Academic literature on the topic 'Offshore Floating Structures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Offshore Floating Structures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Offshore Floating Structures"

1

Konovessis, Dimitris, Kie Hian Chua, and Dracos Vassalos. "Stability of floating offshore structures." Ships and Offshore Structures 9, no. 2 (January 17, 2013): 125–33. http://dx.doi.org/10.1080/17445302.2012.747270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ellinas, Charles P. "Floating Structures and Offshore Operations." Applied Ocean Research 11, no. 2 (April 1989): 112. http://dx.doi.org/10.1016/0141-1187(89)90014-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Eatock Taylor, R. "Floating structures and offshore operations." Engineering Structures 11, no. 4 (October 1989): 290. http://dx.doi.org/10.1016/0141-0296(89)90048-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Kun, Guo-Kang Er, and Vai Pan Iu. "Seismic analysis of nonlinear offshore moored floating structures." Advances in Structural Engineering 21, no. 9 (December 7, 2017): 1361–75. http://dx.doi.org/10.1177/1369433217744356.

Full text
Abstract:
This article presents a numerical model for solving the nonlinear random vibrations of offshore moored floating structures under seismic excitation. The offshore moored floating structure consists of the floating platform and mooring cables. The floating platform is considered as a rigid body with 3 degrees of freedom. The nonlinear equations of motions of the mooring cables are established using the nonlinear cable elements that are formulated based on the extended Hamilton principle. The nonlinear hydrodynamic drag forces that act on both the floating platform and cables are considered. In order to carry out the random vibrational analysis, the connection conditions between the floating structure and mooring cables are given to formulate the equations of motions of the whole system. Finally, the moored floating structure under horizontal seismic ground accelerations with Kanai–Tajimi model are analyzed using Monte Carlo simulation method. The probability density functions of the displacements of the moored floating structure and the maximum tensile force in cables are presented. The influences of different sag-to-span ratios or inclined angles of the mooring cables on the mean value and standard deviation of the displacements of the floating structure and the maximum tensile force in cables are analyzed.
APA, Harvard, Vancouver, ISO, and other styles
5

Tomasicchio, Giuseppe Roberto, Elvira Armenio, Felice D'Alessandro, Nuno Fonseca, Spyros A. Mavrakos, Valery Penchev, Holger Schuttrumpf, Spyridon Voutsinas, Jens Kirkegaard, and Palle M. Jensen. "DESIGN OF A 3D PHYSICAL AND NUMERICAL EXPERIMENT ON FLOATING OFF-SHORE WIND TURBINES." Coastal Engineering Proceedings 1, no. 33 (December 14, 2012): 67. http://dx.doi.org/10.9753/icce.v33.structures.67.

Full text
Abstract:
The knowledge of the behavior of floating offshore wind turbines (W/T) under wave and/or wind action remains one of the most difficult challenges in offshore engineering which is mostly due to the highly non-linear response of the structure. The present study describes the design process of a 3D physical experiment to investigate the behavior of the most promising structure technology of floating W/T: spar buoy (SB) and tension leg platform (TLP) under different meteo conditions. In order to properly design the two W/T models, the following topics have been analyzed: mooring lines, mass distribution, appropriate scaling factor and data relative to the geometrical characteristics, wave basin dimensions and wind and waves conditions. In addition, the Smoothed Particle Hydrodynamics method (SPH) (Monaghan 1994) has been considered to simulate the 3D behavior of a floating offshore W/T. In particular, the SPH, calibrated and verified on the basis of the experimental observations, may represent a reliable tool for preliminary test of changes in the floater geometry.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, Ruo Yu, Chao He Chen, You Gang Tang, and Xiao Yan Huang. "Research Development and Key Technical on Floating Foundation for Offshore Wind Turbines." Advanced Materials Research 446-449 (January 2012): 1014–19. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.1014.

Full text
Abstract:
The water area in which water depth is deeper than 50m has special advantage in wind turbine generation, because there are the stable wind speed and small Wind-shear. In such sea area, the offshore wind energy generating equipments should be set up on floating foundation structure. Therefore, it is of great significance to study the floating foundation structures that are available for offshore wind energy generation for the industrialization of the offshore wind power generation. In this paper, the basic type and working principles are reviewed for some novel floating structures developed in recent year. In addition, some key dynamical problems and risk factors of the floating structure are systemically analyzed for working load caused by turbine running and sea environment loads of floating structure. The results are valuable for designing the floating structures of wind turbine generation.
APA, Harvard, Vancouver, ISO, and other styles
7

Sclavounos, Paul. "Floating Offshore Wind Turbines." Marine Technology Society Journal 42, no. 2 (June 1, 2008): 39–43. http://dx.doi.org/10.4031/002533208786829151.

Full text
Abstract:
Wind is a rapidly growing renewable energy source, increasing at an annual rate of 30%, with the vast majority of wind power generated from onshore wind farms. The growth of these facilities, however, is limited by the lack of inexpensive land near major population centers and the visual impact caused by large wind turbines.Wind energy generated from floating offshore wind farms is the next frontier. Vast sea areas with stronger and steadier winds are available for wind farm development and 5 MW wind turbine towers located 20 miles from the coastline are invisible. Current offshore wind turbines are supported by monopoles driven into the seafloor or other bottom mounted structures at coastal sites a few miles from shore and in water depths of 10-15 m. The primary impediment to their growth is their prohibitive cost as the water depth increases.This article discusses the technologies and the economics associated with the development of motion resistant floating offshore wind turbines drawing upon a seven-year research effort at MIT. Two families of floater concepts are discussed, inspired by developments in the oil and gas industry for the deep water exploration of hydrocarbon reservoirs. The interaction of the floater response dynamics in severe weather with that of the wind turbine system is addressed and the impact of this coupling on the design of the new generation of multi-megawatt wind turbines for offshore deployment is discussed. The primary economic drivers affecting the development of utility scale floating offshore wind farms are also addressed.
APA, Harvard, Vancouver, ISO, and other styles
8

Pham, Thanh-Dam, Minh-Chau Dinh, Hak-Man Kim, and Thai-Thanh Nguyen. "Simplified Floating Wind Turbine for Real-Time Simulation of Large-Scale Floating Offshore Wind Farms." Energies 14, no. 15 (July 28, 2021): 4571. http://dx.doi.org/10.3390/en14154571.

Full text
Abstract:
Floating offshore wind has received more attention due to its advantage of access to incredible wind resources over deep waters. Modeling of floating offshore wind farms is essential to evaluate their impacts on the electric power system, in which the floating offshore wind turbine should be adequately modeled for real-time simulation studies. This study proposes a simplified floating offshore wind turbine model, which is applicable for the real-time simulation of large-scale floating offshore wind farms. Two types of floating wind turbines are evaluated in this paper: the semi-submersible and spar-buoy floating wind turbines. The effectiveness of the simplified turbine models is shown by a comparison study with the detailed FAST (Fatigue, Aerodynamics, Structures, and Turbulence) floating turbine model. A large-scale floating offshore wind farm including eighty units of simplified turbines is tested in parallel simulation and real-time software (OPAL-RT). The wake effects among turbines and the effect of wind speeds on ocean waves are also taken into account in the modeling of offshore wind farms. Validation results show sufficient accuracy of the simplified models compared to detailed FAST models. The real-time results of offshore wind farms show the feasibility of the proposed turbine models for the real-time model of large-scale offshore wind farms.
APA, Harvard, Vancouver, ISO, and other styles
9

Kim, Mun Sung, Kwang Hyo Jung, and Sung Boo Park. "WAVE INDUCED COUPLED MOTIONS AND STRUCTURAL LOADS BETWEEN TWO OFFSHORE FLOATING STRUCTURES IN WAVES." Brodogradnja 69, no. 3 (July 1, 2018): 149–73. http://dx.doi.org/10.21278/brod69309.

Full text
Abstract:
As oil or gas field moves deeper offshore area, offshore offloading operations such as Tandem or Side-by-Side arrangement between two floating structures take place in many locations throughout the world and also have many hydrodynamic problems. Therefore, the researches on the motion response and hydrodynamic force including first and second order between two floating structures are needed to have the more safe offloading operability in waves. In this paper, prediction of wave induced motion responses and structural loads at mid-ship section with hydrodynamic interaction effect between two offshore floating structures in various heading waves are studied by using a linearized three-dimensional potential theory. Numerical calculations using three-dimensional pulsating source distribution techniques have been carried out for hydrodynamic pressure distribution, wave exciting force, twelve coupled linear motion responses, relative motions and wave loads of the barge and the ship in oblique waves. The computational results give a good correlation with the experimental results and also with other numerical results. As a result, the present computational tool can be used effectively to predict the wave induced motions and structural loads of multiple offshore floating structures in waves.
APA, Harvard, Vancouver, ISO, and other styles
10

Lai, Bin Bin, Cheng Bi Zhao, Xiao Ming Chen, You Hong Tang, and Wei Lin. "A Novel Structural Form of Semi-Submersible Platform for a Floating Offshore Wind Turbine with Hydrodynamic Performance Analysis." Applied Mechanics and Materials 477-478 (December 2013): 109–13. http://dx.doi.org/10.4028/www.scientific.net/amm.477-478.109.

Full text
Abstract:
With the mature of floating offshore wind turbine technology, floating wind farm building in the deep sea becomes an inevitable trend. In the design of floating offshore wind turbine, the change of structural form is the main factor influencing hydrodynamic performance. This research, taking a typical sea condition in China's coastal areas as the object of study, designs a novel semi-submersible foundation for NREL 5 MW offshore wind turbine in 200 m deep water. In the design, deep-draft buoys structures are used to reduce the force of waves on the floating offshore, while damping structures are used to optimize the stability of wind turbine and reduce the heave amplitude. By means of numerical simulation method, the hydrodynamic performance of semi-submersible support is studied. Meanwhile, the response amplitude operators (RAOs) and the wave response motions of platform are calculated. The results in time domain indicate that the floating wind turbine system can keep safe and survive in the harsh sea condition, coupling wind, waves and currents. It is showed that the designed semi-submersible support of platform has excellent hydrodynamic performance. This change of structural form may serve as a reference on the development of offshore wind floating platform.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Offshore Floating Structures"

1

Richardson, Mark Damian. "Dynamically installed anchors for floating offshore structures." University of Western Australia. School of Civil and Resource Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0230.

Full text
Abstract:
The gradual depletion of shallow water hydrocarbon deposits has forced the offshore oil and gas industry to develop reserves in deeper waters. Dynamically installed anchors have been proposed as a cost-effective anchoring solution for floating offshore structures in deep water environments. The rocket or torpedo shaped anchor is released from a designated drop height above the seafloor and allowed to penetrate the seabed via the kinetic energy gained during free-fall and the anchor’s self weight. Dynamic anchors can be deployed in any water depth and the relatively simple fabrication and installation procedures provide a significant cost saving over conventional deepwater anchoring systems. Despite use in a number of offshore applications, information regarding the geotechnical performance of dynamically installed anchors is scarce. Consequently, this research has focused on establishing an extensive test database through the modelling of the dynamic anchor installation process in the geotechnical centrifuge. The tests were aimed at assessing the embedment depth and subsequent dynamic anchor holding capacity under various loading conditions. Analytical design tools, verified against the experimental database, were developed for the prediction of the embedment depth and holding capacity.
APA, Harvard, Vancouver, ISO, and other styles
2

Lubbad, Raed Khalil. "Some Aspects of Arctic Offshore Floating Structures." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for bygg, anlegg og transport, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12334.

Full text
Abstract:
The present work highlights some aspects related to the analyses of Arctic offshore floating structures. This thesis consists of five papers, which can be divided into two main categories. One category deals with the dynamics of slender structures with an emphasis on the prediction and suppression of vortex induced vibrations (VIV), and the other category examines the process of interaction between sloping structures and sea ice with focus on developing a numerical model to simulate this process in real time. Slender structures, such as mooring lines and marine risers, are very important for the offshore petroleum industry, which is currently approaching deeper waters. Increasingly, attention has been focused on predicting the susceptibility of these structures to VIV. In this thesis, two asymptotic techniques namely, the local analysis and the WKB methods, were used to derive closed-form solutions for the natural frequencies and mode shapes of slender line-like structures. Both the top-tensioned nearly-vertical configuration and the catenary configuration were considered. The accuracy of the solutions derived was established through comparison with other analytic solution techniques and with results of numerical finite element solutions. The effects of the bending stiffness and the effects of approximating the tension variation as a linear function were discussed. Experimental data on the multi-modal in-line and cross-flow response behaviour of a towed catenary model were analysed to examine the usefulness of the solutions for predicting the response frequencies and envelopes due to VIV. Helical strakes are often used as a mitigating measure to suppress the VIV of slender structures. This thesis presented an innovative method to fit ropes helically to a riser in the installation phase. Such a procedure will help to overcome the handling problem associated with the use of conventional sharp-edged strakes. Experimental investigations were then performed to verify the efficiency of these ropes (round-sectioned helical strakes) in suppressing VIV. Systematic experimental investigations including twenty-eight configurations of round-sectioned helical strakes were tested in an attempt to find the most suitable strake configuration. The effects of varying pitch, the surface roughness and the ratio between the cross-flow and in-line natural frequencies on the efficiency of the proposed configuration of round-sectioned helical strakes were also investigated. The process of interaction between sea ice and offshore sloping structures (e.g., conical structures and ship-shaped structures) is quite complex. Modelling this process is very demanding and often computationally expensive, which typically hinders the chances for realtime simulations. This kind of simulation can be very useful for training personnel for Arctic offshore operations and procedures, for analysing the efficiency of various ice management concepts and as a part of the onboard support systems for station keeping. The challenge of meeting the real-time criterion was overcome in the present work. This thesis developed a numerical model to simulate the process of interaction between sea ice and sloping structures in real time. In this model, only level- and broken-ice features were studied. New analytical closed-form solutions were established and used to represent the ice breaking process. PhysX was used for the first time to solve the equations of rigid body motions with six degrees of freedom for all ice floes in the calculation domain. The results of the simulator were validated against experimental data from model-scale and full-scale tests. Accurate predictions of ice actions are also vital to optimise the design of the structures in the Arctic regions. A good understanding of the role of seawater in the process of interaction between the sloping structures and level ice will help to establish reliable models to estimate the ice forces. This work formulated both the static and dynamic bending problems for a floating wedge-shaped ice beam interacting with an offshore sloping structure. For the dynamic interaction, the effects of the water foundation on the bending failure of the ice were studied by comparing the results of an elastohydrodynamic approach with a model of a Winkler foundation. The thesis also investigated the breaking lengths of the ice wedges (i.e., the frequency of the ice loads) as a function of the ice thickness, the compression in the ice and the acceleration of the interaction.
APA, Harvard, Vancouver, ISO, and other styles
3

Kathiroli, S. "Optimisation of members of floating offshore structures." Thesis, University of Liverpool, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yahui. "Response statistics of a floating vessel in spreading seas." Thesis, University of Cambridge, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lui, Tin-pak. "Modular floating factory experimental offshore building components prefabrication /." Click to view the E-thesis via HKUTO, 2004. http://sunzi.lib.hku.hk/hkuto/record/B31987205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sönmez, Nurcan. "Investigating Wind Data and Configuration of Wind Turbines for a Turning Floating Platform." Thesis, KTH, Mekanik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148957.

Full text
Abstract:
Wake interactions on a floating platform for offshore wind energy applications were investigated.The study is performed in collaboration with Hexicon AB which has a patent family for innovative floating platforms, which are able to turn automatically. The Jensen model is used for wake effect calculations and the simulations were performed in MATLAB. The present study starts with wind speed and wind direction data analysis for the specific site that Hexicon AB plans to construct its first platform. Data analysis is followed by wake interaction studies for H4-24MW type Hexicon AB platform. Wake interaction simulations were performed for three different cases. Fixed turbine and platform, Nacelle yawing and fixed platform and Nacelle yawing and turned platform. Different cases were investigated in order to see wake interactions for different wind directions. Wind direction effect on wake interactions were performed between _90_ and 90_ with an increment of 10_. After having the simulation results for Nacelle yawing and turned platform case the results were compared with ANSYS - CFX simulations results. The results didn’t match exactly but they were very close, which is an indicator to the validity of the Jensen Model. After finding out the possible behavior of wake interactions for different wind directions, power calculations were performed for the same three cases. In order to perform the power calculations the wake interactions for different wind directions were taken into account. In case of platform turning it was assumed that power losses were caused both by wake interactions and in case of thrusters activation. The losses that would be caused by different thrust forces on the turbine blades were not included. The last study was performed to suggest different layouts. In the second case, Nacelle yawing and fixed platform, it was found out that nacelle yawing for most of the angles is not possible because it creates wake regions in front of the rotor area. It was decided to propose new turbine configurations on the platform which are tolerant to different nacelle yawing angles. The simulations were run without considering any constructions limitations, meaning that the availability of platform structure was not included. The study is ended by performing some probabilistic results for platform turning behavior.
APA, Harvard, Vancouver, ISO, and other styles
7

Mazaheri, Said. "Response based analysis of an FPSO due to arbitrary wave, wind and current loads." Thesis, University of Newcastle upon Tyne, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ngai, Siu-kit Joanna. "Floating outdoor museum : journey through the historical path of Macau /." View the Table of Contents & Abstract, 2005. http://sunzi.lib.hku.hk/hkuto/record/B34613626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lui, Tin-pak, and 雷天柏. "Modular floating factory: experimental offshore building components prefabrication." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B31987205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fernandez, Rodriguez Emmanuel. "Analysis of floating support structures for marine and wind energy." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/analysis-of-floating-support-structures-for-marine-and-wind-energy(f4870ce2-b8b5-4c7e-ba7e-f91a1d3c4bc9).html.

Full text
Abstract:
Bed connected support structures such as monopiles are expected to be impractical for water depths greater than 30 m and so there is increasing interest in alternative structure concepts to enable cost-effective deployment of wind and tidal stream turbines. Floating, moored platforms supporting multiple rotors are being considered for this purpose. This thesis investigates the dynamic response of such floating structures, taking into account the coupling between loading due to both turbulent flow and waves and the dynamic response of the system. The performance and loading of a single rotor in steady and quasi-steady flows are quantified with a Blade Element Momentum Theory (BEMT) code. This model is validated for steady flow against published data for two 0.8 m diameter rotors (Bahaj, Batten, et al., 2007; Galloway et al., 2011) and a 0.27 m diameter rotor (Whelan and Stallard, 2011). Time-averaged coefficients of thrust and power measured by experiment in steady turbulent flow were in agreement with BEMT predictions over a range of angular speeds. The standard deviation of force on the rotor is comparable to that on a porous grid for comparable turbulence characteristics. Drag and added mass coefficients are determined for a porous disc forced to oscillate normal to the rotor plane in quiescent flow and in the streamwise axis in turbulent flow. Added mass is negligible for the Keulegan Carpenter number range considered ( less than 1). The drag coefficient in turbulent flow was found to decay exponentially with number, to 2±10% for values greater than 0.5. These coefficients were found to be in good agreement with those for a rotor in the same turbulent flow with disc drag coefficient within 12.5% for less than 0.65. An extreme-value analysis is applied to the measured time-varying thrust due to turbulent flow and turbulent flow with waves to obtain forces with 1%, 0.1% and 0.01% probability of exceedance during operating conditions. The 1% exceedance force in turbulent flow with turbulence intensity of 12% is around 40% greater than the mean thrust. The peak force in turbulent flow with opposing waves was predicted to within 6% by superposition of the extreme force due to turbulence only with a drag force based on the relative wave-induced velocity at hub-height estimated by linear wave theory and with drag coefficient of 2.0. Response of a floating structure in surge and pitch is studied due to both wave- forcing on the platform defined by the linear diffraction code WAMIT and due to loading of the operating turbine defined by a thrust coefficient and drag coefficient. Platform response can either increase or decrease the loading on the rotor and this was dependant on the hydrodynamic characteristics of the support platform. A reduction of the force on the rotor is attained when the phase difference between the wave force on the support and the surface elevation is close to ± and when the damping of the support is increased. For a typical support and for a wave condition with phase difference close to , the 1% rotor forces were reduced by 8% when compared to the force obtained with a rotor supported on a stiff tower.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Offshore Floating Structures"

1

Wang, Chien-ming. Very large floating structures. New York, NY: Taylor & Francis, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Japan) International Workshop on Very Large Floating Structures (1996 Hayama-machi. Very large floating structures: [proceedings of International Workshop on Very Large Floating Structures], Hayama, Kanagawa, Japan, November 25-28, 1996. [Kanagawa, Japan]: Ship Research Institute, Ministry of Transport, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Workshop, on Floating Structures and Offshore Operations (1987 Wageningen Netherlands). Floating structures and offshore operations: Proceedings of a Workshop on Floating Structures and Offshore Operations, Wageningen, the Netherlands, 19-20 November 1987. Amsterdam: Elsevier, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Japan) International Workshop on Very Large Floating Structures (4th 2003 Tokyo. 4th International Workshop on Very Large Floating Structures: VLF '03, January 28-29, 2003, Tokyo, Japan. [Tokyo]: National Maritime Research Institute, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shipping, American Bureau of. Guide for building and classing floating production, storage, and offloading systems. New York, N.Y: American Bureau of Shipping, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Turkey. Shipping, Louisiana Offshore Oil Port: Agreement between the United States of America and Turkey, effected by exchange of notes, signed at Washington April 9 and 10, 1984. Washington, D.C: Dept. of State, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gabon. Shipping, Louisiana Offshore Oil Port: Agreement between the United States of America and Gabon, effected by exchange of notes, dated at Libreville July 25 and August 2, 1984. Washington, D.C: Dept. of State, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Turner, F. R. The Maunsell sea forts. Gravesend: F.R. Turner, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Turner, Frank R. The Maunsell sea forts: A potted history of the WW2 Thames Estuary forts. Gravesend: Frank R. Turner, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Turner, Frank R. The Maunsell sea forts. Gravesend: F.R. Turner, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Offshore Floating Structures"

1

Palo, Paul. "Mobile Offshore Base." In Large Floating Structures, 281–302. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-137-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Karimirad, Madjid. "Floating Offshore Wind Turbines." In Offshore Energy Structures, 53–76. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12175-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Utsunomiya, T., I. Sato, T. Shiraishi, E. Inui, and S. Ishida. "Floating Offshore Wind Turbine, Nagasaki, Japan." In Large Floating Structures, 129–55. Singapore: Springer Singapore, 2014. http://dx.doi.org/10.1007/978-981-287-137-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Aller, David, Alfredo Bermúdez, María Teresa Cao-Rial, Pedro Fontán, Francisco Pena, Andrés Prieto, Jerónimo Rodríguez, and José Francisco Rodríguez-Calo. "Automatic Analysis of Floating Offshore Structures." In Mathematics in Industry, 157–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23413-7_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bachynski, Erin E. "Fixed and Floating Offshore Wind Turbine Support Structures." In Offshore Wind Energy Technology, 103–42. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119097808.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thakare, S. W., Aparna H. Chavan, and A. I. Dhatrak. "Performance of Suction Pile Anchor for Floating Offshore Structures." In Lecture Notes in Civil Engineering, 271–84. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6090-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pombo, Joaquim, Aurora Rodrigues, and A. Paula F. da Silva. "Seabed Properties for Anchoring Floating Structures in the Portuguese Offshore." In Engineering Geology for Society and Territory - Volume 6, 399–403. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09060-3_69.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ueda, S. "Mooring Systems of the World Largest Floating Oil Storage Base." In Advances in Berthing and Mooring of Ships and Offshore Structures, 461–73. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1407-0_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pham, Hien Hau. "Methodology for Total Reliability Evaluation of the Mooring Lines of Floating Offshore Structures." In Lecture Notes in Civil Engineering, 572–79. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2306-5_81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lim, Dong-Hyun, Yonghwan Kim, and Seung-Hoon Lee. "Prediction of Extreme Nonlinear Hydrodynamic Responses and Mooring Line Loads of Floating Offshore Structures." In Lecture Notes in Civil Engineering, 564–78. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4680-8_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Offshore Floating Structures"

1

Triantafyllou, M. S., D. K. P. Yue, and D. Y. S. Tein. "Damping Of Moored Floating Structures." In Offshore Technology Conference. Offshore Technology Conference, 1994. http://dx.doi.org/10.4043/7489-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hughes, O. F., and T. R. McNatt. "A Unified Structural Design Method For Floating Offshore Structures." In Offshore Technology Conference. Offshore Technology Conference, 1993. http://dx.doi.org/10.4043/7188-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Perez, R., and M. Lamas. "Developments in Fixed and Floating Offshore Concrete Structures." In ICSOT Korea 2012 - Developments in fixed and floating offshore structures. RINA, 2012. http://dx.doi.org/10.3940/rina.icsot.2012.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van Wijngaarden, A. M. "Upgrades and Conversions of Floating Offshore Units." In ICSOT Korea 2012 - Developments in fixed and floating offshore structures. RINA, 2012. http://dx.doi.org/10.3940/rina.icsot.2012.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Suzuki, H., H. R. Riggs, M. Fujikubo, T. A. Shugar, H. Seto, Y. Yasuzawa, B. Bhattacharya, D. A. Hudson, and H. Shin. "Very Large Floating Structures." In ASME 2007 26th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2007. http://dx.doi.org/10.1115/omae2007-29758.

Full text
Abstract:
Very Large Floating Structure (VLFS) is a unique concept of ocean structures primary because of their unprecedented length, displacement cost and associated hydroelastic response. International Ship and Offshore Structures Congress (ISSC) had paid attention to the emerging novel technology and launched Special Task Committee to investigate the state of the art in the technology. This paper summarizes the activities of the committee. A brief overview of VLFS is given first for readers new to the subject. History, application and uniqueness with regard to engineering implication are presented. The Mobile Offshore Base (MOB) and Mega-Float, which are typical VLFS projects that have been investigated in detail and are aimed to be realized in the near future, are introduced. Uniqueness of VLFS, such as differences in behavior of VLFS from conventional ships and offshore structures, are described. The engineering challenges associated with behavior, design procedure, environment, and the structural analysis of VLFS are introduced. A comparative study of hydroelastic analysis tools that were independently developed for MOB and Mega-Float is made in terms of accuracy of global behavior. The effect of structural modeling on the accuracy of stress analysis is also discussed. VLFS entails innovative design methods and procedure. Development of design criteria and design procedures are described and application of reliability-based approaches are documented and discussed.
APA, Harvard, Vancouver, ISO, and other styles
6

Buchner, Bas, and Tim Bunnik. "Extreme Wave Effects on Deepwater Floating Structures." In Offshore Technology Conference. Offshore Technology Conference, 2007. http://dx.doi.org/10.4043/18493-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jones, Justin, and Ian Childs. "Floating Substations for Commercial-Scale Floating Windfarms." In SPE Offshore Europe Conference & Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205423-ms.

Full text
Abstract:
Abstract As floating wind farms move from pilot projects to commercial-scale installations they will move further offshore and into deeper water. There will be a requirement for offshore substations to deliver the electricity to shore, for which floating support structures will be the preferred solution. This paper describes the challenges and development of solutions for commercial-scale HVAC and HVDC floating offshore substations. Two different floating substation concepts have been developed. Layouts for the electrical and ancillary equipment were initially developed, to enable efficient packaging and structural efficiency for the topsides. By integrating the hull and topsides, the overall mass of the structure is minimised, benefitting stability and reducing hull size. Hydrodynamic analysis of the substructures was performed and structural code checks on the hull and topsides were carried out in Sesam. Mooring designs for each structure for 250m water depth have been developed and analysed in Orcaflex. It is likely that alternating current (HVAC) export to shore will be used for shorter transmission distances and direct current (HVDC) will be used for longer transmission distances. HVDC and HVAC floating substations will have quite different hull forms. The larger topsides footprint and greater mass of the HVDC conversion equipment make a conventional semi-submersible hull form efficient when allied to a stressed-skin topsides structure. The smaller footprint, lighter weight and differing requirements for protection from the elements of the HVAC topsides make this inefficient, so a deep draught semi-submersible with a hybrid topsides is the preferred solution. It is concluded that floating substations suitable for large, commercial-scale wind farms will be the chosen solution for anything other than shallow water or close to shore.
APA, Harvard, Vancouver, ISO, and other styles
8

Raval, Dr Hirenkumar. "Advanced Structural Reassessment of Fixed and Floating Offshore Structures." In Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2016. http://dx.doi.org/10.2118/183135-ms.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Malta, Edgard B., Rodolfo T. Gonc¸alves, Fabio T. Matsumoto, Felipe R. Pereira, Andre´ L. C. Fujarra, and Kazuo Nishimoto. "Damping Coefficient Analyses for Floating Offshore Structures." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20093.

Full text
Abstract:
The damping evaluation of floating offshore systems is based on the viscous effects that are not considered in numerical models using the potential theory. Usually, different techniques for different systems are used to evaluate these hydrodynamic coefficients. The total damping is separated by potential and viscous damping, the first one is evaluated numerically and the second through experiments at reduced scale model. Common techniques considering linear motion equations cannot be applied to all degrees of freedom. Some methods were compared for results of decay test, such as: exponential and quadratic fit. Fourier transform (FT) spectral analysis and Hilbert Huang transform (HHT) can be used to evaluate the signal natural frequency and with HHT this can be done during the time domain. Also, analysis through the Random Decrement Technique (RDT) is presented to demonstrate the damping evaluation for irregular waves. The method to obtain external damping was presented for the different techniques in an ITTC semi-submersible model. The linear method is not sufficient to predict the damping coefficient for all the cases, because in most of them, the viscous damping was better represented by a quadratic fit. The HHT showed to be a good alternative to evaluate damping in non-linear systems.
APA, Harvard, Vancouver, ISO, and other styles
10

Ronold, Knut O., Vigleik L. Hansen, Marte Godvik, Einar Landet, Erik R. Jo̸rgensen, and Anne Lene H. Hopstad. "Guideline for Offshore Floating Wind Turbine Structures." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20344.

Full text
Abstract:
Floating offshore wind turbines is a field undergoing major development. Several companies and research institutes worldwide are engaged in research programs, pilot projects and even planning of commercial floating wind farms. Developing standards for design of floating wind turbine structures and a framework for prevailing rules are crucial and necessary for the industry to continue to grow. Det Norske Veritas (DNV) is an international provider of offshore standards for both the oil and gas industry and the wind energy industry. The standard DNV-OS-J101 “Design of Offshore Wind Turbine Structures” provides principles, technical requirements and guidance for design, construction and in-service inspection of offshore wind turbine structures. As a first step towards updating this standard to fully cover floating wind turbine structures, a DNV Guideline for Offshore Floating Wind Turbines has been established. This development is based on identification of current floating wind turbine concepts and the guideline includes an evaluation of what is required to make DNV-OS-J101 suitable for floating wind turbine structures. This paper presents the highlights of the new DNV Guideline for Offshore Floating Wind Turbine Structures.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography