Academic literature on the topic 'Open Hole Tensile Testing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Open Hole Tensile Testing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Open Hole Tensile Testing"

1

Sanei, Seyed HR, Andrew Arndt, and Randall Doles. "Open hole tensile testing of 3D printed continuous carbon fiber reinforced composites." Journal of Composite Materials 54, no. 20 (2020): 2687–95. http://dx.doi.org/10.1177/0021998320902510.

Full text
Abstract:
In this study, the effects of stress concentration on the tensile properties of a 3D printed carbon fiber-nylon composite were investigated. The samples were 3D printed with continuous carbon fiber and chopped fiber reinforced nylon. Samples were manufactured with four different open hole sizes as 3. 175 mm (⅛ in), 6.35 mm (¼ in), 9.25 mm (⅜ in), and 12.7 mm (½ in). Five samples were manufactured for each hole size group. Continuous carbon fibers were printed in the longitudinal direction. Additional reinforcements were placed around the periphery of the open hole. Samples were tested under uniaxial tension. The results were compared with the prediction of fracture mechanics theories namely Average and Point Stress Criteria. The results show that failure was initiated at the stress concentration region but the progression into the hole was prevented with the presence of continuous fiber. The experimental findings show that the samples with larger holes are more sensitive to discontinuity than the ones with smaller holes. The results confirm that 3D printing can be used to strengthen the parts at the discontinuity region to mitigate the effect of stress concentration.
APA, Harvard, Vancouver, ISO, and other styles
2

Bale, J. "Damage Behaviour and Stress Concentration Factor of Open Hole Tensile (OHT) Glass Fibre Reinforced Polymer (GFRP) Composites." International Journal of Automotive and Mechanical Engineering 16, no. 4 (2019): 7299–314. http://dx.doi.org/10.15282/ijame.16.4.2019.09.0543.

Full text
Abstract:
In many applications of composites, open-hole frequently includes for various purposes. However, further study on open-hole behaviour is still required, including on its strength and damage properties by combining experimental testing, real-time observations and calculations based on theoretical analysis and simulation model. The objective of this study is to understand the effect of an open-hole glass fibre reinforced polymer (GFRP) composites on tensile (static) properties, damage behaviour through Non-destructive Testing (NDT) Thermography and stress concentration factor (SCF). This study used an open-hole rectangular of GFRP specimens that fabricated by filament winding (FW) method and resin transfer moulding (RTM) method. It is found that the RTM specimens generate ≈ 170 % higher of tensile strength and ≈ 100 % higher of tensile modulus compared to the FW specimens. Infra-red (IR) camera shown the good detection on damage behaviour based on temperature increase at elastic and failure phase. Moreover, theoretical analysis and simulation results shown the good correlation where SCF reaches more than 4 times at the edge of the hole. This study concludes that open-hole on GFRP composites affects the tensile properties and generates damage marked by temperature increase and high SCF at the edge of the hole.
APA, Harvard, Vancouver, ISO, and other styles
3

Dave, Harshit K., Ashish R. Prajapati, Shilpesh R. Rajpurohit, Naushil H. Patadiya, and Harit K. Raval. "Open hole tensile testing of 3D printed parts using in-house fabricated PLA filament." Rapid Prototyping Journal 26, no. 1 (2020): 21–31. http://dx.doi.org/10.1108/rpj-01-2019-0003.

Full text
Abstract:
Purpose Fused deposition modeling (FDM) is being increasingly used in automotive and aerospace industries because of its ability to produce specimens having difficult geometrical shape. However, owing to lack of critical information regarding the reliability and mechanical properties of FDM-printed parts at various designs, the use of 3D printed parts in these industries is limited. Therefore, the purpose of this paper is to investigate the impact of process parameters of FDM on the tensile strength of open-hole specimen printed using in-house-fabricated polylactic acid (PLA). Design/methodology/approach In the present study, three process parameters, namely, raster angle, layer thickness and raster width, are selected for investigation of tensile strength. To produce the tensile specimens in the FDM machine, the PLA filament is used which is fabricated from PLA granules using a single-screw extruder. Further, the experimental values are measured and critically analysed. Failure modes under tests are studied using scanning electron microscopy (SEM). Findings Results indicate that the raster angle has a significant effect on the tensile strength of open-hole tensile specimen. Specimens built with 0° raster angle, 200-µm layer thickness and 500-µm raster width obtained maximum tensile strength. Originality/value In this work, a new concept of testing a plate that has a rectangular shape and a circular hole at the centre is tested. Open-hole tensile test standard ASTM D5766 has been implemented for the first time for the FDM process.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Xiao Qiong, Wei Guo Guo, and De Shuan Kong. "Damage Analysis of 2D Woven Composite Laminates Containing an Open-Hole under Tensile Loadings." Key Engineering Materials 525-526 (November 2012): 373–76. http://dx.doi.org/10.4028/www.scientific.net/kem.525-526.373.

Full text
Abstract:
In order to understand damage mechanism, the influences of lay-up construction of laminates and environgment on tension behavior of 2D woven composite laminates with an open-hole, which was manufactured by a new technology, uniaxial tension tests are performed in 3 different environments on 4 kinds of lay-up specimens, using a WE-50 electromechanical universal material testing machines. The fracture of specimens are analysed through micrographic observations. The result show that there is a large difference both in tensile strength and damage mechanism due to different kinds of lay-up specimens: 1) the tensile strength of specimens that only with ±45 degree laminated is much lower than other samples with different kinds of layup and its tensile stress-strain curves presents nonlinear; 2)The failure modes and damage mechanism determines the strength of specimens; 3)The change of environment had a certain effect on the mechanical behaviors of materials, in this paper, it will cause the tensile strength of speicmens decreasing.
APA, Harvard, Vancouver, ISO, and other styles
5

Strungar, Elena, Dmitrii Lobanov, and Valery Wildemann. "Evaluation of the Sensitivity of Various Reinforcement Patterns for Structural Carbon Fibers to Open Holes during Tensile Tests." Polymers 13, no. 24 (2021): 4287. http://dx.doi.org/10.3390/polym13244287.

Full text
Abstract:
This paper is devoted to the experimental study of polymeric composite specimens, with various types of reinforcement, in order to evaluate the breaking strength of specimens with open holes when undergoing uniaxial compression and tensile tests. Four types of interlaced 3D woven preforms were considered (orthogonal, orthogonal combined, with pairwise inter-layer reinforcement, and with pairwise inter-layer reinforcement and a longitudinal layer), with a layered preform used for comparison. Tensile tests of solid specimens without a hole, under ASTM D 3039, and of specimens with an open hole, under ASTM D 5766, were carried out using the Instron 5989 universal electromechanical testing system. Movements and strains on the specimen surface were recorded using a Vic-3D contactless optical video system and the digital images correlation method (DIC). For all the series of carbon fiber tension specimens, strain and stress diagrams, mechanical characteristics, and statistical processing for 10 specimens were obtained. The paper evaluated deformation fields for certain points in time; the obtained fields showed an irregular distribution of deformation and dependency on types of reinforcing fibers. A coefficient of strength variation is introduced, which is defined as a ratio of the ultimate stress limits obtained on solid samples with and without open holes. Within the framework of ASTM D 5766, when calculating the ultimate stress, the hole is not taken into account, and the paper shows that for certain structures a hole cannot be excluded. The hole size must not be neglected when calculating the ultimate stress.
APA, Harvard, Vancouver, ISO, and other styles
6

Hallett, Stephen R., Ben G. Green, Wen-Guang Jiang, Kin Hei Cheung, and Michael R. Wisnom. "The open hole tensile test: a challenge for virtual testing of composites." International Journal of Fracture 158, no. 2 (2009): 169–81. http://dx.doi.org/10.1007/s10704-009-9333-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bale, Jefri, Emmanuel Valot, Martine Monin, Olivier Polit, Claude Bathias, and Tresna Soemardi. "Tomography Observation of Fiber Reinforced Composites after Fatigue Testing." Applied Mechanics and Materials 799-800 (October 2015): 937–41. http://dx.doi.org/10.4028/www.scientific.net/amm.799-800.937.

Full text
Abstract:
This work presented an experimental study to observe the inside conditions and damage appearances of fiber reinforced composites material by non destructive testing (NDT) method. In order to achieve this, an open hole specimen of unidirectional glass fiber composite (GFRP) and discontinuous carbon fiber composite (DCFC) had been using as the specimen test under tensile fatigue loading and observed using post failure monitoring techniques of NDT namely computed tomography (CT) scan. The results shown that the tomography observation based on segmentation method of gray value gives a good detection on early damage appearances before final failure of GFRP and DCFC after tensile fatigue loading conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

Iragi, M., C. Pascual-González, A. Esnaola, et al. "Design, manufacturing and testing of 3D printed variable-stiffness laminates for improved open-hole tensile behaviour." Additive Manufacturing 63 (February 2023): 103418. http://dx.doi.org/10.1016/j.addma.2023.103418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bale, Jefri, Emmanuel Valot, Martine Monin, et al. "Damage Observation of Glass Fiber/Epoxy Composites Using Thermography and Supported by Acoustic Emission." Applied Mechanics and Materials 627 (September 2014): 187–90. http://dx.doi.org/10.4028/www.scientific.net/amm.627.187.

Full text
Abstract:
This work presents an experimental study to monitor the damage propagation of composite material by non destructive testing (NDT) method. In order to achieve this, an open hole condition of glass fiber/epoxy composite has been used as the specimen test under static tensile loading and observed using two different real-time monitoring techniques of NDT namely infra-red (IR) camera and supported by Acoustic Emission. The results show that the thermal response and acoustic emission signals give a good detection on damage appearance and damage propagation of glass fiber/epoxy composite under static tensile loading conditions.
APA, Harvard, Vancouver, ISO, and other styles
10

Farrow, I. R., J. Lee, and C. D. Kong. "Flexural Testing of Composite Laminates for Drilling Trial Assessment." Advanced Composites Letters 9, no. 4 (2000): 096369350000900. http://dx.doi.org/10.1177/096369350000900403.

Full text
Abstract:
This work presents a study of flexural testing as a convenient method for ranking drilling trials of composite materials. The work includes an experimental study of drilling parameter effects on composite laminate hole quality as measured by static tension, compression and flexural open hole tests. Flexural testing and results processed in terms of the outermost 0° layer provides a consistent ranking of holes drilled with different process parameters despite only subtle changes in static notched strength for the thick composite samples tested. Specific observations from flexural tests are consistent with current drilling practices in terms of best process parameter settings and the method shows sufficient sensitivity to distinguish between the effects of drill-entry and drill-exit damage and subtle changes in lay-up.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography