Academic literature on the topic 'Omega-categorical'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Omega-categorical.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Omega-categorical"

1

ARCHER, RICHARD, and DUGALD MACPHERSON. "Soluble omega-categorical groups." Mathematical Proceedings of the Cambridge Philosophical Society 121, no. 2 (March 1997): 219–27. http://dx.doi.org/10.1017/s0305004196001387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yang, Yanyun, and Yan Xia. "Categorical Omega With Small Sample Sizes via Bayesian Estimation: An Alternative to Frequentist Estimators." Educational and Psychological Measurement 79, no. 1 (January 18, 2018): 19–39. http://dx.doi.org/10.1177/0013164417752008.

Full text
Abstract:
When item scores are ordered categorical, categorical omega can be computed based on the parameter estimates from a factor analysis model using frequentist estimators such as diagonally weighted least squares. When the sample size is relatively small and thresholds are different across items, using diagonally weighted least squares can yield a substantially biased estimate of categorical omega. In this study, we applied Bayesian estimation methods for computing categorical omega. The simulation study investigated the performance of categorical omega under a variety of conditions through manipulating the scale length, number of response categories, distributions of the categorical variable, heterogeneities of thresholds across items, and prior distributions for model parameters. The Bayes estimator appears to be a promising method for estimating categorical omega. M plus and SAS codes for computing categorical omega were provided.
APA, Harvard, Vancouver, ISO, and other styles
3

Palacín, Daniel. "On omega-categorical simple theories." Archive for Mathematical Logic 51, no. 7-8 (July 4, 2012): 709–17. http://dx.doi.org/10.1007/s00153-012-0294-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

MOTTET, ANTOINE, and MICHAEL PINSKER. "CORES OVER RAMSEY STRUCTURES." Journal of Symbolic Logic 86, no. 1 (February 1, 2021): 352–61. http://dx.doi.org/10.1017/jsl.2021.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MAZARI-ARMIDA, MARCOS, and SEBASTIEN VASEY. "UNIVERSAL CLASSES NEAR ${\aleph _1}$." Journal of Symbolic Logic 83, no. 04 (December 2018): 1633–43. http://dx.doi.org/10.1017/jsl.2018.37.

Full text
Abstract:
AbstractShelah has provided sufficient conditions for an ${\Bbb L}_{\omega _1 ,\omega } $-sentence ψ to have arbitrarily large models and for a Morley-like theorem to hold of ψ. These conditions involve structural and set-theoretic assumptions on all the ${\aleph _n}$’s. Using tools of Boney, Shelah, and the second author, we give assumptions on ${\aleph _0}$ and ${\aleph _1}$ which suffice when ψ is restricted to be universal:Theorem. Assume ${2^{{\aleph _0}}} < {2^{{\aleph _1}}}$. Let ψ be a universal ${\Bbb L}_{\omega _1 ,\omega } $-sentence.(1)If ψ is categorical in ${\aleph _0}$ and $1 \leqslant {\Bbb L}\left( {\psi ,\aleph _1 } \right) < 2^{\aleph _1 } $, then ψ has arbitrarily large models and categoricity of ψ in some uncountable cardinal implies categoricity of ψ in all uncountable cardinals.(2)If ψ is categorical in ${\aleph _1}$, then ψ is categorical in all uncountable cardinals.The theorem generalizes to the framework of ${\Bbb L}_{\omega _1 ,\omega } $-definable tame abstract elementary classes with primes.
APA, Harvard, Vancouver, ISO, and other styles
6

Bodirsky, Manuel, Antoine Mottet, Miroslav Olšák, Jakub Opršal, Michael Pinsker, and Ross Willard. "$\omega $-categorical structures avoiding height 1 identities." Transactions of the American Mathematical Society 374, no. 1 (October 14, 2020): 327–50. http://dx.doi.org/10.1090/tran/8179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kulpeshov, Beibut, and Timur Mustafin. "ON DATABASE QUERIES OVER ALMOST OMEGA-CATEGORICAL ORDERED DOMAIN." Herald of Kazakh-British technical university 18, no. 2 (June 1, 2021): 73–78. http://dx.doi.org/10.55452/1998-6688-2021-18-2-73-78.

Full text
Abstract:
Мы исследуем реляционные базы данных над упорядоченной областью определения с некоторыми дополнительными отношениями – типичным примером является упорядоченное множество рациональных чисел с операцией сложения. В фокусе наших исследований запросы первого порядка, инвариантные относительно перестановок, сохраняющих порядок, – такие запросы называются порядково-генерическими. Установлено, что для некоторых областей порядково- генерические запросы первого порядка сводятся к запросам чистого порядка. Здесь мы доказываем теорему сводимости над почти омега-категоричной слабо о-минимальной областью определения, имеющей ранг выпуклости 1.
APA, Harvard, Vancouver, ISO, and other styles
8

Braunfeld, Samuel. "Monadic stability and growth rates of ω$\omega$‐categorical structures." Proceedings of the London Mathematical Society 124, no. 3 (February 23, 2022): 373–86. http://dx.doi.org/10.1112/plms.12429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kulpeshov, B. Sh, and S. V. Sudoplatov. "$${P}^{{*}}$$-Combinations of Almost $${\omega}$$-Categorical Weakly o-Minimal Theories." Lobachevskii Journal of Mathematics 42, no. 4 (April 2021): 743–50. http://dx.doi.org/10.1134/s1995080221040132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kulpeshov, B. Sh, and T. S. Mustafin. "Almost $ \omega $-Categorical Weakly $ o $-Minimal Theories of Convexity Rank 1." Siberian Mathematical Journal 62, no. 1 (January 2021): 52–65. http://dx.doi.org/10.1134/s0037446621010067.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Omega-categorical"

1

Aranda, López Andrés. "Omega-categorical simple theories." Thesis, University of Leeds, 2013. http://etheses.whiterose.ac.uk/7838/.

Full text
Abstract:
This thesis touches on many different aspects of homogeneous relational structures. We start with an introductory chapter in which we present all the background from model theory and homogeneity necessary to understand the results in the main chapters. The second chapter is a list of examples. We present examples of binary and ternary homogeneous relational stuctures, and prove the simplicity or non-simplicity of their theory. Many of these examples are well-known structures (the ordered rational numbers, random graphs and hypergraphs, the homogeneous Kn-free graphs), while others were constructed during the first stages of research. In the same chapter, we present some combinatorial results, including a proof of the TP2 in the Fraïssé limit of semifree amalgamation classes in the language of n-graphs, such that all the minimal forbidden configurations of the class of size at least 3 are all triangles. The third chapter contains the main results of this thesis. We prove that supersimple finitely homogeneous binary relational structures cannot have infinite monomial SU-rank, show that primitive binary supersimple homogeneous structures of rank 1 are “random” in the sense that all their minimal forbidden configurations are of size at most 2, and partially classify the supersimple 3-graphs under the assumption of stable forking in the theories of finitely homogeneous structures with supersimple theory. The fourth chapter is a proof of the directed-graph version of a well-known result by Erdős, Kleitman and Rothschild. Erdős et al. prove that almost all finite labelled trianglefree simple graphs are bipartite, and we prove that almost all finite labelled directed graphs in which any three distinct vertices span at least one directed arc consist of two disjoint tournaments, possibly with some directed arcs from one to the other.
APA, Harvard, Vancouver, ISO, and other styles
2

Barbina, Silvia. "Automorphism groups of omega-categorical structures." Thesis, University of Leeds, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barsukov, Alexey. "On dichotomy above Feder and Vardi's logic." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2022. https://tel.archives-ouvertes.fr/tel-04100704.

Full text
Abstract:
On dit d'un sous-ensemble de NP qu'il présente une dichotomie s'il contient des problèmes qui sont soit résolubles en temps polynomial (dans Ptime), soit difficiles (NP-complets). La classe des problèmes de satisfaction de contraintes (CSP) finis est un sous-ensemble bien connu de NP qui présente une telle dichotomie. La classe de complexité NP n'a pas de dichotomie à moins que P = NP. Pour ces deux classes, il existe des logiques qui leur sont associées. -- NP est capturé par la logique Existentielle du second ordre (ESO) par le théorème de Fagin, c'est-à-dire qu'un problème est dans NP si et seulement s'il est exprimable par une formule ESO.-- CSP est un sous-ensemble de la logique de Feder et Vardi, le fragment monotone, monadique et sans inégalités de SNP, lui-même un fragment syntaxique de ESO (MMSNP); et, pour chaque formule de MMSNP, il existe un problème CSP équivalent via des réductions polynomiales.Ceci implique que la logique ESO, tout comme NP, n'a pas de dichotomie, à contraster avec le fait que MMSNP a une dichotomie tout comme CSP. L'objectif principal de cette thèse est d'étudier les propriétés de dichotomie de sous-ensembles de NP qui contiennent strictement CSP ou MMSNP.Feder et Vardi ont prouvé que si nous omettons une des trois propriétés qui définissent MMSNP, à savoir être monotone, monadique ou omettre les inégalités, alors la logique résultante n'a pas de dichotomie. Comme leurs preuves restent parfois sommaires, nous revisitons ces résultats et fournissons des preuves détaillées. Le fragment guardé et monotone de SNP (GMSNP) est une extension connue de MMSNP qui est obtenue en relâchant la restriction "monadique" de MMSNP. Nous définissons de manière similaire une nouvelle logique appelée MMSNP avec des inégalités gardées, en relâchant la restriction d'être "sans inégalités". Nous prouvons qu'elle est strictement plus expressive que MMSNP et qu'elle possède également une dichotomie.Il existe une logique MMSNP₂ qui étend MMSNP de la même manière que MSO₂ étend la logique monadique du second ordre (MSO). On sait que MMSNP₂ est un fragment de GMSNP et que ces deux classes ont toutes deux une dichotomie ou n'en ont pas. Nous revisitons ce résultat et le renforçons en prouvant que, en ce qui concerne le fait d'avoir une dichotomie, sans perte de généralité, on peut considérer seulement les problèmes MMSNP₂ sur des signatures à un élément, au lieu des problèmes GMSNP sur des signatures finies arbitraires.Nous cherchons à prouver l'existence d'une dichotomie pour les MMSNP₂ en construisant en temps polynomial, pour tout problème MMSNP₂, un problème MMSNP équivalent. Nous rencontrons quelques obstacles pour construire une telle équivalence. Cependant, si nous permettons aux formules MMSNP d'être composées d'un nombre dénombrable de conjonctions négatives, nous prouvons qu'une telle équivalence existe. De plus, la formule MMSNP infinie correspondante a la propriété d'être "régulière". Cette propriété de régularité signifie que, dans un certain sens, cette formule est essentiellement finie. Il est connu que les problèmes MMSNP réguliers peuvent être exprimés par CSP sur des modèles oméga-catégoriques. De plus, il existe une caractérisation de la dichotomie algébrique pour les CSP oméga-catégoriques qui décrivent des problèmes MMSNP. Si l'on parvient à étendre cette caractérisation algébrique sur les problèmes réguliers MMSNP, alors notre résultat fournirait une dichotomie algébrique pour MMSNP₂. (...)
A subset of NP is said to have a dichotomy if it contains problem that are either solvable in P-time or NP-complete. The class of finite Constraint Satisfaction Problems (CSP) is a well-known subset of NP that follows such a dichotomy. The complexity class NP does not have a dichotomy unless P = NP. For both of these classes there exist logics that are associated with them. -- NP is captured by Existential Second-Order (ESO) logic by Fagin's theorem, i.e., a problem is in NP if and only if it is expressible by an ESO sentence.-- CSP is a subset of Feder and Vardi's logic, Monotone Monadic Strict NP without inequalities (MMSNP), and for every MMSNP sentence there exists a P-time equivalent CSP problem. This implies that ESO does not have a dichotomy as well as NP, and that MMSNP has a dichotomy as well as CSP. The main objective of this thesis is to study subsets of NP that strictly contain CSP or MMSNP with respect to the dichotomy existence.Feder and Vardi proved that if we omit one of the three properties that define MMSNP, namely being monotone, monadic or omitting inequalities, then the resulting logic does not have a dichotomy. As their proofs remain sketchy at times, we revisit these results and provide detailed proofs. Guarded Monotone Strict NP (GMSNP) is a known extension of MMSNP that is obtained by relaxing the "monadic" restriction of MMSNP. We define similarly a new logic that is called MMSNP with Guarded inequalities, relaxing the restriction of being "without inequalities". We prove that it is strictly more expressive than MMSNP and that it also has a dichotomy.There is a logic MMSNP₂ that extends MMSNP in the same way as MSO₂ extends Monadic Second-Order (MSO) logic. It is known that MMSNP₂ is a fragment of GMSNP and that these two classes either both have a dichotomy or both have not. We revisit this result and strengthen it by proving that, with respect to having a dichotomy, without loss of generality, one can consider only MMSNP₂ problems over one-element signatures, instead of GMSNP problems over arbitrary finite signatures.We seek to prove the existence of a dichotomy for MMSNP₂ by finding, for every MMSNP₂ problem, a P-time equivalent MMSNP problem. We face some obstacles to build such an equivalence. However, if we allow MMSNP sentences to consist of countably many negated conjuncts, then we prove that such an equivalence exists. Moreover, the corresponding infinite MMSNP sentence has a property of being "regular". This regular property means that, in some sense, this sentence is still finite. It is known that regular MMSNP problems can be expressed by CSP on omega-categorical templates. Also, there is an algebraic dichotomy characterisation for omega-categorical CSPs that describe MMSNP problems. If one manages to extend this algebraic characterisation onto regular MMSNP, then our result would provide an algebraic dichotomy for MMSNP₂.Another potential way to prove the existence of a dichotomy for MMSNP₂ is to mimic the proof of Feder and Vardi for MMSNP. That is, by finding a P-time equivalent CSP problem. The most difficult part there is to reduce a given input structure to a structure of sufficiently large girth. For MMSNP and CSP, it is done using expanders, i.e., structures, where the distribution of tuples is close to a uniform distribution. We study this approach with respect to MMSNP₂ and point out the main obstacles. (...)
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography