Academic literature on the topic 'Oil distribution transformer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Oil distribution transformer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Oil distribution transformer"

1

Kattel, Ruska, and Bhupendra Devkota. "PCBs Contamination among Distribution Transformers in the Kathmandu Valley." International Journal of Environment 4, no. 1 (February 22, 2015): 16–29. http://dx.doi.org/10.3126/ije.v4i1.12175.

Full text
Abstract:
Transformer is the crucial part in any electrical system, however there are many risks associated with its use. Thus this study was focused on assessing the status of PCBs contamination and distribution of transformers in Distribution Centre-North of the Kathmandu valley along with PCBs contamination in them. Each transformer within the study area was closely observed to obtain information about all transformers. The dielectric oil samples from the transformers were collected, safely stored and analyzed in Test Kits (L2000DX Chloride Analyzer System, recommended by UNEP). Among 111 samples of transformer oil analyzed, 4 transformers were found PCBs contaminated and they were manufactured before 1990s. The total amount of PCBs contaminated transformer oil in these transformers was 479.6 Kg. Seven transformers were found leaking, four transformers located at residential area were found emitting a low frequency tonal noise, two transformers were located within school compound, nine transformers were located near water body and around 1.44 square meters of soil surface was found contaminated by transformer oil. Though there is no way to eliminate all the risk and consequences of operating oil filled transformers, scientific distribution and proper handling could be the reasonable approaches to reduce the risks.DOI: http://dx.doi.org/10.3126/ije.v4i1.12175International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15, Page: 16-29
APA, Harvard, Vancouver, ISO, and other styles
2

Okundamiya, M. S., E. Esekhaigbe, J. L. Owa, and H. I. Obakhena. "Impacts of Ambient Temperature Change on the Breakdown Voltage of a Distribution Transformer." International Journal of Emerging Scientific Research 2 (June 27, 2021): 19–25. http://dx.doi.org/10.37121/ijesr.vol2.155.

Full text
Abstract:
The aim of this paper is to determine the effects of ambient temperature variation on the breakdown voltage of a distribution transformer. Three different insulation oil samples (naphtha mineral, paraffin mineral and silicon base transformer oil) were collected from six distribution transformers (300 – 500 kVA) across two business units (Asaba and Ugbowo) of Benin Electricity Distribution Company during May and June, 2017. The oil samples were analysed using the 60 kV Megger OST60PB portable oil tester, to determine the trend of breakdown voltage of the oil insulation under varying temperature. A 3rd order polynomial model was deduced for each sample type with coefficient of determination within the range of 96.99 – 99.95 %. The observed average breakdown voltage is 43.6 kV (for naphtha base mineral transformer oil), 42.2 kV (for paraffin base mineral transformer oil) and 46.8 kV (for silicon base transformer oil) within the temperature range (26˚C – 32˚C). The result indicates that the breakdown voltages of the considered transformer oil types are satisfactory but the silicon base transformer oil has the best breakdown voltage.
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Yun Cai, Li Wei, Wei Chao, and Wu Peng. "The New Development Trend of Distribution Transformer." Applied Mechanics and Materials 672-674 (October 2014): 831–36. http://dx.doi.org/10.4028/www.scientific.net/amm.672-674.831.

Full text
Abstract:
Firstly, this paper introduces the development of new materials, new technology and new manufacture in power industry of China, energy-saving, low noise and smart distribution transformers are widely used in countryside power grid reconstruction. In this paper, application status and development trend of different types of distribution transformers were introduced and compared in terms of new material and new structure, such as oil-immersed distribution transformer, amorphous core transformer(AMT), dry-type transformer, SF6 insulated distribution transformer, composite transformer and other types of distribution transformers. The development of distribution transformer is mainly based on energy saving, miniaturization, wound core and amorphous alloy nowadays, but the class-H dry-type transformer and tridimensional toroidal-core amorphous alloy transformer are the future direction of development. The technology application of smart distribution grid, power electronics technology and dynamic reactive power compensation technique will also affect the safety and economic operation of distribution transformer.
APA, Harvard, Vancouver, ISO, and other styles
4

Gafvert, U., A. Jaksts, C. Tornkvist, and L. Walfridsson. "Electrical field distribution in transformer oil." IEEE Transactions on Electrical Insulation 27, no. 3 (June 1992): 647–60. http://dx.doi.org/10.1109/14.142730.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yuchao, Ma, Mo Juan, Yu Jinshan, Li Xiang, and Zheng Zhongyuan. "Study on Sound Field Distribution Rule for Tank Structures of Large Oil-immersed Transformers." E3S Web of Conferences 233 (2021): 01021. http://dx.doi.org/10.1051/e3sconf/202123301021.

Full text
Abstract:
Large oil-immersed transformers are an important part of the transmission and distribution network in power systems. Power transformers are the main noise source of substations. Because of the uneven manufacturing process, aging equipment, long-term operation, and close distance from sensitive points, the problem of transformer noise pollution has become increasingly prominent. In this paper, the transmission and analysis model is established for transformer sound waves on the interface between insulating oil and tank body according to the sound wave propagation rule in complicated medium, and the simplified acoustic simulation model is constructed for large oil-immersed transformers by simulating the vibration noise of transformer core with monopole sound source, with which, the sound field distribution rule inside and outside the transformer tank structure is obtained, and finally, the influence factors for noise distribution are given. The results of the study provide control basis for reducing transformer noise.
APA, Harvard, Vancouver, ISO, and other styles
6

Roza, Indra, Yussa Ananda, Lisa Adriana Siregar, Dharmawati Dharmawati, and Junaidi Junaidi. "Analysis of Age Transformer Due to Annual Load Growth in 20 kV Distribution Network." Journal of Renewable Energy, Electrical, and Computer Engineering 1, no. 1 (March 16, 2021): 42. http://dx.doi.org/10.29103/jreece.v1i1.3685.

Full text
Abstract:
Distribution transformer is a component in distributing electricity from distribution substations to consumers. Damage to distribution transformers causes continuity of customer service to be disrupted (power cut or blackout occurs). The length of the PLN electricity network requires a transformer to distribute electricity to serve consumers and how to maintain the transformer. The daily load curve of a peak load for housing, shops and factories / industries varies. Load served 200 kVA distribution transformer cannot serve the load on housing, shops and factories / industry. The method used is the replacement of a distribution transformer with a capacity of one stage greater or the replacement of a distribution transformer with a capacity of two levels larger. The distribution transformer carried out by the research is a capacity of 200 kVA replaced by 250 kVA. The ability of a distribution transformer cannot accommodate a load which will increase as an area is advanced. Observations made by calculating the age of the transformer by assuming the annual load growth (r) = 3% = 0.3. Annual peak load (P) = 1.8 p, u increase in oil temperature at peak load (θo = 96.21 0C; 84.16 0C). The increase in the hottest temperature above the oil cover, the increase in the temperature of the hottest place above the oil (θg = 20 0C; 20 0C). The ratio of the load loss to the nominal load excitation loss (Q = 3; 30). By assuming the values of these methods it can be estimated that the life of a distribution transformer is 20 kV, a capacity of 200 kVA is 18 years.
APA, Harvard, Vancouver, ISO, and other styles
7

Melnikova, O. S., and V. S. Kuznetsov. "Method of calculating the electric strength of oil channels of the main insulation of power transformers." Vestnik IGEU, no. 5 (December 30, 2020): 48–55. http://dx.doi.org/10.17588/2072-2672.2020.5.048-055.

Full text
Abstract:
The most damage-sensitive unit of power transformers is the main insulation of the oil barrier type. The breakdown of such insulation occurs as a result of the breakdown of the oil channel near the high voltage winding. In accordance with traditional methods of calculating the dielectric strength of insulation, the value of the breakdown strength is determined by empirical formulas depending on the selected width of the oil channel. The existing methods do not consider the influence of the oil channel volume, of the electric strength the statistical characteristics of the oil, the design features of the insulation of power transformers, and do not contain recommendations for creating design models. Thus, to improve the calculation accuracy, it is relevant to develop the evaluation method of dielectric strength of the main insulation of power transformers taking into account the volume and parameters of the breakdown voltage distribution of transformer oil, design features. The research results of the breakdown tension in oil channels with different volumes of transformer oil were used. To improve the accuracy of the calculation and taking into account the design features, the model of the main insulation of power transformers was made in the ANSYS program. Boundary data and assumption of linear stress distribution of transformer coils were considered. A method for calculating the dielectric strength of oil channels of the main insulation of power transformers, considering the volume and parameters of the breakdown voltage distribution of transformer oil was proposed. Unlike the existing methods, when calculating the minimum breakdown strength in the model of the main insulation, the design features of power transformers are taken into account and assumptions are justified to improve the accuracy of the calculation. In accordance with the methodology, the parameters of the dielectric strength of the transformer oil in the oil channel of the high voltage winding of the transformer were calculated. It was concluded that with increase of relative value of breakdown tension, dielectric strength of oil channel is decreasing, and it corresponds to physical sense of breakdown. The method for calculating the dielectric strength of transformer oil can be used when choosing the main insulation of power transformers in design.
APA, Harvard, Vancouver, ISO, and other styles
8

Melnikova, O. S. "Impact of distribution of impurity particles on electric strength of transformer oil." Vestnik IGEU, no. 6 (2019): 41–49. http://dx.doi.org/10.17588/2072-2672.2019.6.041-049.

Full text
Abstract:
To extend the service life and ensure the operability of oil-filled transformer equipment, the attention is paid to the development of methods for monitoring the state of oil-barrier insulation. When monitoring the technical condition of transformer oil, the class of liquid purity is determined depending on the rated voltage of the equipment. However, the influence of the parameters of mechanical impurities on the breakdown voltage is not taken into account, thereby lowering the requirements for the quality of oil barrier insulation. This makes it relevant to study the influence of the size distribution of impurity particles on the electric strength of the internal insulation of power transformers and determine the parameters of particles of mechanical impurities to justify the underestimation of the quality indicators of transformer oil in operation. Methods of mathematical statistics were employed using the Gnedenko-Weibull distribution based on the standard values of liquid purity classes. To determine the maximum and minimum voltages, the standard values of the average breakdown voltages and the results of operational tests of transformer oil in a standard spark gap were used. The relation between the particle size of mechanical impurities and the breakdown voltage of transformer oil has been established. The particle size distribution of impurities has been obtained for 12 and 13 classes of liquid purity for power transformers with a voltage of 110–750 kV. The particle size range that defines the maximum and minimum breakdown voltages has been determined, and the values of limit concentrations of mechanical particles have been established. The obtained parameters of impurity particles which determine the maximum and minimum breakdown voltages of the operating oils can be used to evaluate the technical condition when diagnosing the internal insulation of power transformers in order to increase their operational reliability, as well as to adjust the regulatory requirements for the quality of operational transformer oil according to the content of mechanical impurities.
APA, Harvard, Vancouver, ISO, and other styles
9

Korenciak, D., M. Sebok, and M. Gutten. "Thermal Measurement and its Application for Diagnostics of Distribution Oil Transformers." ENERGETIKA. Proceedings of CIS higher education institutions and power engineering associations 62, no. 6 (November 29, 2019): 583–94. http://dx.doi.org/10.21122/1029-7448-2019-62-6-583-594.

Full text
Abstract:
In the first part of the paper the theory of infrared radiation and the use of nondestructive measurement of electrical devices by means of thermovision are under analysis. In the second part of paper basic principles and application of non-contact temperature measurement are examined. In the third part of paper thermal processes in distribution oil transformer – temperature in dependence on height of oil transformer and temperature distribution in sectional plan of oil transformer – are considered. In the fourth part of paper, by means of the experimental measurements and subsequent analysis, practical thermal imaging and contact thermal measurements by optical detectors for the diagnosis of distribution oil transformers in the field of mechanical strength of windings are shown. In this paper, we wanted to show out the possibility of using thermal measurements in this field of analysis and detection of quality of winding for distribution oil transformer. It is possible to use these methods to localize places of faults, and they are also applicable for the diagnosis and detection of disorders of the quality of materials and other anomalies during operation of the equipment. By means of the experimental measurements followed by diagnostic analysis the practical use of thermovision and optical sensors for diagnostics of power oil transformers in field mechanical strength and quality of winding is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
10

Amrita, A. A. N., W. G. Ariastina, and I. B. G. Manuaba. "Study of Transformer Lifetime Due to Loading Process on 20 KV Distribution Line." Journal of Electrical, Electronics and Informatics 2, no. 2 (August 31, 2018): 25. http://dx.doi.org/10.24843/jeei.2018.v02.i02.p01.

Full text
Abstract:
Power transformer is very important in electric power system due to its function to raise or lower the voltage according to its designation. On the power side, the power transformer serves to raise voltage to be transmitted to the transmission line. On the transmission side, the power transformer serves to distribute the voltage between the main substations or down to the distribution voltage. On the distribution side, the stresses are channeled to large customers or lowered to serve small and medium customers. As the power transformer is so importance, it is necessary to protect against disturbance, as well as routine and periodic maintenance, so that the power transformer can operate in accordance with the planned time. Some factors that affect the duration of the power transformer is the ambient temperature, transformer oil temperature, and the pattern of load. Load that exceeds the maximum efficiency of the transformer which is 80% of its capacity will cause an increase in transformer oil temperature. Transformer oil, other than as a cooling medium also serves as an insulator. Increasing the temperature of transformer oil will affect its ability as an isolator that is to isolate the parts that are held in the transformer, such as iron core and the coils. If this is prolonged and not handled properly, it will lead to failure / breakdown of insulation resulting in short circuit between parts so that the power transformer will be damaged. PLN data indicates that the power transformer is still burdened exceeding maximum efficiency especially operating in the work area of PLN South Bali Area. The results of this study, on distribution transformers with different loads, in DS 137, DS 263 and DS 363, show that DS 363 transformer with loading above 80% has the shortest residual life time compared to DS 263 and DS 137 which loading less than 80%.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Oil distribution transformer"

1

Marko, Robert Michael. "Thermal modelling of a natural-convection-cooled, oil-immersed distribution transformer." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq23407.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mohamed, Ali Mohamed. "ANALYZING THE IMPACT OF PHOTOVOLTAIC AND BATTERIE SYSTEMS ON THE LIFE OF A DISTRIBUTION TRANSFORMER." Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-54952.

Full text
Abstract:
This degree project presents a study case in Eskilstuna-Sweden, regarding the effect of the photovoltaic (PV) systems with battery energy storage system (BESS) on a power distribution transformer, and how they could change the transformer lifespan. For that, an extensive literature review has been conducted, and two MATLAB models were used to simulate the system. One model simulates the PV generation profile, with the option of including battery in the system, and the other one simulates the transformer loss of life (LOL) based on the thermal characteristics. Simulations were using hourly time steps over a year with provided load profile based on utility data and typical meteorological year weather data from SMHI and STRÅNG. In this study, three different scenarios have been put into consideration to study the change of LOL. The first scenario applies various levels of PV penetrations without energy storage, while, the other scenarios include energy storage under different operating strategies, self-consumption, and peak shaving. Similarly, different battery capacities have been applied for the purpose of studying the LOL change. Thus, under different PV penetrations and battery capacities, results included the variation of LOL, grid power, battery energy status, and battery power. Moreover, results concluded that the PV system has the maximum impact on LOL variation, as it could decrease it by 33.4 %, and this percentage could increase by applying different battery capacities to the system. Finally, LOL corresponding to the battery under peak shaving strategy varies according to the battery discharge target. As different peak shaving targets were used to control the battery discharge, and hence, study the impact on the transformer and estimate its LOL.
APA, Harvard, Vancouver, ISO, and other styles
3

Karaca, Haldun. "Prediction Of Hot-spot And Top-oil Temperatures Of Power Transformers According To Ieee Standards C57.110-1998 And C57.91-1995." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12609140/index.pdf.

Full text
Abstract:
In this thesis, the effects of Harmonics on the Top Oil and Hot Spot Temperatures of Power Transformers used in Turkish Electricity Transmission System have been investigated. Due to the solid state equipment, the harmonic levels increase. This effect raises the losses and temperatures in the transformer windings. None of the power transformers currently used in Turkey has measuring equipment suitable for measuring the Hot-Spot temperatures. In this study, a computer program is written in LABVIEW which measures the harmonics and calculates the temperatures in accordance with the methods recommended in IEEE Standards C57.110-1998 and C57.91-1995. Also for sample transformers the work has been verified by measuring the Top-Oil temperatures of the transformers and then comparing with the calculated results.
APA, Harvard, Vancouver, ISO, and other styles
4

Mrajca, Miroslav. "Návrh olejového distribučního transformátoru." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442796.

Full text
Abstract:
This master thesis deals with the manufacturing process of oil distribution transformers. Firstly, the thesis devotes to the design arrangement of the magnetic circuit and its manufacturing technology. The procedure of cutting laminations for core and their building into the core. Subsequently, the thesis describes technologies used for manufacturing primary and secondary windings including procedures on winding machines. Then it deals with the production of the tank and the final assembly of the transformer into one unit. The next part of the thesis discusses the design procedure of the assigned distribution oil transformer with a numerical calculation while respecting the requirements of the standards. Finally, the costs of the material of the designed transformer are determined.
APA, Harvard, Vancouver, ISO, and other styles
5

Silva, Paulo Roberto da. "OTIMIZAÇÃO DO PROJETO DE TRANSFORMADORES DE DISTRIBUIÇÃO QUE EMPREGAM NÚCLEO AMORFO E ÓLEO VEGETAL ISOLANTE." Universidade Federal de Santa Maria, 2015. http://repositorio.ufsm.br/handle/1/8570.

Full text
Abstract:
This paper presents a methodology for optimizing the distribution transformers project, considering the capitalized cost, employing concurrently in your project amorphous core and insulating vegetable oil. The use of amorphous core technology provides a significant reduction of the load losses as the use of the insulating vegetable oil which is a non-toxic fluid and rapidly biodegradable when in contact with the environment, it allows increasing the machine's operating temperature . The use of these two materials have provided considerable percentage improvements in efficiency and cost / power compared to conventional distribution transformers manufactured. The methodology is aimed to create and select designs that have a lower total cost, namely the sum of the transformer manufacturing cost capitalized cost of losses during the useful life envisaged for the equipment. In addition, it presents the case study of a 75 kVA designed distribution transformer and manufactured with amorphous core and insulating vegetable oil, routine employed optimization (developed in VBA Excel), the theoretical results obtained from the optimized design and the experimental results.
Este trabalho apresenta uma metodologia de otimização do projeto de transformadores de distribuição, considerando o custo capitalizado, que empregam concomitantemente em seu projeto núcleo amorfos e óleo vegetal isolante. O emprego da tecnologia de núcleo amorfo proporciona significativa redução das perdas em vazio, enquanto a utilização do óleo vegetal isolante, que é um fluído não tóxico e de rápida biodegradação quando em contato com o meio ambiente, possibilita o aumento da temperatura de operação do equipamento. A utilização desses dois materiais propiciaram melhoras percentuais consideráveis na eficiência e na relação custo/potência em comparação aos transformadores de distribuição convencionalmente fabricados. A metodologia visa criar e selecionar projetos que tenham um menor custo total, ou seja, a soma do custo de fabricação do transformador com o custo capitalizado das perdas durante a vida útil considerada para o equipamento.Além disso, é apresentado o estudo de caso de um transformador de distribuição de 75 kVA projetado e fabricado com o núcleo amorfo e óleo vegetal isolante, a rotina de otimização empregada (desenvolvida em VBA Excel), os resultados teóricos obtidos a partir do projeto otimizado e os resultados experimentais.
APA, Harvard, Vancouver, ISO, and other styles
6

Vasconcellos, Vagner. "Compactação e elevação da vida útil de transformadores de distribuição empregando óleo vegetal isolante." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/3/3143/tde-04072016-145717/.

Full text
Abstract:
A busca no aumento da vida útil dos transformadores de distribuição, redução dos custos de manutenção e mitigação de falhas, leva ao desenvolvimento de novos materiais e critérios de exploração diferenciados desses ativos. Esta pesquisa apresenta o desenvolvimento de um novo transformador de distribuição compacto e mais eficiente utilizando óleo vegetal isolante totalmente biodegradável. Além de biodegradável, o óleo vegetal utilizado possui menor agressividade ambiental e maior capacidade térmica aumentando, a capacidade de carregamento do transformador sem comprometer a sua vida útil. A fim de atestar essa menor agressividade em relação ao óleo mineral, ensaios foram efetuados em um equipamento que permaneceu 12 anos em operação. O equipamento foi totalmente desmontado para análise e coleta de amostras de papel e óleo vegetal isolante. As análises visam comprovar a menor agressividade em relação ao óleo mineral, apresentadas na revisão bibliográfica. A menor agressividade torna possível a proposição de uma nova filosofia de planejamento de redes de distribuição utilizando uma quantidade menor dos novos transformadores para uma mesma carga, tornando-a mais compacta e eficiente.
The search of increase on the life expectancy of distribution transformers, reducing maintenance costs and mitigation failures, leads to the development of new materials and different operating criteria of these assets. This research presents the development of a new distribution transformer compact and more efficient with insulating in vegetable oil totally biodegradable. In addition to biodegradable, the vegetable oil used has less environmental aggressiveness and greater thermal capacity, increasing the loading capacity of the transformer without compromising its life expectancy. To prove that the vegetable oil is less aggressive than mineral oil, tests were done out in a transformer that worked for 12 years. The equipment was disassembled for analysis and collection of samples of vegetable oil and paper insulation. The analyses aim to prove the lesser aggressiveness compared to mineral oil, presented in the literature review. This situation makes it possible the proposition of a new philosophy of planning of distribution networks using a smaller amount of new transformers for the same load, making it more compact and efficient.
APA, Harvard, Vancouver, ISO, and other styles
7

Le, Maître Johann. "Développement de la spectrométrie de masse à ultra- haute résolution associée à la spectrométrie de mobilité ionique pour la caractérisation de coupes pétrolières lourdes. structural analysis of heavy oil fractions afterr hydrodenitrogenation by high-resolution tandem mass spectrometry and ion mobility spectrometry Structural analysis of neutral nitrogen compounds refractory to the hydrodenitrogenation process of heavy oil fractions by high-resolution tandem mass spectrometry and ion mobility-mass spectrometry Chemical characterization of 15 biocrudes obtained from hydrothermal liquefaction of industrially cultivated wild micro algae Chemical characterization with different analytical techniques, a way to understand the process: Case of the paraffinic base oil production line Exploring complex mixtures by cyclic ion mobility high-resolution mass spectrometry – Application towards Petroleum. Simulation and modeling of Collision Cross Section for structural elucidation of heavy oil fraction by ion mobility-mass spectrometry: Using polyaromatic hydrocarbons compounds mixture as calibration standard Characterization of sulfoxides compounds in dimeric distribution of heavy oil fractions by positive-ion electrospray ionization FTICR mass spectrometry Structural analysis of Petroporphyrins from asphaltene by trapped ion mobility coupled with a Fourier transform ion cyclotron resonance mass spectrometer. Cyclic ion mobility spectrometry coupled to high-resolution time-of-flight mass spectrometry equipped with atmospheric solid analysis probe for the molecular characterization of combustion particulate matter. Structural study of analogues of Titan’s haze by trapped ion mobility coupled with a Fourier transform ion cyclotron mass spectrometer." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR051.

Full text
Abstract:
L'évolution des réserves de pétrole implique l'utilisation en raffinerie de pétroles bruts non conventionnels, bien souvent plus lourds et donc difficiles à caractériser. Les produits pétroliers sont en effet des mélanges chimiques extrêmement complexes. La partie légère et volatile peut être analysée par chromatographie en phase gazeuse couplée à la spectrométrie de masse (GC/MS), permettant l'identification des composés par l'utilisation de mesures de masses précises et de modèles de fragmentation. Cependant ces techniques sont inadaptées à l'analyse des fractions lourdes. Dans la pratique, la caractérisation des mélanges les plus complexes implique l'utilisation de spectromètres de masse à ultra-haute résolution généralement par analyse directe sans séparation chromatographique. La technique de référence est aujourd’hui la spectrométrie de masse à transformée de Fourier par résonance cyclotronique des ions (FTICR). Grâce à une résolution supérieure à 106 et à une précision de mesure de masse inférieure à 0,1 ppm, cet instrument permet de séparer toutes les espèces présentes dans un produit pétrolier et d'attribuer à chaque valeur de m/z une composition élémentaire unique. Ceci permet d'obtenir très facilement des cartes moléculaires qui peuvent être présentées graphiquement en utilisant le diagramme de Kendrick, le diagramme de van Krevelen ou le nombre d'insaturations (DBE) en fonction du nombre de carbones. Ce travail de thèse a permis grâce à la caractérisation moléculaire de produits pétroliers (Vacuum Gas Oil, Pétroles Bruts, Matériel Interfacial, Asphaltènes et Bio-Oil…) d'aborder la complexité de leur traitement dans l’outil de raffinage. Des protocoles d'analyses des échantillons ont été développés, à l'aide de différentes sources d'ionisation à pression atmosphérique (ESI, APCI et APPI) ainsi que par désorption/ionisation laser (LDI) sur le spectromètre de masse FTICR 12T. Les informations sur le contenu isomérique des produits pétroliers ont ensuite été déterminées grâce à l'apport de la spectrométrie de mobilité ionique (IMS)
The evolution of oil reserves requires the use in refineries of unconventional crude oils, which are often heavier and therefore difficult to characterize. Petroleum products are in fact extremely complex chemical mixtures. The light and volatile part can be analysed by gas chromatography coupled with mass spectrometry (GC/MS), allowing the identification of compounds by using precise mass measurements and fragmentation models. However, these techniques are inappropriate for the analysis of heavy fractions. In practice, the characterization of the most complex mixtures involves the use of ultra-high-resolution mass spectrometers generally by direct analysis without chromatographic separation. The reference technique today is Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR). With a resolution of more than 106 and a mass measurement accuracy of less than 0.1 ppm, this instrument can separate all the species present in a petroleum product and assign a unique elemental composition to each m/z value. This makes it very easy to obtain molecular maps that can be presented graphically using the Kendrick diagram, the van Krevelen diagram or the number of unsaturations (DBE) as a function of the number of carbons. This thesis work has allowed thanks to the molecular characterization of petroleum products (Vacuum Gas Oil, Crude Oil, Interfacial Material, Asphaltenes and Bio-Oil...) addressing the complexity of their treatment in the refining tool. Protocols for sample analysis have been developed, using different sources of ionization at atmospheric pressure (ESI, APCI and APPI) as well as laser desorption/ionization (LDI) on the FTICR 12T mass spectrometer. Information on the isomeric content of petroleum products was then determined using ion mobility spectrometry (IMS)
APA, Harvard, Vancouver, ISO, and other styles
8

KUO, YING-TE, and 郭英德. "Design Technology for Oil-Immersed Amorphous Metal Core Distribution Transformer." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/90706562329317847185.

Full text
Abstract:
碩士
中原大學
電機工程研究所
97
The transformers with amorphous metal core have characteristics of very low core loss and moderate decreasing the copper loss. Therefore, they are compatible with environmental protection and energy conservation. They are widely used in the power systems. The design of amorphous metal core transformers can be divided into two major parts, namely electrical design and structure design. The electrical design, according to the specifications requested by the customers, is to calculate the core size, the conductor size and turn number of windings, and the required electrical characteristics which in general include efficiency, voltage regulation, excitation current, leakage impedance and voltage stress. Based on the electrical design parameters, the structure design is proceeded which mainly include the designs related to insulation span and strength of structure. This report mainly focuses on the electrical design of oil-immersed amorphous metal core transformers. The features of this type of transformer are first introduced, and their application situations on Taipower system and future tendency are described too. Then the considerations associated with electrical design are illustrated. Furthermore, the design method and related calculations are described in detail. Finally, a practical design case is presented for depicting the whole design procedure details.
APA, Harvard, Vancouver, ISO, and other styles
9

Raja, K. "Phase Characterization Of Partial Discharge Distributions In An Oil-Pressboard Insulation System." Thesis, 1996. http://etd.iisc.ernet.in/handle/2005/1749.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chiu, Chen-Yi, and 邱正義. "Design of Full Range Current Limit Fuse for Oil Immersed Distribution Transformers." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/19380120564970797001.

Full text
Abstract:
碩士
國立臺灣科技大學
電機工程系
95
Electric power fuses have been used for protecting equipments in electric power system for over hundred years. Although other new protecting equipments have been provided with much more complex functions, power fuses are still very important equipments in electric power system. The simple construction, high reliability and fastest current cutout properties make it be used widely of the world. Traditional power fuses are sufficiently used for breaking high current, such as fault current, but insensitvely for low overload current (i.e. less than five times the rate value). Full range current limit fuses are designed for both high breaking zone and low overload breaking zone protections. The study for full range current limit fuse was beginning from rating requirements of fuse characteristics, electrical arcing and circuit modeling, then calculating and designing constructions and sizes of fuse element were investigated. The protocol samples were made and tested to check design performances including dielectric, interrupting, temperature rise, time-current, liquid tightness. This study provides the technical design theory above of full range current limit fuses for oil immersed distribution transformer. Three type fuses made according to this study, were tested according to IEEE Std C37.41-2000, which could be used in oil immersed transformer for external power distribution system.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Oil distribution transformer"

1

Ansari, Irfan, Shubham, Anurag Singh, Puneet Verma, Rajesh Singh, and Anita Gehlot. "Design and Development of Oil Tank Monitoring System Using GSM MODEM in Distribution Transformer." In Advances in Intelligent Systems and Computing, 1651–60. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-5903-2_171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Khare, Bharat Bhushan, Rajeev Shankar Pathak, Sanjeev Sharma, and Vinod Kumar Singh. "Review on the Development of Solid State Transformer." In Advances in Wireless Technologies and Telecommunication, 119–26. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7611-3.ch010.

Full text
Abstract:
According to future renewable electric energy distribution and management (FREEDM) system, solid state transformers play an important role in smart grid technologies. They have several advantages over conventional transformers such as bi-directional power flow, light in weight, compact size, etc. They also compensate the environmental issues which are created due to transformer oil. Because of various advantages over traditional transformer, SST is preferred widely at the present time. So in this chapter, the various architectures, needs, and applications of solid state transformers are discussed. The global market of SST has continuously improved because it has several applications and benefits.
APA, Harvard, Vancouver, ISO, and other styles
3

Nair, K. R. M. "Condition Monitoring of Oil-Filled Transformers." In Power and Distribution Transformers, 323–33. CRC Press, 2021. http://dx.doi.org/10.1201/9781003088578-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nair, K. R. M. "Calculation of Winding Gradient, Heat Dissipation Area and Oil Quantity." In Power and Distribution Transformers, 163–75. CRC Press, 2021. http://dx.doi.org/10.1201/9781003088578-12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meadowcroft, James. "Governing the transition to a new energy economy." In Energy... beyond oil. Oxford University Press, 2007. http://dx.doi.org/10.1093/oso/9780199209965.003.0015.

Full text
Abstract:
Over the next two or three decades a new energy economy should begin to take shape in the developed industrial countries. This will not be a post-fossil fuel economy. But it could be an economy in which non-fossil sources play a more important role; where efficiency in the production, distribution, and use of energy is significantly enhanced; where new storage and carrier technologies are being adopted; and where the fossil sector is being transformed by the imperative of carbon sequestration. Such an energy economy would represent a critical staging post in a much longer transition towards a carbon neutral, low-environmental impact, energy system. The extent to which a new energy economy actually materializes will depend on many factors including the pace and orientation of international economic development, the rate and direction of technological innovation and diffusion, as well as patterns of geo-strategic cooperation and conflict. But there is no doubt the trajectory will be significantly influenced by political decisions and government action on the energy file. This is the issue with which this chapter is concerned. At the moment there are two main political drivers for the move to look beyond oil. First, there are supply concerns. Increasing global demand, production bottlenecks, and political instability have pushed oil prices towards historic highs. Although the oil intensity (oil consumption per unit of GDP) of the OECD economies is less than during the oil crises of the 1970s (IMF, 2005), there is no doubt that the long term economic impact of high oil prices would be considerable. There are also critical issues associated with the geographic distribution of reserves. Production from areas opened up following the turbulence of the early 1970s (such as the North Sea) is peaking. In coming years the United States will be more heavily dependent on imported oil, with an increasing percentage of these imports destined to come from politically volatile areas in the Middle East and Asia. And this presents a serious risk of supply disruption.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Oil distribution transformer"

1

Amarasinghe, R. P. W. S., W. G. K. P. Kumara, R. A. K. G. Rajapaksha, R. A. D. K. Rupasinghe, and W. D. A. S. Wijayapala. "A transformer design optimisation tool for oil immersed distribution transformers." In 2015 Moratuwa Engineering Research Conference (MERCon). IEEE, 2015. http://dx.doi.org/10.1109/mercon.2015.7112328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dennison, Jason C., and Jon M. Trout. "Transformer oil DGA monitoring technology study 2015." In 2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). IEEE, 2016. http://dx.doi.org/10.1109/tdc.2016.7519918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Setiawati, Novie Elok, Rosmaliati, Vita Lystianingrum, Ardyono Priyadi, and Mauridhi Hery Purnomo. "Distribution Transformer Oil Age Prediction Using Neuro Wavelet." In 2018 10th International Conference on Information Technology and Electrical Engineering (ICITEE). IEEE, 2018. http://dx.doi.org/10.1109/iciteed.2018.8534830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lin, Yong-Ping, Qiang Fu, Zhi Li, Yi-Hua Qian, Xiang-Ping Liu, and Bing He. "Feasibility study on replacement of Shell Diala oil by Kelamayi EHV Transformer Oil." In 2008 China International Conference on Electricity Distribution (CICED 2008). IEEE, 2008. http://dx.doi.org/10.1109/ciced.2008.5211721.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Radakovic, Z., and S. Maksimovic. "Dynamical thermal model of oil transformer placed indoor." In 20th International Conference and Exhibition on Electricity Distribution (CIRED 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.0669.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Taro, Mudang, Dayal Shill, Anu Kumar Das, and Saibal Chatterjee. "Experimental investigation of transformer oil based nanofluids for applications in distribution transformers." In 2017 3rd International Conference on Condition Assessment Techniques in Electrical Systems (CATCON). IEEE, 2017. http://dx.doi.org/10.1109/catcon.2017.8280246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jafari, Fereshteh Sadat, Fatemeh Kazemi, and Javad Ahmadi Shokouh. "Non-destructive aging of transformer oil using electromagnetic waves." In 2015 20th Conference on Electrical Power Distribution Networks Conference (EPDC). IEEE, 2015. http://dx.doi.org/10.1109/epdc.2015.7330509.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liapis, Ioannis, and Michael G. Danikas. "A study of parameters affecting the ageing of transformer oil in distribution transformers." In 2011 IEEE 17th International Conference on Dielectric Liquids (ICDL 2011). IEEE, 2011. http://dx.doi.org/10.1109/icdl.2011.6015050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Xin-gang, Wei-gen Chen, and Liang-ling Gu. "Research of on-line monitoring of moisture content in transformer oil." In 2008 China International Conference on Electricity Distribution (CICED 2008). IEEE, 2008. http://dx.doi.org/10.1109/ciced.2008.5211815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Xiaoping, Yiming Wu, Jiansheng Li, Chao Wei, Shengquan Wang, Leifeng Huang, Bonan Li, and Youyuan Wang. "Study on temperature distribution in oil-immersed inverted current transformer." In 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL). IEEE, 2019. http://dx.doi.org/10.1109/icdl.2019.8796597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography