Academic literature on the topic 'Offshore foundation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Offshore foundation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Offshore foundation"

1

Schneider, James A., and Marc Senders. "Foundation Design: A Comparison of Oil and Gas Platforms with Offshore Wind Turbines." Marine Technology Society Journal 44, no. 1 (January 1, 2010): 32–51. http://dx.doi.org/10.4031/mtsj.44.1.5.

Full text
Abstract:
AbstractThe offshore oil and gas (O&G) industry has over 70 years of experience developing innovative structures and foundation concepts for engineering in the marine environment. The evolution of these structures has strongly been influenced by water depth as well as soil conditions in the area of initial developments. As the offshore wind industry expands from the glacial soil deposits of the North and Baltic Seas, experience from the O&G industry can be used to aid a smooth transition to new areas. This paper presents an introduction to issues that influence how design and construction experience from the O&G industry can be used to aid foundation design for offshore wind energy converters. A history of the evolution of foundation and substructure concepts in the Gulf of Mexico and North Sea is presented, followed by a discussion of soil behavior and the influence of regional geology on these developments. Mechanisms that influence the resistance of shallow and deep foundations for fixed and floating offshore structures are outlined so that areas of empiricism within offshore design codes can be identified and properly modified for application to offshore wind turbine foundations. It is concluded that there are distinct differences between offshore O&G and offshore wind turbine foundations, and application of continued research into foundation behavior is necessary for rational, reliable, and cost-effective design.
APA, Harvard, Vancouver, ISO, and other styles
2

Ding, Hongyan, Yanjian Peng, Puyang Zhang, Hanbo Zhai, and Nan Jia. "Model Tests on the Penetration Resistance of Bucket Foundations for Offshore Wind Turbines in Sand." Journal of Marine Science and Engineering 8, no. 5 (May 22, 2020): 368. http://dx.doi.org/10.3390/jmse8050368.

Full text
Abstract:
Driven by the rapid development of offshore wind farms, bucket foundations have come to constitute a very promising form of foundation for offshore wind turbines, mainly owing to their efficient construction. However, the penetration resistance of the suction penetration of a bucket foundation, when calculated inaccurately, may lead to installation failure of the foundation. In this study, model tests were performed on the suction penetration of a mono-bucket mono-compartment foundation and a mono-bucket multi-compartment foundation in saturated fine marine sand, aiming to compare their penetration resistances and critical suctions, and the development of a soil plug in the two models was analyzed. The results will provide a design reference for the penetration construction of bucket foundations for offshore wind turbines.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Ray-Yeng, Hsin-Hung Chen, Hwung-Hweng Hwung, Wen-Pin Jiang, and Nian-Tzu Wu. "EXPERIMENTAL STUDY ON THE LOADING AND SCOUR OF THE JACKET TYPE OFFSHORE WIND TURBINE FOUNDATION." Coastal Engineering Proceedings 1, no. 32 (January 21, 2011): 25. http://dx.doi.org/10.9753/icce.v32.structures.25.

Full text
Abstract:
A 1:36 scale model tests were carried out in the Medium Wave Flume (MWF) and Near-shore Wave Basin (NSWB) at the Tainan Hydraulics Laboratory (THL) with the jacket type offshore wind turbine foundation located in the test area. The loading of typhoon wave with current on the jacket type offshore wind turbine foundation was investigated in the MWF with fixed bed experiment. Meanwhile, the scour around the jacket type offshore wind turbine foundation exposed to wave and current was conducted in the NSWB with the moveable bed experiment. Two locations (water depth 12m and 16m) of the foundations are separately simulated in this study. Based on the analysis from the former NSWB experimental results, the suitable scour protection of a four-layer work around the foundation is also proposed to the impact of scour. Finally, a four-layer scour protection is tested and found to be effective in preventing scour around jacket type foundation of offshore wind turbines at water depth 12m and 16m.
APA, Harvard, Vancouver, ISO, and other styles
4

Mei, Bi Xiang. "Study Finite Element Analysis of Monopile Foundation Based on Mechanical Mechanics and Properties of Steel Structure for Offshore Wind Turbines." Advanced Materials Research 743 (August 2013): 114–17. http://dx.doi.org/10.4028/www.scientific.net/amr.743.114.

Full text
Abstract:
Statistical data shows that monopile foundation accounts for more than 65% of all foundations for offshore wind turbines,so it is of great engineering value to perform the research on the design and analysis of the monopile foundation. By its application environments and structure features,based on a design example of monopile foundation for a offshore wind farm,the paper performs the following sequence of works including the establishment of finite element model for monopile foundation, the calculation of foundation bearing capacity and deformation, modal analysis and fatigue analysis, etc.The paper gives the related design results, which is used for reference for designers.
APA, Harvard, Vancouver, ISO, and other styles
5

Esteban, M., José-Santos López-Gutiérrez, and Vicente Negro. "Gravity-Based Foundations in the Offshore Wind Sector." Journal of Marine Science and Engineering 7, no. 3 (March 12, 2019): 64. http://dx.doi.org/10.3390/jmse7030064.

