Academic literature on the topic 'On device AI'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'On device AI.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "On device AI"
Kulsha, A. Y., M. A. Klimovich, M. V. Sterjanov, V. N. Tesluk, and N. G. Egorova. "Mechatronic device of AI systems." Doklady BGUIR 18, no. 4 (June 25, 2020): 28–35. http://dx.doi.org/10.35596/1729-7648-2020-18-4-28-35.
Full textMohd Shith Putera, Nurus Sakinatul Fikriah, Sarah Munirah Abdullah, Noraiza Abdul Rahman, Rafizah Abu Hassan, Hartini Saripan, and Imam Haryanto. "Malaysian Medical Device Regulation for Artificial Intelligence in Healthcare: Have all the pieces fallen into position?" Environment-Behaviour Proceedings Journal 6, no. 16 (March 28, 2021): 137–44. http://dx.doi.org/10.21834/ebpj.v6i16.2635.
Full textHernandez-Boussard, Tina, Matthew P. Lundgren, and Nigam Shah. "Conflicting information from the Food and Drug Administration: Missed opportunity to lead standards for safe and effective medical artificial intelligence solutions." Journal of the American Medical Informatics Association 28, no. 6 (March 1, 2021): 1353–55. http://dx.doi.org/10.1093/jamia/ocab035.
Full textGutierrez, Gregory M., and Thomas Kaminski. "A Novel Dynamic Ankle-Supinating Device." Journal of Applied Biomechanics 26, no. 1 (February 2010): 114–21. http://dx.doi.org/10.1123/jab.26.1.114.
Full textKohno, Hiroki, Goro Matsumiya, Yoshiki Sawa, Norihide Fukushima, Yoshikatsu Saiki, Akira Shiose, and Minoru Ono. "Can the intermittent low-speed function of left ventricular assist device prevent aortic insufficiency?" Journal of Artificial Organs 24, no. 2 (January 9, 2021): 191–98. http://dx.doi.org/10.1007/s10047-020-01234-4.
Full textZoppo, Gianluca, Francesco Marrone, Monica Pittarello, Marco Farina, Alberto Uberti, Danilo Demarchi, Jacopo Secco, Fernando Corinto, and Elia Ricci. "AI technology for remote clinical assessment and monitoring." Journal of Wound Care 29, no. 12 (December 2, 2020): 692–706. http://dx.doi.org/10.12968/jowc.2020.29.12.692.
Full textZwiefelhofer, E. M., S. X. Yang, M. Asai-Coakwell, M. G. Colazo, J. Hellquist, M. L. Zwiefelhofer, M. Anzar, and G. P. Adams. "118 A comparison of intravaginal progesterone devices for fixed-time artificial insemination in beef cattle." Reproduction, Fertility and Development 33, no. 2 (2021): 167. http://dx.doi.org/10.1071/rdv33n2ab118.
Full textZwiefelhofer, E. M., S. X. Yang, M. Asai-Coakwell, M. G. Colazo, J. Hellquist, M. L. Zwiefelhofer, M. Anzar, and G. P. Adams. "118 A comparison of intravaginal progesterone devices for fixed-time artificial insemination in beef cattle." Reproduction, Fertility and Development 33, no. 2 (2021): 167. http://dx.doi.org/10.1071/rdv33n2ab118.
Full textLópez-Helguera, Irene, Fernando López-Gatius, Irina Garcia-Ispierto, Beatriz Serrano-Perez, and Marcos G. Colazo. "Effect of PRID-Delta devices associated with shortened estrus synchronization protocols on estrous response and fertility in dairy cows." Annals of Animal Science 17, no. 3 (July 26, 2017): 757–70. http://dx.doi.org/10.1515/aoas-2016-0083.
Full textPark, Seong Ho, Jaesoon Choi, and Jeong-Sik Byeon. "Key principles of clinical validation, device approval, and insurance coverage decisions of artificial intelligence." Journal of the Korean Medical Association 63, no. 11 (November 10, 2020): 696–708. http://dx.doi.org/10.5124/jkma.2020.63.11.696.
Full textDissertations / Theses on the topic "On device AI"
TRIACCA, SERENA. "DIDATTICA DELL'IMMAGINE. DALLA FOTOGRAFIA AI DIGITAL DEVICE." Doctoral thesis, Università Cattolica del Sacro Cuore, 2016. http://hdl.handle.net/10280/10969.
Full textThis research project aims to focus on the need of conscious pictures' integration into the teaching and learning activities (TLA) and to base the use at a neuroscientific level. The teacher usually adopts visuals to support oral presentations, to make the concepts clear and situated, to facilitate focusing of relevant elements. Studies on the visual brain (mainly referring to the recent theory of vision by neurobiologist Semir Zeki) validate what the teacher has always known: providing learners with visuals of a particular concept, theme, topic supports the brain's work, normally engaged in looking for the essential, within the non-stop flow of the world. The teacher's representations would enable the pupils' brain to work on a simplified scenario, facilitating the understanding of the object of teaching. However, certain kinds of images do not reduce the complexity, because of their "semantic ambiguity": many interpretations would be possible, all equally strong. The teacher could take advantage of this feature in order to turn on the curiosity, to encourage the discussion, the reflective thinking or interpretative hypothesis. Through four case studies, we aimed to explore the actual use of photography in primary school. Starting from the pedagogical reflections about the cases, the research intends to increase the educational research's awareness about the use of photographic images in the classroom, sug-gesting some tips for designing TLA and developing a review of appropriate digital apps.
Kim, Sun Ho. "Role of AI-2 in oral biofilm formation using microfluidic devices." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2665.
Full textBjörklund, Pernilla. "The curious case of artificial intelligence : An analysis of the relationship between the EU medical device regulations and algorithmic decision systems used within the medical domain." Thesis, Uppsala universitet, Juridiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-442122.
Full textMilette, Greg P. "Analogical matching using device-centric and environment-centric representations of function." Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-050406-145255/.
Full textKeywords: Analogy, Design, Functional Modeling, Functional Reasoning, Knowledge Representation, Repertory Grid, SME, Structure Mapping Engine, AI in design. Includes bibliographical references (p.106).
Ringenson, Josefin. "Efficiency of CNN on Heterogeneous Processing Devices." Thesis, Linköpings universitet, Programvara och system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-155034.
Full textHettiarachchi, Salinda. "Analysis of different face detection andrecognition models for Android." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42446.
Full textNardello, Matteo. "Low-Power Smart Devices for the IoT Revolution." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/274371.
Full textFredriksson, Tomas, and Rickard Svensson. "Analysis of machine learning for human motion pattern recognition on embedded devices." Thesis, KTH, Mekatronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-246087.
Full textAntalet uppkopplade enheter ökar och det senaste uppsvinget av ar-tificiell intelligens driver forskningen framåt till att kombinera de två teknologierna för att både förbättra existerande produkter och utveckla nya. Maskininlärning är traditionellt sett implementerat på kraftfulla system så därför undersöker den här masteruppsatsen potentialen i att utvidga maskininlärning till att köras på inbyggda system. Den här undersökningen av existerande maskinlärningsalgoritmer, implemen-terade på begränsad hårdvara, har utförts med fokus på att klassificera grundläggande mänskliga rörelser. Tidigare forskning och implemen-tation visar på att det ska vara möjligt med vissa begränsningar. Den här uppsatsen vill svara på vilken hårvarubegränsning som påverkar klassificering mest samt vilken klassificeringsgrad systemet kan nå på den begränsande hårdvaran. Testerna inkluderade mänsklig rörelsedata från ett existerande dataset och inkluderade fyra olika maskininlärningsalgoritmer på tre olika system. SVM presterade bäst i jämförelse med CART, Random Forest och AdaBoost. Den nådde en klassifikationsgrad på 84,69% på de sex inkluderade rörelsetyperna med en klassifikationstid på 16,88 ms per klassificering på en Cortex M processor. Detta är samma klassifikations-grad som en vanlig persondator når med betydligt mer beräknings-resurserresurser. Andra hårdvaru- och algoritm-kombinationer visar en liten minskning i klassificeringsgrad och ökning i klassificeringstid. Slutsatser kan dras att minnet på det inbyggda systemet påverkar vilka algoritmer som kunde köras samt komplexiteten i datan som kunde extraheras i form av attribut (features). Processeringshastighet påverkar mest klassificeringstid. Slutligen är prestandan för maskininlärningsy-stemet bunden till typen av data som ska klassificeras, vilket betyder att olika uppsättningar av algoritmer och hårdvara påverkar prestandan olika beroende på användningsområde.
Arnesson, Pontus, and Johan Forslund. "Edge Machine Learning for Wildlife Conservation : Detection of Poachers Using Camera Traps." Thesis, Linköpings universitet, Reglerteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177483.
Full textChen, Wei-Hao, and 陳韋豪. "Circuit Techniques for energy-efficient ReRAM based Non-volatile computing-in-memory macros in AI edge device." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/xk7ux3.
Full textBooks on the topic "On device AI"
Majer, Katalin, and Luigi Sirianni, eds. Azienda Ospedaliera Universitaria Meyer. Attività sanitaria e scientifica 2011. Florence: Firenze University Press, 2013. http://dx.doi.org/10.36253/978-88-6655-378-6.
Full textMajer, Katalin, and Luigi Sirianni, eds. Azienda Ospedaliera Universitaria Meyer. Florence: Firenze University Press, 2015. http://dx.doi.org/10.36253/978-88-6655-831-6.
Full textThielscher, Michael. AI 2012: Advances in Artificial Intelligence: 25th Australasian Joint Conference, Sydney, Australia, December 4-7, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textVassilis, Plagianakos, Vlahavas Ioannis, and SpringerLink (Online service), eds. Artificial Intelligence: Theories and Applications: 7th Hellenic Conference on AI, SETN 2012, Lamia, Greece, May 28-31, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textPavón, Juan. Advances in Artificial Intelligence – IBERAMIA 2012: 13th Ibero-American Conference on AI, Cartagena de Indias, Colombia, November 13-16, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textDiana, Inkpen, and SpringerLink (Online service), eds. Advances in Artificial Intelligence: 25th Canadian Conference on Artificial Intelligence, Canadian AI 2012, Toronto, ON, Canada, May 28-30, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textSandra, Zilles, and SpringerLink (Online service), eds. Advances in Artificial Intelligence: 26th Canadian Conference on Artificial Intelligence, Canadian AI 2013, Regina, SK, Canada, May 28-31, 2013. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Find full textExplore AI: Smart Devices. Hachette Children's Group, 2021.
Find full textBoden, Margaret A. 5. Robots and artificial life. Oxford University Press, 2018. http://dx.doi.org/10.1093/actrade/9780199602919.003.0005.
Full textBaecker, Ronald M. Computers and Society. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198827085.001.0001.
Full textBook chapters on the topic "On device AI"
Bowley, Sarah Jean, and Kathryn Merrick. "A ‘Breadcrumbs’ Model for Controlling an Intrinsically Motivated Swarm Using a Handheld Device." In AI 2017: Advances in Artificial Intelligence, 157–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63004-5_13.
Full textAnceschi, Emiliano, Gianluca Bonifazi, Massimo Callisto De Donato, Enrico Corradini, Domenico Ursino, and Luca Virgili. "SaveMeNow.AI: A Machine Learning Based Wearable Device for Fall Detection in a Workplace." In Enabling AI Applications in Data Science, 493–514. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52067-0_22.
Full textMeitiner, Philip, and Pradeeka Seneviratne. "Connecting an Edge Device to the IoT Application." In Beginning Data Science, IoT, and AI on Single Board Computers, 275–93. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-5766-1_12.
Full textVoznenko, Timofei I., Alexander A. Gridnev, Eugene V. Chepin, and Konstantin Y. Kudryavtsev. "Comparison Between Coordinated Control and Interpretation Methods for Multi-channel Control of a Mobile Robotic Device." In Brain-Inspired Cognitive Architectures for Artificial Intelligence: BICA*AI 2020, 558–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-65596-9_68.
Full textMammas, Constantinos S., and Adamantia S. Mamma. "Prometheus I (PN 1008239) Digital Medical Device Integrated with AI and Robotics Cognitive Ergonomics in Breast Cancer Prevention." In Advances in Intelligent Systems and Computing, 141–49. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66937-9_16.
Full textMammas, Constantinos S., and Adamantia S. Mamma. "Prometheus (PN-2003016) Digital Medical Device Collaborative E-Training and Cognitive Ergonomics to Integrate AI and Robotics in Organ Transplantations." In Advances in Intelligent Systems and Computing, 129–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66937-9_15.
Full textPachore, M. V., and S. S. Shirguppikar. "Covid-19 or Viral Pneumonia Detection Using AI Tools." In Handbook of Smart Materials, Technologies, and Devices, 1–12. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58675-1_136-1.
Full textKulkarni, Uday, S. M. Meena, Sunil V. Gurlahosur, Pratiksha Benagi, Atul Kashyap, Ayub Ansari, and Vinay Karnam. "AI Model Compression for Edge Devices Using Optimization Techniques." In Studies in Computational Intelligence, 227–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68291-0_17.
Full textLee, Kai-Fu. "A Human Blueprint for AI Coexistence." In Robotics, AI, and Humanity, 261–69. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54173-6_22.
Full textMdhaffar, Afef, Fedi Cherif, Yousri Kessentini, Manel Maalej, Jihen Ben Thabet, Mohamed Maalej, Mohamed Jmaiel, and Bernd Freisleben. "DL4DED: Deep Learning for Depressive Episode Detection on Mobile Devices." In How AI Impacts Urban Living and Public Health, 109–21. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-32785-9_10.
Full textConference papers on the topic "On device AI"
Zhang, Zhen, Ning Zhang, Hongzhuang Guo, Zhe Wang, and Yuanhua Yu. "An early kidney injury rapid detection device." In AI in Optics and Photonics, edited by Jun Tanida, Yadong Jiang, Dong Liu, John Greivenkamp, HaiMei Gong, and Jin Lu. SPIE, 2019. http://dx.doi.org/10.1117/12.2539380.
Full text"DG03 - Device Reliability Constraints for AI." In 2020 IEEE International Integrated Reliability Workshop (IIRW). IEEE, 2020. http://dx.doi.org/10.1109/iirw49815.2020.9312872.
Full textKojima, Keisuke, Yingheng Tang, Toshiaki Koike-Akino, Ye Wang, Devesh K. Jha, Mohammad Tahersima, and Kieran Parsons. "Application of deep learning for nanophotonic device design." In AI and Optical Data Sciences II, edited by Ken-ichi Kitayama and Bahram Jalali. SPIE, 2021. http://dx.doi.org/10.1117/12.2579104.
Full textFlores, Huber, Petteri Nurmi, and Pan Hui. "AI-Powered Multi-Device Systems and Applications." In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 2019. http://dx.doi.org/10.1109/percomw.2019.8730582.
Full textFlores, Huber, Petteri Nurmi, and Pan Hui. "AI on the Move: From On-Device to On-Multi-Device." In 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 2019. http://dx.doi.org/10.1109/percomw.2019.8730873.
Full textAhmad, Sagheer, Sridhar Subramanian, Vamsi Boppana, Shankar Lakka, Fu-Hing Ho, Tomai Knopp, Juanjo Noguera, Gaurav Singh, and Ralph Wittig. "Xilinx First 7nm Device: Versal AI Core (VC1902)." In 2019 IEEE Hot Chips 31 Symposium (HCS). IEEE, 2019. http://dx.doi.org/10.1109/hotchips.2019.8875639.
Full textEleftheriou, Evangelos. "“In-memory Computing”: Accelerating AI Applications." In 48th European Solid-State Device Research Conference (ESSDERC 2018). IEEE, 2018. http://dx.doi.org/10.1109/essderc.2018.8486900.
Full textHou, Dennis, Tuo Liu, Yen-Ting Pan, and Janpu Hou. "AI on edge device for laser chip defect detection." In 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, 2019. http://dx.doi.org/10.1109/ccwc.2019.8666503.
Full textNokovic, Bojan, and Shucai Yao. "Image Enhancement by Jetson TX2 Embedded AI Computing Device." In 2019 8th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2019. http://dx.doi.org/10.1109/meco.2019.8760100.
Full textAtmaja, Prajogo, Dalta Imam Maulana, and Trio Adiono. "AI-based Customer Behavior Analytics System using Edge Computing Device." In 2020 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, 2020. http://dx.doi.org/10.1109/iceic49074.2020.9051138.
Full textReports on the topic "On device AI"
Sayers, Dave, Rui Sousa-Silva, Sviatlana Höhn, Lule Ahmedi, Kais Allkivi-Metsoja, Dimitra Anastasiou, Štefan Beňuš, et al. The Dawn of the Human-Machine Era: A forecast of new and emerging language technologies. Open Science Centre, University of Jyväskylä, May 2021. http://dx.doi.org/10.17011/jyx/reports/20210518/1.
Full text