Journal articles on the topic 'Omic network inference'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Omic network inference.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Nagpal, Sunil, Rashmi Singh, Deepak Yadav, and Sharmila S. Mande. "MetagenoNets: comprehensive inference and meta-insights for microbial correlation networks." Nucleic Acids Research 48, W1 (April 27, 2020): W572—W579. http://dx.doi.org/10.1093/nar/gkaa254.
Full textDohlman, Anders B., and Xiling Shen. "Mapping the microbial interactome: Statistical and experimental approaches for microbiome network inference." Experimental Biology and Medicine 244, no. 6 (March 16, 2019): 445–58. http://dx.doi.org/10.1177/1535370219836771.
Full textRamos, Susana Isabel, Zarmeen Mussa, Bruno Giotti, Alexander Tsankov, and Nadejda Tsankova. "EPCO-25. MULTI-OMIC ANALYSIS OF THE GLIOBLASTOMA EPIGENOME AND TRANSCRIPTOME INFORMS OF MIGRATORY INTERNEURON-LIKE DEVELOPMENTAL REGULATORS." Neuro-Oncology 24, Supplement_7 (November 1, 2022): vii121. http://dx.doi.org/10.1093/neuonc/noac209.460.
Full textGrund, Eric M., A. James Moser, Corinne L. DeCicco, Nischal M. Chand, Genesis L. Perez-Melara, Gregory M. Miller, Punit Shah, et al. "Abstract 5145: Project Survival®: Discovery of a molecular-clinical phenome biomarker panel to detect pancreatic ductal adenocarcinoma among at risk populations using high-fidelity longitudinal phenotypic and multi-omic analysis." Cancer Research 82, no. 12_Supplement (June 15, 2022): 5145. http://dx.doi.org/10.1158/1538-7445.am2022-5145.
Full textNathasingh, Brandon, Derek Walkama, Laurel Mayhew, Kendall Loh, Jeanne Latourelle, Bruce W. Church, and Yaoyu E. Wang. "Abstract LB181: Infer cancer cell gene dependency in multiple myeloma using causal AI in-silico patient model." Cancer Research 83, no. 8_Supplement (April 14, 2023): LB181. http://dx.doi.org/10.1158/1538-7445.am2023-lb181.
Full textYe, Qing, and Nancy Lan Guo. "Inferencing Bulk Tumor and Single-Cell Multi-Omics Regulatory Networks for Discovery of Biomarkers and Therapeutic Targets." Cells 12, no. 1 (December 26, 2022): 101. http://dx.doi.org/10.3390/cells12010101.
Full textAlanis-Lobato, Gregorio, Thomas E. Bartlett, Qiulin Huang, Claire S. Simon, Afshan McCarthy, Kay Elder, Phil Snell, Leila Christie, and Kathy K. Niakan. "MICA: a multi-omics method to predict gene regulatory networks in early human embryos." Life Science Alliance 7, no. 1 (October 25, 2023): e202302415. http://dx.doi.org/10.26508/lsa.202302415.
Full textWang, Pei. "Network biology: Recent advances and challenges." Gene & Protein in Disease 1, no. 2 (October 6, 2022): 101. http://dx.doi.org/10.36922/gpd.v1i2.101.
Full textYan, Yan, Feng Jiang, Xinan Zhang, and Tianhai Tian. "Inference of Molecular Regulatory Systems Using Statistical Path-Consistency Algorithm." Entropy 24, no. 5 (May 13, 2022): 693. http://dx.doi.org/10.3390/e24050693.
Full textBonnet, Eric, Laurence Calzone, and Tom Michoel. "Integrative Multi-omics Module Network Inference with Lemon-Tree." PLOS Computational Biology 11, no. 2 (February 13, 2015): e1003983. http://dx.doi.org/10.1371/journal.pcbi.1003983.
Full textWang, Huange, Joao Paulo, Willem Kruijer, Martin Boer, Hans Jansen, Yury Tikunov, Björn Usadel, Sjaak van Heusden, Arnaud Bovy, and Fred van Eeuwijk. "Genotype–phenotype modeling considering intermediate level of biological variation: a case study involving sensory traits, metabolites and QTLs in ripe tomatoes." Molecular BioSystems 11, no. 11 (2015): 3101–10. http://dx.doi.org/10.1039/c5mb00477b.
Full textZarayeneh, Neda, Euiseong Ko, Jung Hun Oh, Sang Suh, Chunyu Liu, Jean Gao, Donghyun Kim, and Mingon Kang. "Integration of multi-omics data for integrative gene regulatory network inference." International Journal of Data Mining and Bioinformatics 18, no. 3 (2017): 223. http://dx.doi.org/10.1504/ijdmb.2017.087178.
Full textKang, Mingon, Donghyun Kim, Jean Gao, Chunyu Liu, Sang Suh, Jung Hun Oh, Neda Zarayeneh, and Euiseong Ko. "Integration of multi-omics data for integrative gene regulatory network inference." International Journal of Data Mining and Bioinformatics 18, no. 3 (2017): 223. http://dx.doi.org/10.1504/ijdmb.2017.10008266.
Full textHu, Xinlin, Yaohua Hu, Fanjie Wu, Ricky Wai Tak Leung, and Jing Qin. "Integration of single-cell multi-omics for gene regulatory network inference." Computational and Structural Biotechnology Journal 18 (2020): 1925–38. http://dx.doi.org/10.1016/j.csbj.2020.06.033.
Full textPeñagaricano, F. "S0101 Causal inference of molecular networks integrating multi-omics data." Journal of Animal Science 94, suppl_4 (September 1, 2016): 2. http://dx.doi.org/10.2527/jas2016.94supplement42a.
Full textPeñagaricano, F. "0412 Causal inference of molecular networks integrating multi-omics data." Journal of Animal Science 94, suppl_5 (October 1, 2016): 199–200. http://dx.doi.org/10.2527/jam2016-0412.
Full textSun, Xiaoqiang, Ji Zhang, and Qing Nie. "Inferring latent temporal progression and regulatory networks from cross-sectional transcriptomic data of cancer samples." PLOS Computational Biology 17, no. 3 (March 5, 2021): e1008379. http://dx.doi.org/10.1371/journal.pcbi.1008379.
Full textGao, Wenliang, Wei Kong, Shuaiqun Wang, Gen Wen, and Yaling Yu. "Biomarker Genes Discovery of Alzheimer’s Disease by Multi-Omics-Based Gene Regulatory Network Construction of Microglia." Brain Sciences 12, no. 9 (September 5, 2022): 1196. http://dx.doi.org/10.3390/brainsci12091196.
Full textFederico, Anthony, Joseph Kern, Xaralabos Varelas, and Stefano Monti. "Structure Learning for Gene Regulatory Networks." PLOS Computational Biology 19, no. 5 (May 18, 2023): e1011118. http://dx.doi.org/10.1371/journal.pcbi.1011118.
Full textCha, Junha, and Insuk Lee. "Single-cell network biology for resolving cellular heterogeneity in human diseases." Experimental & Molecular Medicine 52, no. 11 (November 2020): 1798–808. http://dx.doi.org/10.1038/s12276-020-00528-0.
Full textCapobianco, Enrico. "Next Generation Networks: Featuring the Potential Role of Emerging Applications in Translational Oncology." Journal of Clinical Medicine 8, no. 5 (May 11, 2019): 664. http://dx.doi.org/10.3390/jcm8050664.
Full textHan, Xudong, Bing Wang, Chenghao Situ, Yaling Qi, Hui Zhu, Yan Li, and Xuejiang Guo. "scapGNN: A graph neural network–based framework for active pathway and gene module inference from single-cell multi-omics data." PLOS Biology 21, no. 11 (November 13, 2023): e3002369. http://dx.doi.org/10.1371/journal.pbio.3002369.
Full textKim, So Yeon, Eun Kyung Choe, Manu Shivakumar, Dokyoon Kim, and Kyung-Ah Sohn. "Multi-layered network-based pathway activity inference using directed random walks: application to predicting clinical outcomes in urologic cancer." Bioinformatics 37, no. 16 (February 5, 2021): 2405–13. http://dx.doi.org/10.1093/bioinformatics/btab086.
Full textVincent, Jonathan, Pierre Martre, Benjamin Gouriou, Catherine Ravel, Zhanwu Dai, Jean-Marc Petit, and Marie Pailloux. "RulNet: A Web-Oriented Platform for Regulatory Network Inference, Application to Wheat –Omics Data." PLOS ONE 10, no. 5 (May 19, 2015): e0127127. http://dx.doi.org/10.1371/journal.pone.0127127.
Full textSchneider, Nimisha, Sergey Korkhov, Alexis Foroozan, Scott Marshall, and Renee Deehan. "Causal inferencing of -omics data from The Cancer Genome Atlas: Lung adenocarcinoma tumors for mechanistic disease characterization and feature engineering." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e21016-e21016. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e21016.
Full textYuan, Lin, Le-Hang Guo, Chang-An Yuan, Youhua Zhang, Kyungsook Han, Asoke K. Nandi, Barry Honig, and De-Shuang Huang. "Integration of Multi-Omics Data for Gene Regulatory Network Inference and Application to Breast Cancer." IEEE/ACM Transactions on Computational Biology and Bioinformatics 16, no. 3 (May 1, 2019): 782–91. http://dx.doi.org/10.1109/tcbb.2018.2866836.
Full textPanchal, Viral, and Daniel F. Linder. "Reverse engineering gene networks using global–local shrinkage rules." Interface Focus 10, no. 1 (December 13, 2019): 20190049. http://dx.doi.org/10.1098/rsfs.2019.0049.
Full textChen, Chen, Enakshi Saha, Dawn L. DeMeo, John Quackenbush, and Camila M. Lopes-Ramos. "Abstract 3490: Unveiling sex differences in lung adenocarcinoma through multi-omics integrative protein signaling networks." Cancer Research 84, no. 6_Supplement (March 22, 2024): 3490. http://dx.doi.org/10.1158/1538-7445.am2024-3490.
Full textWani, Nisar, and Khalid Raza. "MKL-GRNI: A parallel multiple kernel learning approach for supervised inference of large-scale gene regulatory networks." PeerJ Computer Science 7 (January 28, 2021): e363. http://dx.doi.org/10.7717/peerj-cs.363.
Full textQian, Yichun, and Shao-shan Carol Huang. "Improving plant gene regulatory network inference by integrative analysis of multi-omics and high resolution data sets." Current Opinion in Systems Biology 22 (August 2020): 8–15. http://dx.doi.org/10.1016/j.coisb.2020.07.010.
Full textBenedetti, Elisa, Nathalie Gerstner, Maja Pučić-Baković, Toma Keser, Karli R. Reiding, L. Renee Ruhaak, Tamara Štambuk, et al. "Systematic Evaluation of Normalization Methods for Glycomics Data Based on Performance of Network Inference." Metabolites 10, no. 7 (July 2, 2020): 271. http://dx.doi.org/10.3390/metabo10070271.
Full textConard, Ashley Mae, Nathaniel Goodman, Yanhui Hu, Norbert Perrimon, Ritambhara Singh, Charles Lawrence, and Erica Larschan. "TIMEOR: a web-based tool to uncover temporal regulatory mechanisms from multi-omics data." Nucleic Acids Research 49, W1 (June 14, 2021): W641—W653. http://dx.doi.org/10.1093/nar/gkab384.
Full textZeng, Irene Sui Lan, and Thomas Lumley. "Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science)." Bioinformatics and Biology Insights 12 (January 1, 2018): 117793221875929. http://dx.doi.org/10.1177/1177932218759292.
Full textNeutsch, Steffen, Caroline Heneka, and Marcus Brüggen. "Inferring astrophysics and dark matter properties from 21 cm tomography using deep learning." Monthly Notices of the Royal Astronomical Society 511, no. 3 (January 29, 2022): 3446–62. http://dx.doi.org/10.1093/mnras/stac218.
Full textUltsch, Alfred, and Jörn Lötsch. "Robust Classification Using Posterior Probability Threshold Computation Followed by Voronoi Cell Based Class Assignment Circumventing Pitfalls of Bayesian Analysis of Biomedical Data." International Journal of Molecular Sciences 23, no. 22 (November 15, 2022): 14081. http://dx.doi.org/10.3390/ijms232214081.
Full textYang, Jiyuan, Sheetal Bhatara, Masayuki Umeda, Shanshan Bradford, SongEun Lim, Tamara Westover, Jing Ma, Lauren Ezzell, Jeffery Klco, and Jiyang Yu. "Dissecting Subtype-Specific Tumor-Time Interactions and Underlying Hidden Drivers in Pediatric Acute Myeloid Leukemia Via Single-Cell Multi-Omics." Blood 142, Supplement 1 (November 28, 2023): 5977. http://dx.doi.org/10.1182/blood-2023-189178.
Full textFang, Yan, Jiayin Yu, Yumei Ding, and Xiaohua Lin. "Inferring Complementary and Substitutable Products Based on Knowledge Graph Reasoning." Mathematics 11, no. 22 (November 20, 2023): 4709. http://dx.doi.org/10.3390/math11224709.
Full textKlepikova, Anna V., and Aleksey A. Penin. "Gene Expression Maps in Plants: Current State and Prospects." Plants 8, no. 9 (August 28, 2019): 309. http://dx.doi.org/10.3390/plants8090309.
Full textChen, Xi, Yuan Wang, Antonio Cappuccio, Wan-Sze Cheng, Frederique Ruf Zamojski, Venugopalan D. Nair, Clare M. Miller, et al. "Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data." Nature Computational Science 3, no. 7 (July 25, 2023): 644–57. http://dx.doi.org/10.1038/s43588-023-00476-5.
Full textGuo, Tingbo, Haiqi Zhu, Xiao Wang, Jia Wang, Xinyu Zhou, Yuhui Wei, Pengtao Dang, Chi Zhang, and Sha Cao. "Abstract 2072: Computational modeling of metabolic variations in tumor microenvironment." Cancer Research 83, no. 7_Supplement (April 4, 2023): 2072. http://dx.doi.org/10.1158/1538-7445.am2023-2072.
Full textJin, Qiao, and Ronald Ching Wan Ma. "Metabolomics in Diabetes and Diabetic Complications: Insights from Epidemiological Studies." Cells 10, no. 11 (October 21, 2021): 2832. http://dx.doi.org/10.3390/cells10112832.
Full textSchwaber, Jessica L., Darren Korbie, Stacey Andersen, Erica Lin, Panagiotis K. Chrysanthopoulos, Matt Trau, and Lars K. Nielsen. "Network mapping of primary CD34+ cells by Ampliseq based whole transcriptome targeted resequencing identifies unexplored differentiation regulatory relationships." PLOS ONE 16, no. 2 (February 5, 2021): e0246107. http://dx.doi.org/10.1371/journal.pone.0246107.
Full textMajumdar, Abhishek, Yueze Liu, Yaoqin Lu, Shaofeng Wu, and Lijun Cheng. "kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression." Genes 12, no. 6 (May 30, 2021): 844. http://dx.doi.org/10.3390/genes12060844.
Full textClark, Natalie M., Trevor M. Nolan, Ping Wang, Gaoyuan Song, Christian Montes, Conner T. Valentine, Hongqing Guo, Rosangela Sozzani, Yanhai Yin, and Justin W. Walley. "Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis." Nature Communications 12, no. 1 (October 6, 2021). http://dx.doi.org/10.1038/s41467-021-26165-3.
Full textBen Guebila, Marouen, Tian Wang, Camila M. Lopes-Ramos, Viola Fanfani, Des Weighill, Rebekka Burkholz, Daniel Schlauch, et al. "The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks." Genome Biology 24, no. 1 (March 9, 2023). http://dx.doi.org/10.1186/s13059-023-02877-1.
Full textKim, Daniel, Andy Tran, Hani Jieun Kim, Yingxin Lin, Jean Yee Hwa Yang, and Pengyi Yang. "Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data." npj Systems Biology and Applications 9, no. 1 (October 19, 2023). http://dx.doi.org/10.1038/s41540-023-00312-6.
Full textFotuhi Siahpirani, Alireza, Sara Knaack, Deborah Chasman, Morten Seirup, Rupa Sridharan, Ron Stewart, James Thomson, and Sushmita Roy. "Dynamic regulatory module networks for inference of cell type-specific transcriptional networks." Genome Research, June 15, 2022, gr.276542.121. http://dx.doi.org/10.1101/gr.276542.121.
Full textOgris, Christoph, Yue Hu, Janine Arloth, and Nikola S. Müller. "Versatile knowledge guided network inference method for prioritizing key regulatory factors in multi-omics data." Scientific Reports 11, no. 1 (March 24, 2021). http://dx.doi.org/10.1038/s41598-021-85544-4.
Full textCapobianco, Enrico, Elisabetta Marras, and Antonella Travaglione. "Multiscale Characterization of Signaling Network Dynamics through Features." Statistical Applications in Genetics and Molecular Biology 10, no. 1 (January 20, 2011). http://dx.doi.org/10.2202/1544-6115.1657.
Full textZhang, Shilu, Saptarshi Pyne, Stefan Pietrzak, Spencer Halberg, Sunnie Grace McCalla, Alireza Fotuhi Siahpirani, Rupa Sridharan, and Sushmita Roy. "Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets." Nature Communications 14, no. 1 (May 27, 2023). http://dx.doi.org/10.1038/s41467-023-38637-9.
Full text