Full text
Abstract:
In recent years, the offshore wind industry has seen an important boost that is expected to continue in the coming years. In order for the offshore wind industry to achieve adequate development, it is essential to solve some existing uncertainties, some of which relate to foundations. These foundations are important for this type of project. As foundations represent approximately 35% of the total cost of an offshore wind project, it is essential that they receive special attention. There are different types of foundations that are used in the offshore wind industry. The most common types are steel monopiles, gravity-based structures (GBS), tripods, and jackets. However, there are some other types, such as suction caissons, tripiles, etc. For high water depths, the alternative to the previously mentioned foundations is the use of floating supports. Some offshore wind installations currently in operation have GBS-type foundations (also known as GBF: Gravity-based foundation). Although this typology has not been widely used until now, there is research that has highlighted its advantages over other types of foundation for both small and large water depth sites. There are no doubts over the importance of GBS. In fact, the offshore wind industry is trying to introduce improvements so as to turn GBF into a competitive foundation alternative, suitable for the widest ranges of water depth. The present article deals with GBS foundations. The article begins with the current state of the field, including not only the concepts of GBS constructed so far, but also other concepts that are in a less mature state of development. Furthermore, we also present a classification of this type of structure based on the GBS of offshore wind facilities that are currently in operation, as well as some reflections on future GBS alternatives.
APA, Harvard, Vancouver, ISO, and other styles
6

Pan, Xiaodong, Ben He, Zonghao Yuan, Shiwu Xu, Danting Xu, Zhenqiang Jiang, Li Shi, and Honglei Sun. "Effect of Reinforced Bucket on Bearing Capacity and Natural Frequency of Offshore Wind Turbines Using Pile–Bucket Foundation." Advances in Civil Engineering 2022 (April 9, 2022): 1–17. http://dx.doi.org/10.1155/2022/9569102.

Full text
Abstract:
Large-diameter monopiles have been widely used for constructing offshore wind turbines. The bearing capacity of a monopile foundation is a significant research problem. In this study, a new type of foundation, known as the pile–bucket foundation, was investigated to improve the bearing capacity of monopiles. A finite element software was used for establishing several numerical models of monopile and pile–bucket foundations to analyze the reinforcement afforded by the bucket attached to the monopile foundation. Furthermore, considering that offshore wind turbines are prone to resonance under the excitation of wind and wave loads, the natural frequencies of the monopile and pile–bucket foundations were determined and compared using both analytical and numerical methods. The results show that compared to the monopile foundation, the pile–bucket foundation has a significantly higher bearing capacity, mainly for large bucket diameters. The natural frequencies of the pile–bucket foundations are slightly higher than those of the monopile foundations. The addition of the bucket can effectively improve the natural frequency without changing the diameter of the monopile and thus saving the foundation cost.
APA, Harvard, Vancouver, ISO, and other styles
7

Houlsby, G. T. "Interactions in offshore foundation design." Géotechnique 66, no. 10 (October 2016): 791–825. http://dx.doi.org/10.1680/jgeot.15.rl.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Haldar, A. K., D. V. Reddy, and M. Arockiasamy. "Foundation shakedown of offshore platforms." Computers and Geotechnics 10, no. 3 (January 1990): 231–45. http://dx.doi.org/10.1016/0266-352x(90)90037-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Vølund, Per. "Concrete is the Future for Offshore Foundations." Wind Engineering 29, no. 6 (December 2005): 531–63. http://dx.doi.org/10.1260/030952405776234571.

Full text
Abstract:
This paper compares the costs of using concrete foundations against steel monopile foundations for offshore wind turbines, and argues that concrete foundations will be cheaper. Most offshore windfarms have steel monopile foundations, but in Denmark concrete gravity foundations have been used with success. Two projects have tendered for steel monopiles and for concrete foundations and have implemented the concrete foundations that proved cheaper. No project has tendered for both foundation concepts and chosen steel monopiles. Nysted Offshore Windfarm with concrete foundations has the cheapest foundations of any offshore windfarm so far. A conceptual foundation study carried out for the London Array West Offshore Windfarm indicates that the same method and very low-cost foundations as for Nysted can be used. Optimised design of light-weight concrete constructions is the key to low-cost installation. Cheap manufacture can be carried out near the site or at even lower cost in Eastern Europa from where it can be shipped at little extra cost. The main construction of steel monopile foundations will become twice as costly as of concrete gravity foundations, and though installation is more costly for the gravity foundations it seems most likely that tendering between steel monopile and concrete gravity for London Array West will prove concrete considerably cheaper. It is argued that these considerations are to a wide extent generally valid, and also for very large turbines in deeper water. Concrete foundations will in 2006 be installed at Lillegrunden Offshore Windfarm in Sweden, and at Belgian Thornton Bank in 2006–7. So indications are strong that concrete is the future for offshore foundations.
APA, Harvard, Vancouver, ISO, and other styles
10

Lavanya, C., and Nandyala Darga Kumar. "Foundation Types for Land and Offshore Sustainable Wind Energy Turbine Towers." E3S Web of Conferences 184 (2020): 01094. http://dx.doi.org/10.1051/e3sconf/202018401094.

Full text
Abstract:
Wind energy is the renewable sources of energy and it is used to generate electricity. The wind farms can be constructed on land and offshore where higher wind speeds are prevailing. Most offshore wind farms employ fixed-foundation wind turbines in relatively shallow water. In deep waters floating wind turbines have gained popularity and are recent development. This paper discusses the various types of foundations which are in practice for use in wind turbine towers installed on land and offshore. The applicability of foundations based on depth of seabed and distance of wind farm from the shore are discussed. Also, discussed the improvement methods of weak or soft soils for the foundations of wind turbine towers.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Offshore foundation"

1

Aspizua, Lucía. "OFFSHORE FOUNDATION - A CHALLENGE IN THE BALTIC SEA." Thesis, Högskolan i Halmstad, Energivetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-28443.

Full text
Abstract:
ABSTRACT This project deals with the search of the most proper offshore foundation to install in the Baltic Sea, in order to reduce costs and environmental impact. A pre-study was performed to define the Baltic Sea conditions and the required knowledge for the following steps. Afterwards, the specifications were set and clarified, and then the concept analysis phase was started. The analysis phase included the description of each one of the current foundations, those which are considered conventional foundations and those which are innovative ones. In order to evaluate these concept foundations, selection methods were used to assess the most relevant features of these foundations which should fulfil the requirements. The concepts ranking was studied and it led to the final results. Two different outcomes were obtained; such as, innovative concepts, which obtained the first position in this report; and conventional concepts, as a second finding. The continuous contact with different experienced professionals of this sector was essential during the whole project, in order to obtain advices, experienced knowledge and feedback.
APA, Harvard, Vancouver, ISO, and other styles
2

Villalobos, Jara Felipe Alberto. "Model testing of foundations for offshore wind turbines." Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:438cfe69-c8d4-4630-ab0b-482da5ea2839.

Full text
Abstract:
Suction caissons are a new foundation option for offshore wind turbines. This thesis is focussed on the behaviour of suction caisson foundations in sand and in clay during installation, and under subsequent vertical and combined moment-lateral loadings. The research is based on extensive experimental work carried out using model scaled caissons. The analysis of the results allowed the determination of parameters for hyperplasticity models. Model caissons were vertically loaded in loose and dense sands to study in service states and plastic behaviour. Bearing capacity increased with the length of the caisson skirt. The bearing capacity formulation showed that the angle of friction mobilised was close to the critical state value for loose sands and close to those of peak values due to dilation for dense sands. The vertical load increased, though at a lower rate than during initial penetration, after large plastic displacements occurred. A hardening law formulation including this observed behaviour is suggested. In sand the installation of caissons by suction showed a drastic reduction in the net vertical load required to penetrate the caisson into the ground compared with that required to install caissons by pushing. This occurred due to the hydraulic gradients created by the suction. The theoretical formulations of the yield surface and flow rule were calibrated from the results of moment loading tests under low constant vertical loads. The fact that caissons exhibit moment capacity under tension loads was considered in the yield surface formulation. Results from symmetric and non symmetric cyclic moment loading tests showed that Masing’s rules were obeyed. Fully drained conditions, partially drained and undrained conditions were studied. Caisson rotation velocities scaled in the laboratory to represent those in the field induced undrained response for relevant periods of wave loading, a wide range of seabed permeabilities and prototype caisson dimensions. Under undrained conditions and low constant vertical loads the moment capacity of suction caissons was very small. Under partially drained conditions the moment capacity decreased with the increase of excess pore pressure. In clay, vertical cyclic loading around a mean vertical load of zero showed that in the short term the negative excess pore pressures generated during suction installation reduced vertical displacements. The yield surface and the flow rule were determined from moment swipe and constant vertical load tests. The moment capacity was found to depend on the ratio between the preload Vo and the ultimate bearing capacity Vu. Gapping response was observed during cyclic moment loading tests, but starting at smaller normalised rotations than in the field. The hysteresis loop shape obtained during gapping cannot be reproduced by means of the Masing’s rules.
APA, Harvard, Vancouver, ISO, and other styles
3

Ngo-Tran, Cong Luan. "The analysis of offshore foundations subjected to combined loading." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:96a07b7a-58f8-4a5d-9dfd-68509546368c.

Full text
Abstract:
This thesis is concerned with four different types of offshore foundations, namely gravity foundations, jack-up foundations, the mudmats for piled jacket structures and caisson foundations for jacket structures. In most applications, these can be idealised as circular rigid foundations. Unlike onshore foundations, offshore foundations are subjected to large horizontal and moment loads. This research used the finite element method to examine the elastic behaviour and stability of circular footings under combined loading. Due to the circular shape of the footings and the combination of vertical, horizontal and moment loads, three dimensional finite element analysis was used. In-depth analyses of the elastic behaviour of circular footings under combined loading (V,H,M) were performed. The vertical stiffness coefficient was investigated using two dimensional axi-symmetric analyses whereas three dimensional analyses were used to examine the other coefficients. Different features of offshore foundations such as footing embedment and cone angle were taken into consideration. Based on the numerical results, a set of empirical expressions for elastic stiffness coefficient was derived. For footing stability calculations, large horizontal or moment loads can cause the footing to lose contact with the soil, or cause the footing to slide relative to the soil. In finite element analyses, this loss of contact and sliding are modelled by interface elements. A new zero-thickness iso-parametric interface element was formulated for both two and three dimensional analyses. An exact close formed solution for integration of the stress-strain relationship (for the two dimensional interface element) was found. The element is then used to explore footing stability. It was shown that by using a yield criteria which allows the interface to behave as either frictional or cohesive interface, depending upon the normal stress, numerical stability is achieved. The footing stability was examined by establishing the bearing capacity envelope. The envelopes for footings on undrained clays were established for surface flat strip footings and for surface flat circular footings. The effects of soil strength varying with depth, cone angle and embedment on the bearing capacity envelope were also investigated.
APA, Harvard, Vancouver, ISO, and other styles
4

Floridia, Daniele. "Hybrid foundations for offshore wind turbines." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amslaurea.unibo.it/3284/.

Full text
Abstract:
Nowadays offshore wind turbines represents a valid answer for energy production but with an increasing in costs mainly due to foundation technology required. Hybrid foundations composed by suction caissons over which is welded a tower supporting the nacelle and the blades allows a strong costs reduction. Here a monopod configuration is studied in a sandy soil in a 10 m water depth. Bearing capacity, sliding resistance and pull-out resistance are evaluated. In a second part the installation process occurring in four steps is analysed. considering also the effect of stress enhancement due to frictional forces opposing to penetration growing at skirt sides both inside and outside. In a three dimensional finite element model using Straus7 the soil non-linearity is considered in an approximate way through an iterative procedure using the Yokota empirical decay curves.
APA, Harvard, Vancouver, ISO, and other styles
5

Alhamalawi, Mazen. "Offshore Wind Power Foundations' Corrosion Protection Strategy : Anlysis remotely controlled corrosion protection system and comparison to traditional corrosion protection of offshore wind foundation." Thesis, Linnéuniversitetet, Sjöfartshögskolan (SJÖ), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-103460.

Full text
Abstract:
När en metall är omgärdad av en elektrolyt, så som havsvatten, kommer det att byggas upp en naturlig potential. Det sker en elektronvandring mellan materialet och havsvattnet och ju större potentialskillnad desto större sannolikhet att metallen kommer korrodera. Korrosion är en stor och viktig fråga för offshorekonstruktioner och byggnader.  För att uppnå en konstruktions designade livslängd kan åtgärder vidtas med hänsyn till kapitalkostnader och drift- och underhållskostnader.  Denna studie syftar till att jämföra ekonomiska för- och nackdelar hos de två korrosionsskyddssystemen Galvanic Anode Corrosion Protection (GACP) och Impressed Current Cathodic Protection (ICCP) på havsbaserade vindkraftsfundament. Det förstnämnda systemet använder offeranoder och det sistnämnda är ett katodiskt korrosionsskydd med hjälp av påtryckt ström.  Studien bestod av flera steg av litteraturstudier där teori om korrosion och korrosionssystem användes för att till slut kunna jämföra valda korrosionsskyddssystem.  Resultatet visar att GACP har fler fördelar och färre nackdelar än ICCP och skulle därmed vara mer ekonomiskt fördelaktig i marina miljöer. GACP ger också önskad effekt direkt vid installation och behöver inte någon strömkälla, ICCP är mer komplicerat och är inte effektivt förrän hela systemet är monterat och i drift. Dessutom behöver ICCP extra strömkälla samt kablage.
When a metal is surrounded by an electrolyte, such as seawater, a natural potential will be built up. An electron migration between the material and the seawater will happen and the greater the potential difference, the greater the probability that the metal will corrode. Corrosion is an important issue when it comes to offshore structures. In order to achieve a structure designed lifetime, measures can then be taken with regard to capital costs and operating and maintenance costs. This study aims to compare the economic advantages and disadvantages of the two, Galvanic Anode Corrosion Protection (GACP) and Impressed Current Cathodic Protection (ICCP), corrosion protection systems on offshore wind power foundations. The first mentioned system uses sacrificial anodes and the second is a cathodic corrosion protection by an applied current. The study consisted of several stages of literature studies where theory of corrosion and corrosion systems was used to finally be able to make a comparison between selected corrosion protection systems. The result shows that GACP has more advantages and fewer disadvantages than ICCP and would thus be more economical. GACP, for example, is efficient during installation and does not need an additional power source, but ICCP is more complicated and not efficient until complete assembly of the entire system and requires additional power source and cables. Right now, there is no design standard available with detailed requirements and advice has been given as for galvanic anodes systems.
APA, Harvard, Vancouver, ISO, and other styles
6

Santa, Maria Paulo Eduardo Lima de. "Behaviour of footings for offshore structures under combined loads." Thesis, University of Oxford, 1988. http://ora.ox.ac.uk/objects/uuid:50fb3d35-90b3-4685-9ace-0ec5a50014df.

Full text
Abstract:
The lack of knowledge about the behaviour of footings for jack-up rigs under storm loads poses a design problem which can be tackled by model testing. The areas of prime concern are the ultimate loads on footings under combined loading, which affects the safety of the rig, and the rotational stiffness, which affects the interaction between the foundation and the structure. A programme of loading tests was performed on model footings on clay, and was divided into two stages: monotonic loading and cyclic loading. The clay samples were obtained by consolidating Speswhite kaolin slurry in cylindrical tanks 450mm in diameter. The strength and compressibility characteristics of the samples were verified by means of standard laboratory tests. The model footings were 50mm and 100mm in diameter and several shapes were tested: circular flat plate, cones of various angles and model spud-cans. Loads and displacements were monitored using appropriate instrumentation and a data logger. A series of central vertical loading tests provided data for comparison with existing bearing capacity theories. Combined loading tests were performed applying a displacement controlled horizontal load at a fixed height above the footing which was also subjected to a fixed vertical load. The main series of tests involved a parametric study of the relevant variables. Special tests allowed the assessment of the effect of embedment of the footing and the interaction of a flexible leg with the foundation. Cyclic loading tests were carried out using a load controlled system which applied a sinusoidal load simulating wave action. Effects of currents were investigated by introducing an offset to the loading cycle. The influence of amplitude and period of loading as well as the influence of vertical load were also investigated. Special tests were carried out to cover some peculiarities of real loading conditions. Fitting of a three-parameter hyperbola to the test results provided a systematic and accurate method of analysis of monotonic loading tests, leading to valuable information involving stiffness and ultimate loads. Analysis of cyclic loading tests yielded useful qualitative information regarding the progress of settlement and the variation of rotational stiffness and damping ratio with the number of cycles.
APA, Harvard, Vancouver, ISO, and other styles
7

Byrne, Byron Walter. "Investigations of suction caissons in dense sand." Thesis, University of Oxford, 2000. http://ora.ox.ac.uk/objects/uuid:64c30b2e-155c-4642-9115-5e2bf5667af5.

Full text
Abstract:
Offshore structures are used in a variety of applications ranging from the traditional oil and gas extraction facilities to emerging renewable energy concepts. These structures must be secured to the seabed in an efficient and cost effective manner. A novel approach is to use shallow inverted buckets as foundations, installed by suction, in place of the more usual piles. These foundations lead to cost savings through reduction in materials and in time required for installation. It is necessary to determine how these foundations perform under typical offshore loading conditions so that design calculations may be developed. This thesis presents experimental data from a comprehensive series of investigations aimed at determining the important mechanisms to consider in the design of these shallow foundations for dense sand. Initially the long term loading behaviour (e.g. wind and current) was investigated by conducting three degree of freedom loading {V:M/2R:H} tests on a foundation embedded in dry sand. The results were interpreted through existing work-hardening plasticity theories. The analysis of the data has suggested a number of improved modelling features. Cyclic and transient tests, representing wave loading, were carried out on a foundation embedded in an oil saturated sand. The novel feature of the cyclic loading was that a 'pseudo-random' load history (based on the 'NewWave' theory) was used to represent realistic loading paths. Of particular interest was the tensile load capacity of the foundation. The results observed suggested that for tensile loading serviceability requirements rather than capacity may govern design. Under combined-load cyclic conditions the results indicated that conventional plasticity theory would not provide a sufficient description of response. A new theory, termed 'continuous hyperplasticity' was used, reproducing the results with impressive accuracy. Surprisingly, under the conditions investigated, loading rate was found to have a negligible effect on response.
APA, Harvard, Vancouver, ISO, and other styles
8

Mangal, Jan Krishna. "Partially-drained loading of shallow foundations on sand." Thesis, University of Oxford, 1999. http://ora.ox.ac.uk/objects/uuid:205bf0bc-b801-4648-a556-8dba0d113cba.

Full text
Abstract:
Wave loading on offshore structures founded on sand can result in partially drained response of the foundation soil. The characteristics of the rate of loading, the permeability of the soil, and the size of the foundation affect the degree of partial drainage. Partial drainage refers to situations where pore pressures develop in the soil, and the response of the soil is neither fully drained nor undrained. This thesis is concerned with the effects of loading rate, and consequent drainage, on the behaviour of a flat footing that is founded on the surface of a saturated sand base. The results of physical tests performed in the laboratory on a model-sized footing are reported. The footing was founded on oil-saturated fine sand and was subjected to combined loading. The effect of the vertical, horizontal, and rotational displacements are reported. The response of the footing is analysed in the context of existing drained foundation models that are based on work hardening plasticity theory. The rate dependency of the vertical load:deformation behaviour and the combined yield surfaces are described.
APA, Harvard, Vancouver, ISO, and other styles
9

Nguyen-Sy, Lam. "The theoretical modelling of circular shallow foundation for offshore wind turbines." Thesis, University of Oxford, 2005. http://ora.ox.ac.uk/objects/uuid:fa4000fb-8de6-4093-b528-3e60d774dea0.

Full text
Abstract:
Currently, much research is being directed at alternative energy sources to supply power for modern life of today and the future. One of the most promising sources is wind energy which can provide electrical power using wind turbines. The increase in the use of this type of energy requires greater consideration of design, installation and especially the cost of offshore wind turbines. This thesis will discuss the modelling of a novel type of shallow foundation for wind turbines under combined loads. The footing considered in this research is a circular caisson, which can be installed by the suction technique. The combined loads applied to this footing will be in three-dimensional space, with six degrees of freedom of external forces due to environmental conditions. At the same time, during the process of building up the model for a caisson, the theoretical analyses for shallow circular flat footing and spudcans also are established with the same principle. The responses of the soil will be considered in both elastic and plastic stages of behaviour, by using the framework of continuous plasticity based on thermodynamic principles. During this investigation, it is necessary to compare the numerical results with available experimental data to estimate suitable values of factors required to model each type of soil. There are five main goals of development of the model. Firstly, a new expression for plasticity theory which includes an experimentally determined single yield function is used to model the effects of combined cyclic loading of a circular footing on the behaviour of both sand and clay. This formulation based on thermodynamics allows the derivation of plastic solutions which automatically obey the laws of thermodynamics without any further assumptions. A result of this advantage is that non-associate plasticity, which is known to be a proper approximation for geotechnical material behaviour, is obtained logically and naturally. A FORTRAN source code called ISIS has been written as a tool for numerical analysis. Secondly, since there are some characteristics of the geometric shape and installation method which are quite different from that of spudcans and circular flat footing, another objective of this study is to adapt the current model which has been developed in ISIS for spudcans to the specific needs of caissons. The third goal of this research is the simulation of continuous loading history and a smooth transition in the stress-strain relationship from elastic to plastic behaviour. The model is developed from a single-yield-surface model to a continuous plasticity model (with an infinite number of yield surfaces) and then is discretized to a multiple-yield-surface model which can be implemented by numerical calculation to be able to capture with reasonable precision the hysteretic response of a foundation under cyclic loading. This can not be described by a conventional single-yield-surface model. Fourthly, as a method to simplify the numerical difficulties arising from the calculation process, a rate-dependent solution will be introduced. This modification is implemented by changing the dissipation function derived from the second law of thermodynamics. Finally, in order to control the model to capture the real behaviour, many parameters are proposed. A parametric study will be implemented to show the effects of these parameters on the solution.
APA, Harvard, Vancouver, ISO, and other styles
10

Wilberts, Frauke. "MEASUREMENT DRIVEN FATIGUE ASSESSMENT OF OFFSHORE WIND TURBINE FOUNDATIONS." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-337960.

Full text
Abstract:
The installed capacity of offshore wind turbines in Europe is increasing with the monopile being the most common type of foundation. During its lifetime an offshore wind turbine is exposed to high dynamic loads which eventually can result in the fatigue of the substructure. This thesis will show how the linear damage accumulation approach based on the Miner’s rule can be used to estimate the damage induced on the substructure of an offshore wind turbine using measurements from strain gauges. Furthermore, the most important environmental influences will be illustrated and the different stress concentration factors and the size effect introduced in the industry guideline DNVGL-RP-C203 will be analysed towards their effect on the calculated lifetime.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Offshore foundation"

1

Ardus, D. A., D. Clare, A. Hill, R. Hobbs, R. J. Jardine, and J. M. Squire, eds. Offshore Site Investigation and Foundation Behaviour. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2473-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Magued, Iskander, Laefer Debra F, Hussein Mohamad H, American Society of Civil Engineers. Geo-Institute, Association of Drilled Shaft Contractors (U.S.), and Pile Driving Contractors Association (U.S.), eds. Contemporary topics in deep foundations: Selected papers from the 2009 International Foundation Congress and Equipment Expo, March 15-19, 2009, Orlando, Florida. Reston, Va: American Society of Civil Engineers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kay, Steve, Susan Gourvenec, Elisabeth Palix, and Etienne Alderlieste. Intermediate Offshore Foundations. First edition. | Abingdon, Oxon ; Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429423840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ardus, D. A. Offshore Site Investigation and Foundation Behaviour: Papers presented at a conference organized by the Society for Underwater Technology and held in London, UK, September 22-24, 1992. Dordrecht: Springer Netherlands, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Deepwater foundations and pipeline geomechanics. Ft. Lauderdale, FL: J. Ross Pub., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lesny, Kerstin. Foundations for offshore wind turbines: Tools for planning and design. Essen: VGE Verlag GmbH, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Scour at marine structures: A manual for practical applications. London: Thomas Telford, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jørgen, Fredsøe, ed. The mechanics of scour in the marine environment. River Edge, N.J: World Scientific, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Semple, R. M. Background to guidance on foundations and site investigations for offshore structures: Report of the Department of Energy, Guidance Notes Revision Working Group. London: H.M.S.O., 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Office, General Accounting. Foreign assistance: U.S. Food Aid Program to Russia had weak internal controls : report to the ranking minority member, Subcommittee on Agriculture, Rural Development and Related Agencies, Committee on Appropriations, House of Representatives. Washington, D.C: The Office, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Offshore foundation"

1

Chaney, Ronald C., and Kenneth R. Demars. "Offshore Structure Foundations." In Foundation Engineering Handbook, 679–734. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3928-5_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Birkinshaw, M. "Keynote Address: Offshore Foundation Safety." In Advances in Underwater Technology, Ocean Science and Offshore Engineering, 7–14. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2473-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kay, Steve, Susan Gourvenec, Elisabeth Palix, and Etienne Alderlieste. "Offshore foundation types and mode of operation." In Intermediate Offshore Foundations, 7–23. First edition. | Abingdon, Oxon ; Boca Raton, FL : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429423840-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jia, Junbo. "Offshore Structures and Hydrodynamic Modeling." In Soil Dynamics and Foundation Modeling, 269–313. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40358-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Agostoni, A. "Steel Template Platform on Piled Foundation." In Case Histories in Offshore Engineering, 43–65. Vienna: Springer Vienna, 1985. http://dx.doi.org/10.1007/978-3-7091-2742-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hamm, christian, Daniel Siegel, Nils Niebuhr, Piotr Jurkojc, and Rene von der Hellen. "Offshore Foundation Based on the ELiSE Method." In Biologically-Inspired Systems, 195–206. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-9398-8_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tjelta, Tor Inge. "Foundation Behaviour of Gullfaks C." In Advances in Underwater Technology, Ocean Science and Offshore Engineering, 451–67. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-2473-9_23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mahanta, Rupam, and R. K. Ghanekar. "Foundation Failure and Instability of an Offshore Jacket Structure During Installation—A Case Study." In Advances in Offshore Geotechnics, 207–19. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6832-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tang, Chong, and Kok-Kwang Phoon. "Evaluation of Design Methods for Offshore Spudcans in Layered Soil." In Model Uncertainties in Foundation Design, 233–88. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9780429024993-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jia, Junbo. "General Design Issues for Offshore Foundations and Relevant International Codes and Guidelines." In Soil Dynamics and Foundation Modeling, 669–71. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40358-8_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Offshore foundation"

1

Andersen, Knut H., and Hans Petter Jostad. "Foundation Design of Skirted Foundations and Anchors in Clay." In Offshore Technology Conference. Offshore Technology Conference, 1999. http://dx.doi.org/10.4043/10824-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kumar, Chaithanya, Sandhria Ferriawan Agung Pambudi, Milind Manohar Salunke, and John William Rayappa. "Alternate Foundation Concepts for Offshore Jackets in Calcareous Soils." In Offshore Technology Conference Asia. OTC, 2022. http://dx.doi.org/10.4043/31595-ms.

Full text
Abstract:
Abstract Calcareous soil type is found at many locations, requiring careful selection of foundation type. Calcareous soil is mostly or partly composed of calcium carbonate in the form of lime or chalk derived from the underlying chalk or limestone rock. North-West Shelf of Australia is an example of site which consists of carbonate soil types wherein the majority of existing offshore facilities and platforms being installed using Drilled and Grouted (D&G) piled foundations and in some instances using Gravity based foundations. This paper discusses alternate foundation concepts on such soils, namely; (i) Micro-piles, and (ii) Inclined pile cluster, along with the common concepts of (iii) D&G piles and (iv) Gravity based foundations. The foundation concepts are discussed with focus on key aspects of the foundation structural configuration, vertical foundation capacity feasibility, and some serviceability related aspects. In addition, offshore operation and installation duration perspective are also discussed to provide some insight on how each foundation concept could suit the project preference which often influence the final selection of foundation concept. Risk/challenges and advantages of each concept are then summarized for overall comparison.
APA, Harvard, Vancouver, ISO, and other styles
3

Murff, J. D., M. D. Prins, E. T. R. Dean, R. G. James, and A. N. Schofield. "Jackup Rig Foundation Modelling." In Offshore Technology Conference. Offshore Technology Conference, 1992. http://dx.doi.org/10.4043/6807-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Spagnoli, Giovanni, and Leonhard Weixler. "Alternative Offshore Foundation Installation Methods." In Offshore Technology Conference. Offshore Technology Conference, 2013. http://dx.doi.org/10.4043/23962-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wona, P. C., J. C. Chao, J. D. Murff, E. T. R. Dean, R. G. James, A. N. Schofield, and Yoshi Tsukamoto. "Jackup Rig Foundation Modeling II." In Offshore Technology Conference. Offshore Technology Conference, 1993. http://dx.doi.org/10.4043/7303-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fines, S., O. J. Støle, and F. Guldberg. "Snorre TLP Tethers and Foundation." In Offshore Technology Conference. Offshore Technology Conference, 1991. http://dx.doi.org/10.4043/6623-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Templeton, J. S. "Jackup Foundation Performance in Clay." In Offshore Technology Conference. Offshore Technology Conference, 2006. http://dx.doi.org/10.4043/18367-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

White, G. J., S. Preston, and R. H. McKenzie. "The Hutton TLP Foundation Installation." In Offshore Technology Conference. Offshore Technology Conference, 1985. http://dx.doi.org/10.4043/4949-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Santiago, J. L., A. G. Fragio, J. A. Mingo, and P. C. Charlesworth. "Installation Of The Gaviota Platform Foundation." In Offshore Technology Conference. Offshore Technology Conference, 1986. http://dx.doi.org/10.4043/5329-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bogard, D. "Nonlinear Bending of Deep Foundation Piles." In Offshore Technology Conference. Offshore Technology Conference, 1991. http://dx.doi.org/10.4043/6668-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Offshore foundation"

1

Afjeh, Abdollah A., Nautica Windpower, Joseph Marrone, and Thomas Wagner. Advanced Offshore Wind Turbine/Foundation Concept for the Great Lakes. Office of Scientific and Technical Information (OSTI), August 2013. http://dx.doi.org/10.2172/1227612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuuskraa, Vello. Building the Foundation for Assessing GOM Offshore CO2 EOR and CO2 Storage. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1763966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Wei, Michael Brown, Matteo Ciantia, and Yaseen Sharif. DEM simulation of cyclic tests on an offshore screw pile for floating wind. University of Dundee, December 2021. http://dx.doi.org/10.20933/100001231.

Full text
Abstract:
Screw piles need to be upscaled for offshore use e.g. being an alternative foundation and anchor form for offshore floating wind turbines, although the high demand of vertical installation forces could prevent its application if conventional pitch-matched installation is used. Recent studies, using numerical and centrifuge physical tests, indicated that the vertical installation force can be reduced by adopting over-flighting which also improved axial uplift capacity of the screw pile. The current study extends the scope to axial cyclic performance with respect to the installation approach. Using quasi-static discrete element method (DEM) simulation it was found that the over-flighted screw pile showed a lower displacement accumulation rate, compared to a pitch-matched installed pile, in terms of load-controlled cyclic tests. Sensitivity analysis of the setup of the cyclic loading servo shows the maximum velocity during the tests should be limited to avoid significant exaggeration of the pile displacement accumulation but this may lead to very high run durations.
APA, Harvard, Vancouver, ISO, and other styles
4

Yokel, Felix Y., and Robert G. Bea. Mat foundations for offshore structures in Arctic regions. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.86-3419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography