thesis, University of Oregon, 2008. http://hdl.handle.net/1794/8581.

Full text
Abstract:
xiii, 133 p. ; ill. (some col.) A print copy of this title is available through the UO Libraries. Search the library catalog for the location and call number.
We analyze the effect of geometry and surface morphology on the optical properties of metal-dielectric systems. Using both analytical and numerical modeling, we study how surface curvature affects the propagation of surface plasmon polaritons (SPPs) along a metal-dielectric interface. We provide an intuitive explanation for how the curvature causes the phase front to distort, causing the SPPs to radiate their energy away from the metal-dielectric interface. We quantify the propagation efficiency as functions of the radius of curvature, and show that it depends nonmonotonically on the bend radius. We also show how the surface morphology influences the transmittance and the reflectance of light from disordered metal-dielectric nanocomposite films. The films consist of semicontinuous silver films of various surface coverage that are chemically deposited onto glass substrates. They exhibit a large and broadband reflection asymmetry in the visible spectral range. In order to investigate how the surface morphology affects the asymmetry, we anneal the samples at various temperatures to induce changes in the morphology, and observe changes in the reflection spectra. Our study indicates that the surface roughness and the metal surface coverage are the key geometric parameters affecting the reflection spectra, and reveals that the large asymmetry is due to the different surface roughness light encounters when incident from different side of the film. Additionally, we analyze how thin metal and dielectric layers affect the optical properties of metal-dielectric systems. Using the concept of dispersion engineering, we show that a metal-dielectric-metal microsphere--a metal sphere coated with a thin dielectric shell, followed by a metal shell--support a band of surface plasmon resonances (SPRs) with nearly identical frequencies. A large number of modes belonging to this band can be excited simultaneously by a plane wave, and hence enhancing the absorption cross-section. We also find that the enhanced absorption is accompanied by a plasmon assisted transparency due to an avoided crossing of dominant SPR bands. We demonstrate numerically that both the enhanced absorption and the plasmon assisted transparency are tunable over the entire visible range. We also present an experimental study of light scattering from silica spheres coated with thin semicontinuous silver shells, and attempt to describe their optical response using a modified scaling theory. This dissertation includes previously published co-authored materials.
Adviser: Miriam Deutsch
APA, Harvard, Vancouver, ISO, and other styles
45

RAHIM, ABDUL [Verfasser], Klaus [Akademischer Betreuer] Petermann, Christian [Akademischer Betreuer] Schäffer, and Lars [Akademischer Betreuer] Zimmermann. "Silicon micro-photonic implementation of parallel-serial filter to compensate residual dispersion in optical communication systems / Abdul Rahim. Gutachter: Christian Schäffer ; Lars Zimmermann. Betreuer: Klaus Petermann." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1068255781/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Rahim, Abdul [Verfasser], Klaus [Akademischer Betreuer] Petermann, Christian [Akademischer Betreuer] Schäffer, and Lars [Akademischer Betreuer] Zimmermann. "Silicon micro-photonic implementation of parallel-serial filter to compensate residual dispersion in optical communication systems / Abdul Rahim. Gutachter: Christian Schäffer ; Lars Zimmermann. Betreuer: Klaus Petermann." Berlin : Technische Universität Berlin, 2014. http://d-nb.info/1068255781/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Beltrán, Ramírez Marta. "Photonic Techniques for Next-Generation Integrated Optical Networks Based on Ultra-Wideband Radio / Técnicas Fotónicas para Redes Ópticas Integradas de Próxima Generación Basadas en Radio de Banda Ultra Ancha." Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/15576.

Full text
Abstract:
La presenta Tesis Doctoral encuentra su ámbito de aplicación en redes de acceso ópticas de fibra hasta el hogar o FTTH (del inglés fibre-to-the-home). Las redes FTTH han sido ampliamente desplegadas en todo el mundo y se prevé que evolucionen hasta arquitecturas de multiplexación por división en longitud de onda o WDM(dle inglés wavelength division multiplexing). Conforme los requerimientos de capacidady ancho de banda por usuario para servicios de comunicación de banda ancha se incrementan continuamente, tecnologías tales como hybrid wireless-optical, radio de banda ultra ancha o UWB(del inglés ultra-wideband), y radio de onda milimétrica se están investigando como soluciones viables para proporcionar tasas de datos excediendo Gigabit por segundo por usuario. Las redes híbridas inalámbrico-óptico pueden proporcionar backhaul más simple y se prevé que desempeñen un papel importante en redes de acceso de próxima generación que requerirán despliegue flexible, alta capacidad, habilidad de ampliación, escalable en número de usuarios y demanda, y factible económicamente. Las técnicas radio sobre fibra combinadas con sistemas inalámbricos multigigabit que proporcionen capacidades comparables a sistemas de comunicaciones de fibra óptica se ve como una solución rápidamente desplegable y efectiva en coste para proporcionar acceso transparente cableado/inalámbrico integrado a servicios de banda ancha para el usuario final. Los sistemas inalámbricos UWB y de onda milimétrica son capaces de proporcionar comunicaciones multigigabit. UWB en particular permite un uso eficiente del esprectro 3.1-10.6 GHz debido a sus características únicas de coexistencia y tiene madurez de mercado. Sin embargo, la tecnología UWB está restringida por regulación en todo el mundo. Esta restricción de regulación hace de gran interés a la radio de onda milimétrica en 60 GHz debido al aproximadamente 7 GHz de ancho de banda regulado consistentemente en todo el mundo, sin restricciones de coexistencia.
Beltrán Ramírez, M. (2012). Photonic Techniques for Next-Generation Integrated Optical Networks Based on Ultra-Wideband Radio / Técnicas Fotónicas para Redes Ópticas Integradas de Próxima Generación Basadas en Radio de Banda Ultra Ancha [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/15576
Palancia
APA, Harvard, Vancouver, ISO, and other styles
48

Yeo, Inah. "A quantum dot in a photonic wire : spectroscopy and optomechanics." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENY076/document.

Full text
Abstract:
Dans cette thèse, nous avons étudié les propriétés optiques de boîtes quantiques InAs/GaAs contenues dans un fil photonique. Des résultats antérieurs à cette thèse ont montré que ces fils photoniques permettent d’extraire les photons avec une efficacité très élevée.Le premier résultat original de ce travail est l’observation de la dérive temporelle de la raie d’émission de la photoluminescence d’une boîte quantique. Cet effet a été attribué à la lente modification de la charge de surface du fil due à l’absorption des molécules d’oxygène présentes dans le vide résiduel du cryostat. Nous avons montré qu’une fine couche de Si3N4 permettait de supprimer cette dérive. La dérive temporelle pouvant être différente pour différentes boites quantiques, nous avons pu tirer partie de cet effet pour mettre en résonance deux boites quantiques contenues dans le même fil.Le deuxième résultat original est la mise en évidence de la modification de l’énergie d’émission d’une boîte quantique soumise à une contrainte mécanique induite par la vibration du fil. Nous avons observé que le spectre de la raie d’émission d’une boîte quantique s’élargit considérablement lorsque le fil est mécaniquement excité à sa fréquence de résonance. A l’aide d’une illumination stroboscopique synchronisée avec l’excitation mécanique, nous avons pu reconstruire l’évolution du spectre d’une boîte quantique au cours d’une période de la vibration mécanique. L’amplitude de l’oscillation spectrale de la raie de luminescence dépend de la position de la boîte dans le fil à cause d’un très fort gradient de contrainte. En utilisant deux modes d’oscillation mécanique de polarisations linéaires et orthogonales, nous pouvons extraire une cartographie complète de la position des boîtes quantiques à l’intérieur du fil. Enfin, grâce à ce gradient, on peut, dans certains cas, trouver une position du fil pour laquelle deux boites quantiques peuvent être amenées en résonance
In the framework of this thesis, single InAs/GaAs quantum dot devices were studied by optical means. Starting with a general description of self-assembled InAs QDs, two types of single QD devices were presented. The first approach was a tapered GaAs photonic wire embedding single InAs QDs whose efficiency as a single photon source was previously shown to be 90%. We investigated several optical properties of the single QDs. The charged and neutral states of the QD were identified and selectively excited using quasi-resonant excitation.The first original result of this thesis is the observation of a continuous temporal blue-drift of the QD emission energy. We attributed this blue drift to oxygen adsorption onto the sidewall of the wire, which modified the surface charge and hence the electric field seen by the QD. Moreover, we demonstrated that a proper coating of the GaAs photonic nanowire surface suppressed the drift. The temperature effect on this phenomenon revealed an adsorption peak around 20K, which corresponds to the adsorption of oxygen on GaAs. This observation is in good agreement with previous temperature studies with a tapered photonic wire. This was the first study of the spectral stability of photonic wires embedding QDs, crucial for resonant quantum optics experiments. As an alternative, we took advantage of this temporal drift to tune QD emission energies. In a controlled way, we tuned into resonance two different QDs which were embedded in the same photonic nanowire. In the last part of this work, we studied the influence of the stress on single QDs contained in a trumpet-like GaAs photonic wire. The main effect of stress is to shift the luminescence lines of a QD. We applied the stress by exciting mechanical vibration modes of the wire. When the wire is driven at its the mechanical resonance the time-integrated photoluminescence spectrum is broaden up to 1 meV owing to the oscillating stress, The measured spectral modulation is a first signature of strain-mediated coupling between a mechanical resonator and embedded QD single light emitter. With a stroboscopic technique, we isolated a certain phase of the oscillating wire and thereby selected a value of QD emission energies. As a highlight of our study, we managed to bring two different QDs contained in the same wire into resonance by controlling their relative phase. In addition, we could extract the 2D spatial positioning of embedded QDs from the spectral shifts observed for two orthogonal mechanical polarizations.. The investigation of the strain-mediated tuning of QDs can, therefore, be an effective tool to explore the QD positions without destroying the sample
APA, Harvard, Vancouver, ISO, and other styles
49

González, Insua Ignacio. "Optical generation of mm-wave signals for use in broadband radio over fiber systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-61253.

Full text
Abstract:
In future cellular radio networks Radio over Fiber (RoF) is a very attractive technology to deliver microwave and millimeter-wave signals containing broad band multimedia services to numerous base stations of the network. The radio signals are placed on an optical carrier and distributed by means of an optical fiber network to the base stations (BS). In the BS the optical signals heterodyne in a photodiode to produce the radio signals which are then sent via a wireless link to the mobile units (MU). The optical fiber network provides high frequency, wideband, low loss and a means of signal distribution immune to electromagnetic interference. In this thesis, different methods of electrooptical upconversion were investigated. The generation of an optical double-sideband with suppressed carrier (DSB-SC) signal is a straightforward method due to the fact that only one optical modulator driven at half the millimeter-wave frequency is required. One or both sidebands were ASK-modulated with baseband data rates of up to 10 Gbps. Optical single sideband modulation proves to be dispersion resilient as error free transmission was demonstrated after 53 km of single mode fiber transmission for data rates up to 10 Gbps. Wireless links up to 7 m were also demonstrated, proving the feasibility of this approach for broadband wireless inhouse access systems
Für zukünftige zellulare Funknetze ist „Radio over Fiber (RoF)“ eine sehr attraktive Technologie, um breitbandige Multimedia-Dienste mit Mikro- und Millimeterwellen zu übertragen. Die Funksignale werden dabei auf eine optische Trägerwelle aufmoduliert und mittels eines optischen Fasernetzes zu den Basisstationen (BS) verteilt. In den BS erfolgt die Überlagung der optischen Signale durch eine Fotodiode, um die Funksignale zu erzeugen. Diese werden dann über eine drahtlose Verbindung zu den beweglichen Multimedia-Endgeräten geschickt. Vorteile des optischen Fasernetzes sind Breitbandigkeit, geringe Dämpfung und eine gegenüber elektromagnetischen Störungen immune Signalverteilung. In dieser Arbeit werden verschiedene Methoden der elektrooptischen Aufwärtskonversion erforscht und die wichtigsten Eigenschaften dieser untersucht. Die Erzeugung eines optischen Zweiseitenbandsignales mit unterdrücktem Träger (DSB-SC) ist eine einfache Methode, da nur ein optischer Modulator, betrieben mit der halben elektrischen Trägerfrequenz, benötigt wird. Eine oder beide Seitenbänder konnten mit Bitraten bis zu 10 Gbps amplitudenmoduliert werden. Optische Einseitenbandmodulation ist extrem tolerant bezüglich der chromatischen Dispersion der Faser, wie die fehlerfreie Übertragung nach 53 km Glasfaser beweist. Drahtlose Links bis zu 7 m wurden realisiert und zeigen die Möglichkeit dieser Verfahren für breitbandige drahtlose Inhouse-Zugangssysteme
APA, Harvard, Vancouver, ISO, and other styles
50

Konrad, Alexander [Verfasser], and Alfred J. [Akademischer Betreuer] Meixner. "Nano-photonics on luminescent molecular systems and metal particles in optical sub-wavelength microresonators / Alexander Konrad ; Betreuer: Alfred J. Meixner." Tübingen : Universitätsbibliothek Tübingen, 2016. http://d-nb.info/1198122153/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography