Journal articles on the topic 'OBPs'

To see the other types of publications on this topic, follow the link: OBPs.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'OBPs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Du, Yuzhe, and Jian Chen. "The Odorant Binding Protein, SiOBP5, Mediates Alarm Pheromone Olfactory Recognition in the Red Imported Fire Ant, Solenopsis invicta." Biomolecules 11, no. 11 (October 28, 2021): 1595. http://dx.doi.org/10.3390/biom11111595.

Full text
Abstract:
Olfaction is crucial in mediating various behaviors of social insects such as red imported fire ants, Solenopsis invicta Buren. Olfactory receptor (OR) complexes consist of odor-specific ORs and OR co-receptors (Orco). Orcos are highly conserved across insect taxa and are widely co-expressed with ORs. Odorant binding proteins (OBPs) can transport semiochemicals to ORs as protein carriers and thus constitute the first molecular recognition step in insect olfaction. In this study, three OBP genes highly expressed in S. invicta antenna, OBP1, OBP5, OBP6, and Orco were partially silenced using RNA interference (RNAi). RNAi SiOBP5- and Orco-injected ants showed significantly lower EAG (electroantennography) responses to fire ant alarm pheromones and the alkaloid, 2,4,6-trimethylpyridine than water- or GFP-injected ants 72 h post injection. Subsequent qRT-PCR analysis demonstrated that the transcript level of the OBP1, OBP5, OBP6, and Orco significantly decreased 72 h after ants were injected with dsRNAs; however, there were no transcript level or EAG changes in ants fed dsRNAs. Our results suggest that S. invicta Orco and SiOBP5 are crucial to fire ants for their responses to alarm pheromones. RNAi knocking down SiOBP5 can significantly disrupt alarm pheromone communication, suggesting that disrupting SiOBP5 and Orcos could be potentially useful in the management of red imported fire ants.
APA, Harvard, Vancouver, ISO, and other styles
2

Ju, Qian, Ming-jing Qu, Ying Wang, Xiao-jing Jiang, Xiao Li, Shuang-lin Dong, and Zhao-jun Han. "Molecular and biochemical characterization of two odorant-binding proteins from dark black chafer, Holotrichia parallela." Genome 55, no. 7 (July 2012): 537–46. http://dx.doi.org/10.1139/g2012-042.

Full text
Abstract:
The dark black chafer, Holotrichia parallela Motschulsky, is an economically important pest worldwide. Odorant-based lures and traps are being developed as a key kind of alternative control measures for this pest, and studies to reveal the mechanisms for chemotaxis in this pest are necessary. Two full-length cDNAs encoding different odorant-binding proteins (OBPs) were cloned. The predicted proteins were found to have the functional domains characteristic of typical OBPs and share a high degree of sequence similarity with OBP1 and OBP2 from other insects and were therefore designated as H. parallela OBP-1 and H. parallela OBP-2 (HparOBP-1 and HparOBP-2, respectively). These two OBPs were specifically expressed in antennae. The binding affinity of two purified proteins indicated that HparOBP-1 and HparOBP-2 could selectively interact with various volatiles emitted from host plants and pheromone components. Among the 10 chemicals tested, HparOBP-1 could bind to six of the tested compounds with a dissociation concentration (Ki) less than 20, and HparOBP-2 could bind to three of the compounds. The two OBPs are probably involved in chemotaxis of the dark black chafer. This discovery should accelerate research on chemical communications of this pest, which could potentially lead to the improvement of control measures based on lures and traps.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Li, Dewer, Qu, Yang, Tian, and Luo. "Discrimination of Oviposition Deterrent Volatile β-Ionone by Odorant-Binding Proteins 1 and 4 in the Whitefly Bemisia tabaci." Biomolecules 9, no. 10 (October 3, 2019): 563. http://dx.doi.org/10.3390/biom9100563.

Full text
Abstract:
: The whitefly, Bemisia tabaci, is an important invasive economic pest of agricultural crops worldwide. β-ionone has a significant oviposition repellent effect against B. tabaci, but the olfactory molecular mechanism of this insect for recognizing β-ionone is unclear. To clarify the binding properties of odorant-binding proteins (OBPs) with β-ionone, we performed gene cloning, evolution analysis, bacterial expression, fluorescence competitive binding assay, and molecular docking to study the binding function of OBP1 and OBP4 on β-ionone. The results showed that after the OBP1 and OBP4 proteins were recombined, the compound β-ionone exhibited a reduction in the fluorescence binding affinity to <50%, with a dissociation constant of 5.15 and 3.62 μM for OBP1 and OBP4, respectively. Our data indicate that β-ionone has high affinity for OBP1 and OBP4, which play a crucial role in the identification of oviposition sites in B. tabaci. The findings of this study suggest that whiteflies employ β-ionone compound in the selection of the suitable egg-laying sites on host plants during the oviposition behavior.
APA, Harvard, Vancouver, ISO, and other styles
4

RAMONI, Roberto, Florence VINCENT, Alison E. ASHCROFT, Paolo ACCORNERO, Stefano GROLLI, Christel VALENCIA, Mariella TEGONI, and Christian CAMBILLAU. "Control of domain swapping in bovine odorant-binding protein." Biochemical Journal 365, no. 3 (August 1, 2002): 739–48. http://dx.doi.org/10.1042/bj20011631.

Full text
Abstract:
As revealed by the X-ray structure, bovine odorant-binding protein (OBPb) is a domain swapped dimer [Tegoni, Ramoni, Bignetti, Spinelli and Cambillau (1996) Nat. Struct. Biol. 3, 863–867; Bianchet, Bains, Petosi, Pevsner, Snyder, Monaco and Amzel (1996) Nat. Struct. Biol. 3, 934–939]. This contrasts with all known mammalian OBPs, which are monomers, and in particular with porcine OBP (OBPp), sharing 42.3% identity with OBPb. By the mechanism of domain swapping, monomers are proposed to evolve into dimers and oligomers, as observed in human prion. Comparison of bovine and porcine OBP sequences pointed at OBPp glycine 121, in the hinge linking the β-barrel to the α-helix. The absence of this residue in OBPb might explain why the normal lipocalin β-turn is not formed. In order to decipher the domain swapping determinants we have produced a mutant of OBPb in which a glycine residue was inserted after position 121, and a mutant of OBPp in which glycine 121 was deleted. The latter mutation did not result in dimerization, while OBPb-121Gly+ became monomeric, suggesting that domain swapping was reversed. Careful structural analysis revealed that besides the presence of a glycine in the hinge, the dimer interface formed by the C-termini and by the presence of the lipocalins conserved disulphide bridge may also control domain swapping.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Jiao, Giovanni Renzone, Simona Arena, Francesca Romana Dani, Harald Paulsen, Wolfgang Knoll, Christian Cambillau, Andrea Scaloni, and Paolo Pelosi. "The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae." International Journal of Molecular Sciences 22, no. 13 (June 25, 2021): 6828. http://dx.doi.org/10.3390/ijms22136828.

Full text
Abstract:
Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1–C6, C2–C3, C4–C5) differing from that of insect counterparts (C1–C3, C2–C5, C4–C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destructor OBP1, shows protein folding different from that of insect OBPs, although with some common features. Ligand-binding experiments indicated some affinity to coniferyl aldehyde, but specific ligands may still need to be found among very large molecules, as suggested by the size of the binding pocket.
APA, Harvard, Vancouver, ISO, and other styles
6

Zafar, Zeeshan, Sidra Fatima, Muhammad Faraz Bhatti, Farooq A. Shah, Zack Saud, and Tariq M. Butt. "Odorant Binding Proteins (OBPs) and Odorant Receptors (ORs) of Anopheles stephensi: Identification and comparative insights." PLOS ONE 17, no. 3 (March 22, 2022): e0265896. http://dx.doi.org/10.1371/journal.pone.0265896.

Full text
Abstract:
Anopheles stephensi is an important vector of malaria in the South Asia, the Middle East, and Eastern Africa. The olfactory system of An. stephensi plays an important role in host-seeking, oviposition, and feeding. Odorant binding proteins (OBPs) are globular proteins that play a pivotal role in insect olfaction by transporting semiochemicals through the sensillum lymph to odorant receptors (ORs). Custom motifs designed from annotated OBPs of Aedes aegypti, Drosophila melanogaster, and Anopheles gambiae were used for the identification of putative OBPs from protein sequences of the An. stephensi Indian strain. Further, BLASTp was also performed to identify missing OBPs and ORs. Subsequently, the presence of domains common to OBPs was confirmed. Identified OBPs were further classified into three sub-classes. Phylogenetic and syntenic analyses were carried out to find homology, and thus the evolutionary relationship between An. stephensi OBPs and ORs with those of An. gambiae, Ae. aegypti and D. melanogaster. Gene structure and physicochemical properties of the OBPs and ORs were also predicted. A total of 44 OBPs and 45 ORs were predicted from the protein sequences of An. stephensi. OBPs were further classified into the classic (27), atypical (10) and plus-C (7) OBP subclasses. The phylogeny revealed close relationship of An. stephensi OBPs and ORs with An. gambiae homologs whereas only five OBPs and two ORs of An. stephensi were related to Ae. aegypti OBPs and ORs, respectively. However, D. melanogaster OBPs and ORs were distantly rooted. Synteny analyses showed the presence of collinear block between the OBPs and ORs of An. stephensi and An. gambiae as well as Ae. aegypti’s. No homology was found with D. melanogaster OBPs and ORs. As an important component of the olfactory system, correctly identifying a species’ OBPs and ORs provide a valuable resource for downstream translational research that will ultimately aim to better control the malaria vector An. stephensi.
APA, Harvard, Vancouver, ISO, and other styles
7

Dong, Yonghao, Tong Li, Jin Liu, Meixue Sun, Xingyu Chen, Yongjie Liu, and Pengjun Xu. "Sex- and stage-dependent expression patterns of odorant-binding and chemosensory protein genes in Spodoptera exempta." PeerJ 9 (September 13, 2021): e12132. http://dx.doi.org/10.7717/peerj.12132.

Full text
Abstract:
As potential molecular targets for developing novel pest management strategies, odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) have been considered to initiate odor recognition in insects. Herein, we investigated the OBPs and CSPs in a major global crop pest (Spodoptera exempta). Using transcriptome analysis, we identified 40 OBPs and 33 CSPs in S. exempta, among which 35 OBPs and 29 CSPs had intact open reading frames. Sequence alignment indicated that 30 OBPs and 23 CSPs completely contained the conserved cysteines. OBPs of lepidopteran insects usually belonged to classical, minus-C, and plus-C groups. However, phylogenetic analyses indicated that we only identified 28 classical and seven minus-C OBPs in S. exempta, suggesting that we might have missed some typical OBPs in lepidopteran insects, probably due to their low expression levels. All of the CSPs from S. exempta clustered with the orthologs of other moths. The identification and expression of the OBPs and CSPs were well studied in insect adults by transcriptional analyses, and herein we used samples at different stages to determine the expression of OBPs and CSPs in S. exempta. Interestingly, our data indicated that several OBPs and CSPs were especially or more highly expressed in larvae or pupae than other stages, including three exclusively (SexeOBP13, SexeOBP16 and SexeCSP23) and six more highly (SexeOBP15, SexeOBP37, SexeCSP4, SexeCSP8, SexeCSP19, and SexeCSP33) expressed in larvae, two exclusively (SexeCSP6 and SexeCSP20) and three more highly (SexeOBP18, SexeCSP17, and SexeCSP26) expressed in pupae. Usually, OBPs and CSPs had both male- and female-biased expression patterns in adult antennae. However, our whole-body data indicated that all highly expressed OBPs and CSPs in adults were male-biased or did not differ, suggesting diverse OBP and CSP functions in insect adults. Besides identifying OBPs and CSPs as well as their expression patterns, these results provide a molecular basis to facilitate functional studies of OBPs and CSPs for exploring novel management strategies to control S. exempta.
APA, Harvard, Vancouver, ISO, and other styles
8

Rihani, Karen, Jean-François Ferveur, and Loïc Briand. "The 40-Year Mystery of Insect Odorant-Binding Proteins." Biomolecules 11, no. 4 (March 30, 2021): 509. http://dx.doi.org/10.3390/biom11040509.

Full text
Abstract:
The survival of insects depends on their ability to detect molecules present in their environment. Odorant-binding proteins (OBPs) form a family of proteins involved in chemoreception. While OBPs were initially found in olfactory appendages, recently these proteins were discovered in other chemosensory and non-chemosensory organs. OBPs can bind, solubilize and transport hydrophobic stimuli to chemoreceptors across the aqueous sensilla lymph. In addition to this broadly accepted “transporter role”, OBPs can also buffer sudden changes in odorant levels and are involved in hygro-reception. The physiological roles of OBPs expressed in other body tissues, such as mouthparts, pheromone glands, reproductive organs, digestive tract and venom glands, remain to be investigated. This review provides an updated panorama on the varied structural aspects, binding properties, tissue expression and functional roles of insect OBPs.
APA, Harvard, Vancouver, ISO, and other styles
9

Shi, Xiao-Bin, Xue-Zhong Wang, De-Yong Zhang, Zhan-Hong Zhang, Zhuo Zhang, Ju’E Cheng, Li-Min Zheng, Xu-Guo Zhou, Xin-Qiu Tan, and Yong Liu. "Silencing of Odorant-Binding Protein Gene OBP3 Using RNA Interference Reduced Virus Transmission of Tomato Chlorosis Virus." International Journal of Molecular Sciences 20, no. 20 (October 9, 2019): 4969. http://dx.doi.org/10.3390/ijms20204969.

Full text
Abstract:
Tomato chlorosis virus (ToCV) is widespread, seriously impacting tomato production throughout the world. ToCV is semi-persistently transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Currently, insect olfaction is being studied to develop novel pest control technologies to effectively control B. tabaci and whitefly-borne virus diseases. Despite current research efforts, no report has been published on the role of odorant-binding proteins (OBPs) in insect preference under the influence of plant virus. Our previous research showed that viruliferous B. tabaci preferred healthy plants at 48 h after virus acquisition. In this study, we determined the effect of OBPs on the host preference interactions of ToCV and whiteflies. Our results show that with the increase in acquisition time, the OBP gene expressions changed differently, and the OBP3 gene expression showed a trend of first rising and then falling, and reached the maximum at 48 h. These results indicate that OBP3 may participate in the host preference of viruliferous whiteflies to healthy plants. When the expression of the OBP3 gene was knocked down by an RNA interference (RNAi) technique, viruliferous Mediterranean (MED) showed no preference and the ToCV transmission rate was reduced by 83.3%. We conclude that OBP3 is involved in the detection of plant volatiles by viruliferous MED. Our results provide a theoretical basis and technical support for clarifying the transmission mechanism of ToCV by B. tabaci and could provide new avenues for controlling this plant virus and its vectors.
APA, Harvard, Vancouver, ISO, and other styles
10

Tzotzos, George. "A Comparative Evaluation of the Structural and Dynamic Properties of Insect Odorant Binding Proteins." Biomolecules 12, no. 2 (February 9, 2022): 282. http://dx.doi.org/10.3390/biom12020282.

Full text
Abstract:
Insects devote a major part of their metabolic resources to the production of odorant binding proteins (OBPs). Although initially, these proteins were implicated in the solubilisation, binding and transport of semiochemicals to olfactory receptors, it is now recognised that they may play diverse, as yet uncharacterised, roles in insect physiology. The structures of these OBPs, the majority of which are known as “classical” OBPs, have shed some light on their potential functional roles. However, the dynamic properties of these proteins have received little attention despite their functional importance. Structural dynamics are encoded in the native protein fold and enable the adaptation of proteins to substrate binding. This paper provides a comparative review of the structural and dynamic properties of OBPs, making use of sequence/structure analysis, statistical and theoretical physics-based methods. It provides a new layer of information and additional methodological tools useful in unravelling the relationship between structure, dynamics and function of insect OBPs. The dynamic properties of OBPs, studied by means of elastic network models, reflect the similarities/dissimilarities observed in their respective structures and provides insights regarding protein motions that may have important implications for ligand recognition and binding. Furthermore, it was shown that the OBPs studied in this paper share conserved structural ‘core’ that may be of evolutionary and functional importance.
APA, Harvard, Vancouver, ISO, and other styles
11

Diallo, Souleymane, Mohd Shahbaaz, JohnMark O. Makwatta, Jackson M. Muema, Daniel Masiga, Alan Christofells, and Merid N. Getahun. "Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes." Biomolecules 11, no. 4 (April 8, 2021): 541. http://dx.doi.org/10.3390/biom11040541.

Full text
Abstract:
Olfaction is orchestrated at different stages and involves various proteins at each step. For example, odorant-binding proteins (OBPs) are soluble proteins found in sensillum lymph that might encounter odorants before reaching the odorant receptors. In tsetse flies, the function of OBPs in olfaction is less understood. Here, we investigated the role of OBPs in Glossina fuscipes fuscipes olfaction, the main vector of sleeping sickness, using multidisciplinary approaches. Our tissue expression study demonstrated that GffLush was conserved in legs and antenna in both sexes, whereas GffObp44 and GffObp69 were expressed in the legs but absent in the antenna. GffObp99 was absent in the female antenna but expressed in the male antenna. Short odorant exposure induced a fast alteration in the transcription of OBP genes. Furthermore, we successfully silenced a specific OBP expressed in the antenna via dsRNAi feeding to decipher its function. We found that silencing OBPs that interact with 1-octen-3-ol significantly abolished flies’ attraction to 1-octen-3-ol, a known attractant for tsetse fly. However, OBPs that demonstrated a weak interaction with 1-octen-3-ol did not affect the behavioral response, even though it was successfully silenced. Thus, OBPs’ selective interaction with ligands, their expression in the antenna and their significant impact on behavior when silenced demonstrated their direct involvement in olfaction.
APA, Harvard, Vancouver, ISO, and other styles
12

Krzeski, Antoni, Ewa Migacz, Wojciech Kukwa, and Robert Proczka. "Zespół snu z bezdechami u pacjentów kwalifikowanych do endarterektomii - wyniki wstępne." Otolaryngologia Polska 72, no. 4 (June 12, 2018): 13–19. http://dx.doi.org/10.5604/01.3001.0012.0637.

Full text
Abstract:
Wstęp Związek pomiędzy obturacyjnym bezdechem podczas snu (OBPS) a miażdżycą jest potwierdzony od wielu lat, lecz patomechanizm tego zjawiska nie jest nadal znany. Celem badania jest zbadanie występowania OBPS u pacjentów zakwalifikowan...
APA, Harvard, Vancouver, ISO, and other styles
13

Scieuzo, Carmen, Marisa Nardiello, Donatella Farina, Andrea Scala, Jonathan A. Cammack, Jeffery K. Tomberlin, Heiko Vogel, Rosanna Salvia, Krishna Persaud, and Patrizia Falabella. "Hermetia illucens (L.) (Diptera: Stratiomyidae) Odorant Binding Proteins and Their Interactions with Selected Volatile Organic Compounds: An In Silico Approach." Insects 12, no. 9 (September 11, 2021): 814. http://dx.doi.org/10.3390/insects12090814.

Full text
Abstract:
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), has considerable global interest due to its outstanding capacity in bioconverting organic waste to insect biomass, which can be used for livestock, poultry, and aquaculture feed. Mass production of this insect in colonies requires the development of methods concentrating oviposition in specific collection devices, while the mass production of larvae and disposing of waste may require substrates that are more palatable and more attractive to the insects. In insects, chemoreception plays an essential role throughout their life cycle, responding to an array of chemical, biological and environmental signals to locate and select food, mates, oviposition sites and avoid predators. To interpret these signals, insects use an arsenal of molecular components, including small proteins called odorant binding proteins (OBPs). Next generation sequencing was used to identify genes involved in chemoreception during the larval and adult stage of BSF, with particular attention to OBPs. The analysis of the de novo adult and larval transcriptome led to the identification of 27 and 31 OBPs for adults and larvae, respectively. Among these OBPs, 15 were common in larval and adult transcriptomes and the tertiary structures of 8 selected OBPs were modelled. In silico docking of ligands confirms the potential interaction with VOCs of interest. Starting from the information about the growth performance of H. illucens on different organic substrates from the agri-food sector, the present work demonstrates a possible correlation between a pool of selected VOCs, emitted by those substrates that are attractive for H. illucens females when searching for oviposition sites, as well as phagostimulants for larvae. The binding affinities between OBPs and selected ligands calculated by in silico modelling may indicate a correlation among OBPs, VOCs and behavioural preferences that will be the basis for further analysis.
APA, Harvard, Vancouver, ISO, and other styles
14

Lu, Yanli, Yao Yao, Shuang Li, Qian Zhang, and Qingjun Liu. "Olfactory biosensor based on odorant-binding proteins of Bactrocera dorsalis with electrochemical impedance sensing for pest management." Sensor Review 37, no. 4 (September 18, 2017): 396–403. http://dx.doi.org/10.1108/sr-03-2017-0044.

Full text
Abstract:
Purpose Using the remarkable olfaction ability, insects can sense trace amounts of host plant volatiles that are notorious for causing severe damage to fruits and vegetables and in consequence the industry. The purpose of the paper is to investigate the interactions between olfactory proteins, odorant-binding proteins (OBPs) and host plant volatiles through the developed olfactory biosensors. It might be helpful to develop novel pest control strategies. Design/methodology/approach Using the successfully expressed and purified OBPs of the oriental fruit fly Bactrocera dorsalis, a biosensor was developed by immobilizing the proteins on interdigitated electrodes through nitrocellulose membrane. Based on electrochemical impedance sensing, benzaldehyde emitted by the host plants, such as Beta vulgaris, was detected, which could be used to investigate and analyze the mechanisms of pests’ sense of chemical signals. The relative decreases of charge transfer resistances of the sensor were proportional to the odorant concentrations from 10−7 M to 10−3 M. Meanwhile, the interactions between OBPs and benzaldehyde were studied through the process of molecular docking. Findings The paper provides a pest OBPs-based biosensor that could sensitively detect the host odorants benzaldehyde. Meanwhile, the most related amino acids of OBPs that bind to host plant volatiles can be distinguished with molecular docking. Originality/value An olfactory biosensor was developed to explore interactions and mechanism between the pest OBPs and benzaldehyde, which showed promising potentials for small organic molecule sensing. Simultaneously, it might be helpful for novel pest control strategies.
APA, Harvard, Vancouver, ISO, and other styles
15

Montino, Alice, Karthi Balakrishnan, Stefan Dippel, Björn Trebels, Piotr Neumann, and Ernst A. Wimmer. "Mutually Exclusive Expression of Closely Related Odorant-Binding Proteins 9A and 9B in the Antenna of the Red Flour Beetle Tribolium castaneum." Biomolecules 11, no. 10 (October 12, 2021): 1502. http://dx.doi.org/10.3390/biom11101502.

Full text
Abstract:
Olfaction is crucial for insects to find food sources, mates, and oviposition sites. One of the initial steps in olfaction is facilitated by odorant-binding proteins (OBPs) that translocate hydrophobic odorants through the aqueous olfactory sensilla lymph to the odorant receptor complexes embedded in the dendritic membrane of olfactory sensory neurons. The Tribolium castaneum (Coleoptera, Tenebrionidae) OBPs encoded by the gene pair TcasOBP9A and TcasOBP9B represent the closest homologs to the well-studied Drosophila melanogaster OBP Lush (DmelOBP76a), which mediates pheromone reception. By an electroantennographic analysis, we can show that these two OBPs are not pheromone-specific but rather enhance the detection of a broad spectrum of organic volatiles. Both OBPs are expressed in the antenna but in a mutually exclusive pattern, despite their homology and gene pair character by chromosomal location. A phylogenetic analysis indicates that this gene pair arose at the base of the Cucujiformia, which dates the gene duplication event to about 200 Mio years ago. Therefore, this gene pair is not the result of a recent gene duplication event and the high sequence conservation in spite of their expression in different sensilla is potentially the result of a common function as co-OBPs.
APA, Harvard, Vancouver, ISO, and other styles
16

Vogt, Richard G., Matthew E. Rogers, Marie-dominique Franco, and Ming Sun. "A comparative study of odorant binding protein genes: differential expression of the PBP1-GOBP2 gene cluster inManduca sexta(Lepidoptera) and the organization of OBP genes inDrosophila melanogaster(Diptera)." Journal of Experimental Biology 205, no. 6 (March 15, 2002): 719–44. http://dx.doi.org/10.1242/jeb.205.6.719.

Full text
Abstract:
SUMMARYInsects discriminate odors using sensory organs called olfactory sensilla, which display a wide range of phenotypes. Sensilla express ensembles of proteins, including odorant binding proteins (OBPs), olfactory receptors (ORs) and odor degrading enzymes (ODEs); odors are thought to be transported to ORs by OBPs and subsequently degraded by ODEs. These proteins belong to multigene families. The unique combinatorial expression of specific members of each of these gene families determines, in part, the phenotype of a sensillum and what odors it can detect. Furthermore, OBPs, ORs and ODEs are expressed in different cell types, suggesting the need for cell–cell communication to coordinate their expression. This report examines the OBP gene family. In Manduca sexta, the genes encoding PBP1Msex and GOBP2Msex are sequenced, shown to be adjacent to one another, and characterized together with OBP gene structures of other lepidoptera and Drosophila melanogaster. Expression of PBP1Msex, GOBP1Msex and GOBP2Msex is characterized in adult male and female antenna and in larval antenna and maxilla. The genomic organization of 25 D. melanogaster OBPs are characterized with respect to gene locus, gene cluster, amino acid sequence similarity, exon conservation and proximity to OR loci, and their sequences are compared with 14 M. sexta OBPs. Sensilla serve as portals of important behavioral information, and genes supporting sensilla function are presumably under significant evolutionary selective pressures. This study provides a basis for studying the evolution of the OBP gene family, the regulatory mechanisms governing the coordinated expression of OBPs, ORs and ODEs, and the processes that determine specific sensillum phenotypes.
APA, Harvard, Vancouver, ISO, and other styles
17

Wang, Chang (Nancy), Ruobing Yang, and Lawrence Hookey. "Does It work in Clinical Practice? A Comparison of Colonoscopy Cleansing Effectiveness in Clinical Practice Versus Efficacy from Selected Prospective Trials." Journal of the Canadian Association of Gastroenterology 3, no. 3 (February 12, 2019): 111–19. http://dx.doi.org/10.1093/jcag/gwy070.

Full text
Abstract:
AbstractBackgroundAdequate bowel preparation is essential for a high-quality colonoscopy. Many randomized controlled trials (RCTs) have investigated bowel preparation protocols, including split-dose and low-volume regimens. However, RCTs are conducted in an ideal, controlled setting, and translation of trial results to clinical practice is challenging. In this study, we compared the quality of bowel preparations of real-world patients from clinical practice with those enrolled in several prospective trials.MethodsBowel preparation quality, defined by the Ottawa Bowel Preparation Scale (OBPS), from four RCTs and one prospective trial were compared with two observational diary studies. Bowel preparations were polyethylene glycol preparation (PEG) or sodium picosulfate plus magnesium citrate (P/MC) taken via traditional or split-dose timing regimen. Age, sex, average number of bowel movements per day, comorbidities, colonoscopy indication and colonoscopy completion rates were also collected.ResultsPatients enrolled in prospective trials had a better OBPS by one point when compared with those in observational clinical practice studies (P&lt;0.049), after controlling for age, sex, colonoscopy indication and type of bowel preparation used. We also found that each 10-year increase in age was associated with a 0.2 point increase in OBPS (P=0.008), and men were associated with a 0.5 increase in OBPS when compared with women P=0.014).ConclusionPatients from clinical practice have higher OBPS than prospective trial patients. Increased age and male sex were also associated with increased OBPS. We believe increased patient motivation and education around bowel preparation regimen plays an important role in the success of bowel preparations.
APA, Harvard, Vancouver, ISO, and other styles
18

Lagarde, Amandine, Silvia Spinelli, Huili Qiao, Mariella Tegoni, Paolo Pelosi, and Christian Cambillau. "Crystal structure of a novel type of odorant-binding protein from Anopheles gambiae, belonging to the C-plus class." Biochemical Journal 437, no. 3 (July 13, 2011): 423–30. http://dx.doi.org/10.1042/bj20110522.

Full text
Abstract:
Agam (Anopheles gambiae) relies on its olfactory system to target human prey, leading eventually to the injection of Plasmodium falciparum, the malaria vector. OBPs (odorant-binding proteins) are the first line of proteins involved in odorant recognition. They interact with olfactory receptors and thus constitute an interesting target for insect control. In the present study, we undertook a large-scale analysis of proteins belonging to the olfactory system of Agam with the aim of preventing insect bites by designing strong olfactory repellents. We determined the three-dimensional structures of several Agam OBPs, either alone or in complex with model compounds. In the present paper, we report the first three-dimensional structure of a member of the C-plus class of OBPs, AgamOBP47, which has a longer sequence than classical OBPs and contains six disulfide bridges. AgamOBP47 possesses a core of six α-helices and three disulfide bridges, similar to the classical OBP fold. Two extra loops and the N- and C-terminal extra segments contain two additional α-helices and are held in conformation by three disulfide bridges. They are located either side of the classical OBP core domain. The binding site of OBP47 is located between the core and the additional domains. Two crevices are observed on opposite sides of OBP47, which are joined together by a shallow channel of sufficient size to accommodate a model of the best-tested ligand. The binding sites of C-plus class OBPs therefore exhibit different characteristics, as compared with classical OBPs, which should lead to markedly diverse functional implications.
APA, Harvard, Vancouver, ISO, and other styles
19

Wu, Lixian, Xin Zhai, Liangbin Li, Qiang Li, Fang Liu, and Hongxia Zhao. "Identification and Expression Profile of Chemosensory Genes in the Small Hive Beetle Aethina tumida." Insects 12, no. 8 (July 21, 2021): 661. http://dx.doi.org/10.3390/insects12080661.

Full text
Abstract:
Aethina tumida is a parasite and predator of honeybee causing severe loss to the bee industry. No effective and environmentally friendly methods are available to control this pest at present. Chemosensory genes play key roles in insect behavior which can potentially be used as targets for developing environmentally friendly pest control agents. In this study, the putative chemosensory genes in antennae and forelegs of A. tumida involved in olfaction or contact chemical communication of adults were investigated using RNA transcriptome sequencing and PCR methods. Based on transcriptomic data, unigenes encoding 38 odorant receptors (ORs), 24 ionotropic receptors (IRs), 14 gustatory receptors (GRs), 3 sensory neuron membrane proteins (SNMPs), 29 odorant binding proteins (OBPs), and 22 chemosensory proteins (CSPs) were identified. The analyses of tissue expression profiles revealed that genes encoding 38 ORs, 13 antennal IRs, 11 GRs, 1 SNMP, 24 OBPs, and 12 CSPs were predominately expressed in antennae. No significant differences in expression levels of these genes were found between males and females. Genes encoding 5 non-NMDA iGluRs, 3 GRs, 2 SNMPs, 5 OBPs, and 12 CSPs were predominately expressed in forelegs. RT-PCR assays for SNMPs, OBPs and CSPs further revealed that 3 OBPs (AtumOBP3, 26 and 28) and 3 CSPs (AtumCSP7, 8 and 21) were highly expressed in antennae. Our results enrich the gene inventory of A. tumida and facilitate the discovery of potential novel targets for developing new pest control measures.
APA, Harvard, Vancouver, ISO, and other styles
20

Ghomanjani, Fateme, and Stanford Shateyi. "Alternative methods for solving nonlinear two-point boundary value problems." Open Physics 16, no. 1 (June 26, 2018): 371–74. http://dx.doi.org/10.1515/phys-2018-0050.

Full text
Abstract:
Abstract In this sequel, the numerical solution of nonlinear two-point boundary value problems (NTBVPs) for ordinary differential equations (ODEs) is found by Bezier curve method (BCM) and orthonormal Bernstein polynomials (OBPs). OBPs will be constructed by Gram-Schmidt technique. Stated methods are more easier and applicable for linear and nonlinear problems. Some numerical examples are solved and they are stated the accurate findings.
APA, Harvard, Vancouver, ISO, and other styles
21

Liu, Xiaolong, Na Tong, Zheran Wu, Yang Li, Meiqi Ma, Pei Liu, and Min Lu. "Identification of Chemosensory Genes Based on the Antennal Transcriptomic Analysis of Plagiodera versicolora." Insects 13, no. 1 (December 29, 2021): 36. http://dx.doi.org/10.3390/insects13010036.

Full text
Abstract:
Insects can sense surrounding chemical signals by their accurate chemosensory systems. This system plays a vital role in the life history of insects. Several gene families participate in chemosensory processes, including odorant receptors (ORs), ionotropic receptors (IRs), gustatory receptors (GRs), chemosensory proteins (CSPs), odorant binding proteins (OBPs), and sensory neuron membrane proteins (SNMPs). Plagiodera versicolora (Coleoptera: Chrysomelidae), is a leaf-eating forest pest found in salicaceous trees worldwide. In this study, a transcriptome analysis of male and female adult antennae in P. versicolora individuals was conducted, which identified a total of 98 candidate chemosensory genes including 40 ORs, 7 IRs, 13 GRs, 10 CSPs, 24 OBPs, and 4 SNMPs. Subsequently, the tissue expression profiles of 15 P. versicolora OBPs (PverOBPs) and 39 ORs (PverORs) were conducted by quantitative real-time PCR. The data showed that almost all PverOBPs and PverORs were highly expressed in the male and female antennae. In addition, several OBPs and ORs (PverOBP10, PverOBP12, PverOBP18, PverOR24, and PverOR35) had higher expression levels in female antennae than those in the male antennae, indicating that these genes may be taking part in some female-specific behaviors, such as find mates, oviposition site, etc. This study deeply promotes further understanding of the chemosensory system and functional studies of the chemoreception genes in P. versicolora.
APA, Harvard, Vancouver, ISO, and other styles
22

Chang, Xuefei, Yaluan Bi, Haipeng Chi, Qi Fang, Zhaozhi Lu, Fang Wang, and Gongyin Ye. "Identification and Expression Analysis of Odorant-Binding and Chemosensory Protein Genes in Virus Vector Nephotettix cincticeps." Insects 13, no. 11 (November 5, 2022): 1024. http://dx.doi.org/10.3390/insects13111024.

Full text
Abstract:
The insect odorant binding proteins (OBPs) and chemosensory proteins (CSPs) are involved in the perception and discrimination of insects to host odor cues. Nephotettix cincticeps, one of the destructive pests of rice plants, not only directly damages hosts by sucking, but also indirectly transmits plant viruses in the field. Previous study found that two rice volatiles ((E)-β-caryophyllene and 2-heptanol) induced by rice dwarf virus (RDV) mediated the olfactory behavior of N. cincticeps, which may promote virus dispersal. However, the OBPs and CSPs in N. cincticeps are still unknown. In this study, to identify the OBP and CSP genes in N. cincticeps, transcriptomic analyses were performed. In total, 46,623 unigenes were obtained. Twenty putative OBP and 13 CSP genes were discovered and identified. Phylogenetic analyses revealed that five putative OBPs belonged to the plus-C OBP family, and the other classic OBPs and CSPs were distributed among other orthologous groups. A total of 12 OBP and 10 CSP genes were detected, and nine OBP and three CSP genes were highly expressed in N. cincticeps antennae compared with other tissues. This study, for the first time, provides a valuable resource to well understand the molecular mechanism of N. cincticeps in the perception and discrimination of the two volatiles induced by RDV infection.
APA, Harvard, Vancouver, ISO, and other styles
23

Zhao, Ning, Xiangzhong Mao, Naiyong Liu, Ling Liu, Zhixiao Zhang, Sangzi Ze, and Bin Yang. "Transcriptomic Characterization of Odorant Binding Proteins in Cacia cretifera thibetana and Their Association with Different Host Emitted Volatiles." Insects 12, no. 9 (September 3, 2021): 787. http://dx.doi.org/10.3390/insects12090787.

Full text
Abstract:
This study characterized the transcriptome of Cacia cretifera thibetana and explored odorant binding proteins (OBPs) and their interaction with host-specific compounds. A total of 36 samples from six different organs including antennae, head, thorax, abdomen, wings, and legs (12 groups with 3 replicates per group) from both male and female insects were collected for RNA extraction. Transcriptomic analysis revealed a total of 89,897 transcripts as unigenes, with an average length of 1036 bp. Between male and female groups, 31,095 transcripts were identified as differentially expressed genes (DEGs). The KEGG pathway analysis revealed 26 DEGs associated with cutin, suberine, and wax biosynthesis and 70, 48, and 62 were linked to glycerophospholipid metabolism, choline metabolism in cancer, and chemokine signaling pathways, respectively. A total of 31 OBP genes were identified. Among them, the relative expression of 11 OBP genes (OBP6, 10, 12, 14, 17, 20, 22, 26, 28, 30, and 31) was confirmed by quantitative RT-PCR in different tissues. Seven OBP genes including CcreOBP6 and CcreOBP10 revealed antennae-specific expression. Further, we selected two OBPs (CcreOBP6 and CcreOBP10) for functional analysis to evaluate their binding affinity with 20 host odorant compounds. The CcreOBP6 and CcreOBP10 exhibited strong binding affinities with terpineol and trans-2-hexenal revealing their potential as an attractant or repellent for controlling C. cretifera thibetana.
APA, Harvard, Vancouver, ISO, and other styles
24

Silva, Diego, Ricardo Ceballos, Nolberto Arismendi, Anne Dalmon, and Marisol Vargas. "Variant A of the Deformed Wings Virus Alters the Olfactory Sensitivity and the Expression of Odorant Binding Proteins on Antennas of Apis mellifera." Insects 12, no. 10 (October 1, 2021): 895. http://dx.doi.org/10.3390/insects12100895.

Full text
Abstract:
Insects have a highly sensitive sense of smell, allowing them to perform complex behaviors, such as foraging and peer recognition. Their sense of smell is based on the recognition of ligands and is mainly coordinated by odorant-binding proteins (OBPs). In Apis mellifera, behavior can be affected by different pathogens, including deformed wing virus (DWV) and its variants. In particular, it has been shown that variant A of DWV (DWV-A) is capable of altering the ultra-cellular structure associated with olfactory activity. In this study was evaluated olfactory sensitivity and the expression of OBP genes in honey bees inoculated with DWV-A. Electroantennographic analyses (EAG) were carried out to determine the olfactory sensitivity to the essential oils Eucalyptus globulus and Mentha piperita. The expression of nine antenna-specific OBP genes and DWV-A load in inoculated bees was also quantified by qPCR. We observed an inverse relationship between viral load and olfactory sensitivity and the expression of some OBP proteins. Thus, high viral loads reduced olfactory sensitivity to essential oils and the gene expression of the OBP2, OBP5, OBP11, and OBP12 proteins on the antennas of middle- and forager-age bees. These results suggest that DWV-A could have negative effects on the processes of aroma perception by worker bees, affecting their performance in tasks carried out in and outside the colony.
APA, Harvard, Vancouver, ISO, and other styles
25

Barbosa, Leandro César Mol, Rodrigo Baroni Carvalho, Ângela França Versiani, and Cristiane Drebes Pedron. "Gestão do Conhecimento em Organizações Baseadas em Projeto (OBPs): estudo de casos múltiplos." AtoZ: novas práticas em informação e conhecimento 10, no. 1 (January 26, 2021): 50. http://dx.doi.org/10.5380/atoz.v10i1.77978.

Full text
Abstract:
Introdução: As Organizações Baseadas em Projetos (OBPs) possuem como principal característica a flexibilidade de atuação no mercado. Embora positiva, tal flexibilidade resulta em barreiras ligadas a questões intrínsecas dos projetos como a temporalidade, singularidade e seu grau de independência, dificultando a Gestão do Conhecimento (GC). Este artigo tem como objetivo analisar a influência das barreiras para a GC no ambiente das OBPs. Método: Utilizando-se de uma abordagem qualitativa, foi realizado um estudo de casos múltiplos compreendendo três Empresas de Engenharia de Projetos Industriais (EEPIs), as quais se enquadram como OBPs. Os dados foram coletados por meio de entrevistas, observação direta e documentos. Resultados: Quatro das seis barreiras descritas na literatura foram confirmadas, sendo estas a temporalidade, a pouca dedicação à GC, uso de equipes temporárias e o grau de independência dos projetos. Barreiras como a terceirização, o trabalho a distância e os custos de dedicação à GC foram incluídas. Constatou-se também que a falta de rotinas não faz parte do ambiente das EEPIs e que a singularidade dos projetos não é uma barreira e sim uma oportunidade de gerar conhecimento. Conclusão: A Gestão do Conhecimento em OBPs está sujeita a particularidades que dificultam sua disseminação, conservação e uso. A análise das barreiras que dificultam a GC nestes ambientes possibilitou não somente a verificação desta influência em seus processos, como a forma e extensão com que as barreiras para GC se manifestam.
APA, Harvard, Vancouver, ISO, and other styles
26

González-González, Angélica, María E. Rubio-Meléndez, Gabriel I. Ballesteros, Claudio C. Ramírez, and Rubén Palma-Millanao. "Sex- and tissue-specific expression of odorant-binding proteins and chemosensory proteins in adults of the scarab beetle Hylamorpha elegans (Burmeister) (Coleoptera: Scarabaeidae)." PeerJ 7 (June 12, 2019): e7054. http://dx.doi.org/10.7717/peerj.7054.

Full text
Abstract:
In this study, we addressed the sex- and tissue-specific expression patterns of odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) in Hylamorpha elegans (Burmeister), an important native scarab beetle pest species from Chile. Similar to other members of its family, this scarab beetle exhibit habits that make difficult to control the pest by conventional methods. Hence, alternative ways to manage the pest populations based on chemical communication and signaling (such as disrupting mating or host finding process) are highly desirable. However, developing pest-control methods based on chemical communication requires to understand the molecular basis for pheromone recognition/chemical perception in this species. Thus, with the aim of discovering olfaction-related genes, we obtained the first reference transcriptome assembly of H. elegans. We used different tissues of adult beetles from males and females: antennae and maxillary palps, which are well known for embedded sensory organs. Then, the expression of predicted odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) was analyzed by qRT-PCR. In total, 165 transcripts related to chemoperception were predicted. Of these, 16 OBPs, including one pheromone-binding protein (PBP), and four CSPs were successfully amplified by qRT-PCR. All of these genes were differentially expressed in the sensory tissues with respect to the tibial tissue that was used as a control. The single predicted PBP found was highly expressed in the antennal tissues, particularly in males, while several OBPs and one CSP showed male-biased expression patterns, suggesting that these proteins may participate in sexual recognition process. In addition, a single CSP was expressed at higher levels in female palps than in any other studied condition, suggesting that this CSP would participate in oviposition process. Finally, all four CSPs exhibited palp-biased expression while mixed results were obtained for the expression of the OBPs, which were more abundant in the palps than in the antennae. These results suggest that these chemoperception proteins would be interesting novel targets for control of H. elegans, thus providing a theoretical basis for further studies involving new pest control methods.
APA, Harvard, Vancouver, ISO, and other styles
27

Al-Jalely, Basman H., and Wei Xu. "Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae)." Insects 12, no. 11 (November 5, 2021): 998. http://dx.doi.org/10.3390/insects12110998.

Full text
Abstract:
Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is a tiny natural egg parasitoid of several agricultural pest insects, which has been widely used in the biological control for Plutella xylostella, Helicoverpa armigera, Spodoptera frugiperda and Ectomyelois ceratoniae. However, limited studies have been conducted on T. pretiosum olfactory system, which is critical in regulating insect behaviours. In this study, T. pretiosum adult antennae were investigated under ascanning electron microscopy (SEM). Four types of olfactory sensilla were observed, including chaetica sensilla (CS), trichoid sensilla (TS), faleate sensilla (FS) and placoid sensilla (PS). Using T. pretiosum genome, 22 putative odorant binding proteins (OBPs) and 105 odorant receptors (ORs) were identified, which were further compared with olfactory genes of Apis mellifera, Nasonia vitripennis and Diachasma alloeum. The expression patterns of OBPs between T. pretiosum male and female adults were examined by quantitative real time PCR (qRT-PCR) approaches. Three female-specific OBPs (TpreOBP19, TpreOBP15 and TpreOBP3) were identified, which may play crucial roles in T. pretiosum host-seeking and oviposition behaviours. This study enriches our knowledge of T. pretiosum olfactory genes and improves our understanding of its olfactory system.
APA, Harvard, Vancouver, ISO, and other styles
28

Sims, Cassie, Michael A. Birkett, and David M. Withall. "Enantiomeric Discrimination in Insects: The Role of OBPs and ORs." Insects 13, no. 4 (April 8, 2022): 368. http://dx.doi.org/10.3390/insects13040368.

Full text
Abstract:
Olfaction is a complex recognition process that is critical for chemical communication in insects. Though some insect species are capable of discrimination between compounds that are structurally similar, little is understood about how this high level of discrimination arises. Some insects rely on discriminating between enantiomers of a compound, demonstrating an ability for highly selective recognition. The role of two major peripheral olfactory proteins in insect olfaction, i.e., odorant-binding proteins (OBPs) and odorant receptors (ORs) has been extensively studied. OBPs and ORs have variable discrimination capabilities, with some found to display highly specialized binding capability, whilst others exhibit promiscuous binding activity. A deeper understanding of how odorant-protein interactions induce a response in an insect relies on further analysis such as structural studies. In this review, we explore the potential role of OBPs and ORs in highly specific recognition, specifically enantiomeric discrimination. We summarize the state of research into OBP and OR function and focus on reported examples in the literature of clear enantiomeric discrimination by these proteins.
APA, Harvard, Vancouver, ISO, and other styles
29

Liu, Zhao, Zhiting Liang, Kai Li, Tinglin Huang, Jun Ma, and Gang Wen. "Degradation of Micropollutants and Formation of Oxidation By-Products during the Ozone/Peroxymonosulfate System: A Critical Review." Water 13, no. 21 (November 5, 2021): 3126. http://dx.doi.org/10.3390/w13213126.

Full text
Abstract:
The O3/PMS system has appeared as an effective wastewater treatment method because of the simultaneous generation of hydroxyl radicals (•OH) and sulfate radicals (SO4•−). Many research achievements have been made on the degradation of micropollutants and the reaction mechanism of the O3/PMS system. However, an integral understanding of the O3/PMS system is lacking, which limits the development of safe and effective AOP-based water treatment schemes. Therefore, in this review, the degradation effects, toxicity changes, and reaction mechanisms of various micropollutants in the O3/PMS system are reviewed. The formation of oxidation by-products (OBPs) is an important issue that affects the practical application of O3/PMS systems. The formation mechanism and control methods of OBPs in the O3/PMS system are overviewed. In addition, the influence of different reaction conditions on the O3/PMS system are comprehensively evaluated. Finally, future research needs are proposed based on the limited understanding of O3/PMS systems in the degradation of micropollutants and formation of OBPs. Specifically, the formation rules of several kinds of OBPs during the O3/PMS system are not completely clear yet. Furthermore, pilot-scale research, the operational costs, sustainability, and general feasibility of the O3/PMS system also need to be studied. This review can offer a comprehensive assessment on the O3/PMS system to fill the knowledge gap and provide guidance for the future research and engineering applications of the O3/PMS system. Through this effort, the O3/PMS system can be better developed and turned towards practical applications.
APA, Harvard, Vancouver, ISO, and other styles
30

Wulff, Juan P., Diego F. Segura, Francisco Devescovi, Irina Muntaabski, Fabian H. Milla, Alejandra C. Scannapieco, Jorge L. Cladera, and Silvia B. Lanzavecchia. "Identification and characterization of soluble binding proteins associated with host foraging in the parasitoid wasp Diachasmimorpha longicaudata." PLOS ONE 16, no. 6 (June 17, 2021): e0252765. http://dx.doi.org/10.1371/journal.pone.0252765.

Full text
Abstract:
The communication and reproduction of insects are driven by chemical sensing. During this process, chemical compounds are transported across the sensillum lymph to the sensory neurons assisted by different types of soluble binding proteins: odorant-binding proteins (OBPs); chemosensory proteins (CSPs); some members of ML-family proteins (MD-2 (myeloid differentiation factor-2)-related Lipid-recognition), also known as NPC2-like proteins. Potential transcripts involved in chemosensing were identified by an in silico analysis of whole-body female and male transcriptomes of the parasitic wasp Diachasmimorpha longicaudata. This analysis facilitated the characterization of fourteen OBPs (all belonging to the Classic type), seven CSPs (and two possible isoforms), and four NPC2-like proteins. A differential expression analysis by qPCR showed that eleven of these proteins (CSPs 2 and 8, OBPs 2, 3, 4, 5, 6, 9, 10, and 11, and NPC2b) were over-expressed in female antenna and two (CSP 1 and OBP 12) in the body without antennae. Foraging behavior trials (linked to RNA interference) suggest that OBPs 9, 10, and 11 are potentially involved in the female orientation to chemical cues associated with the host. OBP 12 seems to be related to physiological processes of female longevity regulation. In addition, transcriptional silencing of CSP 3 showed that this protein is potentially associated with the regulation of foraging behavior. This study supports the hypothesis that soluble binding proteins are potentially linked to fundamental physiological processes and behaviors in D. longicaudata. The results obtained here contribute useful information to increase the parasitoid performance as a biological control agent of fruit fly pest species.
APA, Harvard, Vancouver, ISO, and other styles
31

Galindo, Kathleen, and Dean P. Smith. "A Large Family of Divergent Drosophila Odorant-Binding Proteins Expressed in Gustatory and Olfactory Sensilla." Genetics 159, no. 3 (November 1, 2001): 1059–72. http://dx.doi.org/10.1093/genetics/159.3.1059.

Full text
Abstract:
Abstract We identified a large family of putative odorant-binding protein (OBP) genes in the genome of Drosophila melanogaster. Some of these genes are present in large clusters in the genome. Most members are expressed in various taste organs, including gustatory sensilla in the labellum, the pharyngeal labral sense organ, dorsal and ventral cibarial organs, as well as taste bristles located on the wings and tarsi. Some of the gustatory OBPs are expressed exclusively in taste organs, but most are expressed in both olfactory and gustatory sensilla. Multiple binding proteins can be coexpressed in the same gustatory sensillum. Cells in the tarsi that express OBPs are required for normal chemosensation mediated through the leg, as ablation of these cells dramatically reduces the sensitivity of the proboscis extension reflex to sucrose. Finally, we show that OBP genes expressed in the pharyngeal taste sensilla are still expressed in the poxneuro genetic background while OBPs expressed in the labellum are not. These findings support a broad role for members of the OBP family in gustation and olfaction and suggest that poxneuro is required for cell fate determination of labellar but not pharyngeal taste organs.
APA, Harvard, Vancouver, ISO, and other styles
32

Loxley, Grace M., Jennifer Unsworth, Michael J. Turton, Alexandra Jebb, Kathryn S. Lilley, Deborah M. Simpson, Daniel J. Rigden, Jane L. Hurst, and Robert J. Beynon. "Glareosin: a novel sexually dimorphic urinary lipocalin in the bank vole, Myodes glareolus." Open Biology 7, no. 9 (September 2017): 170135. http://dx.doi.org/10.1098/rsob.170135.

Full text
Abstract:
The urine of bank voles ( Myodes glareolus ) contains substantial quantities of a small protein that is expressed at much higher levels in males than females, and at higher levels in males in the breeding season. This protein was purified and completely sequenced at the protein level by mass spectrometry. Leucine/isoleucine ambiguity was completely resolved by metabolic labelling, monitoring the incorporation of dietary deuterated leucine into specific sites in the protein. The predicted mass of the sequenced protein was exactly consonant with the mass of the protein measured in bank vole urine samples, correcting for the formation of two disulfide bonds. The sequence of the protein revealed that it was a lipocalin related to aphrodisin and other odorant-binding proteins (OBPs), but differed from all OBPs previously described. The pattern of secretion in urine used for scent marking by male bank voles, and the similarity to other lipocalins used as chemical signals in rodents, suggest that this protein plays a role in male sexual and/or competitive communication. We propose the name glareosin for this novel protein to reflect the origin of the protein and to emphasize the distinction from known OBPs.
APA, Harvard, Vancouver, ISO, and other styles
33

Li, L., Y. T. Zhou, Y. Tan, X. R. Zhou, and B. P. Pang. "Identification of odorant-binding protein genes inGaleruca daurica(Coleoptera: Chrysomelidae) and analysis of their expression profiles." Bulletin of Entomological Research 107, no. 4 (April 20, 2017): 550–61. http://dx.doi.org/10.1017/s0007485317000402.

Full text
Abstract:
AbstractOdorant-binding proteins (OBPs) play a fundamental role in insect olfaction. In recent years,Galeruca daurica(Joannis) (Coleoptera: Chrysomelidae) has become one of the most important insect pests in the Inner Mongolian grasslands of China. This pest only feeds on the species ofAlliumplants, implying the central role of olfaction in its search for specific host plants. However, the olfaction-related proteins have not been investigated in this beetle. In this study, we identified 29 putative OBP genes, namely GdauOBP1–29, from the transcriptome database ofG. dauricaassembled in our laboratory by using RNA-Seq. All 29 genes had the full-length open reading frames except GdauOBP29, encoding proteins in length from 119 to 202 amino acids with their predicted molecular weights from 12 to 22 kDa with isoelectric points from 3.88 to 8.84. Predicted signal peptides consisting of 15–22 amino acid residues were found in all except GdauOBP6, GdauOBP13 and GdauOBP29. The amino acid sequence identity between the 29 OBPs ranged 8.33–71.83%. GdauOBP1–12 belongs to the Classic OBPs, while the others belong with the Minus-C OBPs. Phylogenetic analysis indicated that GdauOBPs are the closest to CbowOBPs fromColaphellus bowringi. RT-PCR and qRT-PCR analyses showed that all GdauOBPs were expressed in adult antennae, 11 of which with significant differences in their expression levels between males and females. Most GdauOBPs were also expressed in adult heads (without antennae), thoraxes, abdomens, legs and wings. Moreover, the expression levels of the GdauOBPs varied during the different development stages ofG. dauricawith most GdauOBPs expressed highly in the adult antennae but scarcely in eggs and pupae. These results provide insights for further research on the molecular mechanisms of chemical communications inG. daurica.
APA, Harvard, Vancouver, ISO, and other styles
34

Hekmat-Scafe, Daria S., Robert L. Dorit, and John R. Carlson. "Molecular Evolution of Odorant-Binding Protein Genes OS-E and OS-F in Drosophila." Genetics 155, no. 1 (May 1, 2000): 117–27. http://dx.doi.org/10.1093/genetics/155.1.117.

Full text
Abstract:
Abstract The Drosophila olfactory genes OS-E and OS-F are members of a family of genes that encode insect odorant-binding proteins (OBPs). OBPs are believed to transport hydrophobic odorants through the aqueous fluid within olfactory sensilla to the underlying receptor proteins. The recent discovery of a large family of olfactory receptor genes in Drosophila raises new questions about the function, diversity, regulation, and evolution of the OBP family. We have investigated the OS-E and OS-F genes in a variety of Drosophila species. These studies highlight potential regions of functional significance in the OS-E and OS-F proteins, which may include a region required for interaction with receptor proteins. Our results suggest that the two genes arose by an ancient gene duplication, and that in some lineages, one or the other gene has been lost. In D. virilis, the OS-F gene shows a different spatial pattern of expression than in D. melanogaster. One of the OS-F introns shows a striking degree of conservation between the two species, and we identify a putative regulatory sequence within this intron. Finally, a phylogenetic analysis places both OS-E and OS-F within a large family of insect OBPs and OBP-like proteins.
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Xiaowei, Jianghui Cheng, Limin Chen, Jun Huang, Zhijun Zhang, Jinming Zhang, Xiaoyun Ren, et al. "Comparison and Functional Analysis of Odorant-Binding Proteins and Chemosensory Proteins in Two Closely Related Thrips Species, Frankliniella occidentalis and Frankliniella intonsa (Thysanoptera: Thripidae) Based on Antennal Transcriptome Analysis." International Journal of Molecular Sciences 23, no. 22 (November 11, 2022): 13900. http://dx.doi.org/10.3390/ijms232213900.

Full text
Abstract:
Two closely related thrips species, Frankliniella occidentalis and Frankliniella intonsa, are important pests on agricultural and horticultural crops. They have several similarities, including occurrence patterns, host range, and aggregation pheromone compounds. However, there are very few reports about the chemosensory genes and olfactory mechanisms in these two species. To expand our knowledge of the thrips chemosensory system, we conducted antennal transcriptome analysis of two thrips species, and identified seven odorant-binding proteins (OBPs) and eight chemosensory proteins (CSPs) in F. occidentalis, as well as six OBPs and six CSPs in F. intonsa. OBPs and CSPs showed high sequence identity between the two thrips species. The RT-qPCR results showed that the orthologous genes FoccOBP1/3/4/5/6, FintOBP1/3/4/6, FoccCSP1/2/3, and FintCSP1/2 were highly expressed in male adults. Molecular docking results suggested that orthologous pairs FoccOBP4/FintOBP4, FoccOBP6/FintOBP6, and FoccCSP2/FintCSP2 might be involved in transporting the major aggregation pheromone compound neryl (S)-2-methylbutanoate, while orthologous pairs FoccOBP6/FintOBP6, FoccCSP2/FintCSP2, and FoccCSP3/FintCSP3 might be involved in transporting the minor aggregation pheromone compound (R)-lavandulyl acetate. These results will provide a fundamental basis for understanding the molecular mechanisms of pheromone reception in the two thrips species.
APA, Harvard, Vancouver, ISO, and other styles
36

Wang, Jin, Kenji Sakai, and Toshihiko Kiwa. "Rational Design of Peptides Derived from Odorant-Binding Proteins for SARS-CoV-2-Related Volatile Organic Compounds Recognition." Molecules 27, no. 12 (June 18, 2022): 3917. http://dx.doi.org/10.3390/molecules27123917.

Full text
Abstract:
Peptides are promising molecular-binding elements and have attracted great interest in novel biosensor development. In this study, a series of peptides derived from odorant-binding proteins (OBPs) were rationally designed for recognition of SARS-CoV-2-related volatile organic compounds (VOCs). Ethanol, nonanal, benzaldehyde, acetic acid, and acetone were selected as representative VOCs in the exhaled breath during the COVID-19 infection. Computational docking and prediction tools were utilized for OBPs peptide characterization and analysis. Multiple parameters, including the docking model, binding affinity, sequence specification, and structural folding, were investigated. The results demonstrated a rational, rapid, and efficient approach for designing breath-borne VOC-recognition peptides, which could further improve the biosensor performance for pioneering COVID-19 screening and many other applications.
APA, Harvard, Vancouver, ISO, and other styles
37

Vieira, Tatiana F., Maria F. Araújo, Maria José G. Fernandes, David M. Pereira, A. Gil Fortes, Elisabete M. S. Castanheira, M. Sameiro T. Gonçalves, and Sérgio F. Sousa. "In Silico Identification of Protein Targets Associated to the Insecticide Activity of Eugenol Derivatives." Chemistry Proceedings 3, no. 1 (November 14, 2020): 138. http://dx.doi.org/10.3390/ecsoc-24-08333.

Full text
Abstract:
The control of insect pests and the need for increased food production due to the world population growth, together with environmental issues associated with synthetic pesticides, has stimulated the development of new and “greener” alternatives, based on natural compounds. Eugenol is a natural compound that is the major component of clove oil. It has demonstrated antimicrobial and antioxidant activity, being also a powerful insecticide. Recently, new eugenol derivatives have been developed, with some molecules displaying increased insecticide activity. One of the difficulties associated with the rational development of new eugenol derivatives with enhanced insecticidal activity lies in the lack of knowledge of the specific protein target responsible for its activity and to the binding conformation of these molecules. Here, we report the application of an integrated molecular modeling—inverted virtual screening protocol of a collection of eugenol derivatives with confirmed insecticide activity against a molecular library of protein targets typically associated with the insecticide activity of natural compounds. The protocol included six different scoring functions from popular docking software alternatives. The results consistently show a marked preference for interaction of the eugenol derivatives with the odorant binding proteins (OBPs) in insect species. Interestingly, OBPs have been regarded as promising targets in the insect periphery nerve system for environmental-friendly approaches in insect pest management. The present results provide clues for the rational development of new eugenol derivatives as bioinsecticides targeting OBPs.
APA, Harvard, Vancouver, ISO, and other styles
38

Lin, X., Y. Jiang, L. Zhang, and Y. Cai. "Effects of insecticides chlorpyrifos, emamectin benzoate and fipronil on Spodoptera litura might be mediated by OBPs and CSPs." Bulletin of Entomological Research 108, no. 5 (December 4, 2017): 658–66. http://dx.doi.org/10.1017/s0007485317001195.

Full text
Abstract:
AbstractSpodoptera litura is a widespread polyphagous insect pest that can develop resistance and cross-resistance to insecticides, making it difficult to control. Insecticide exposure has previously been linked with induction of specific olfactory-related proteins, including some chemosensory proteins (CSPs) and odorant-binding proteins (OPBs), which may disrupt detection of environmental factors and reduce fitness. However, functional evidence supporting insecticide and OBPs/CSPs mediation remains unknown. Here we fed male S. litura moths with sucrose water containing one of three insecticides, chlorpyrifos, emamectin benzoate or fipronil, and used real-time quantitative polymerase chain reaction and RNAi to investigate OBPs and CSPs expression and their correlations with survival. Chlorpyrifos and emamectin benzoate increased expression of 78% of OBPs, plus 63 and 56% of CSP genes, respectively, indicating a major impact on these gene families. RNAi knockdown of SlituCSP18, followed by feeding with chlorpyrifos or fipronil, decreased survival rates of male moths significantly compared with controls. Survival rate also decreased significantly with the downregulation of SlituOBP9 followed by feeding with chlorpyrifos. Thus, although these three insecticides had different effects on OBP and CSP gene expression, we hypothesize that SlituOBPs and SlituCSPs might mediate their effects by increasing their expression levels to improve survival. Moreover, the differential response of S. litura male moths to the three insecticides indicated the potential specificity of chlorpyrifos affect SlituCSP18 and SlituOBP9 expression.
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang, Shen, Xia, Wang, and Tang. "Characterization of the Expression and Functions of Two Odorant-Binding Proteins of Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea)." Insects 10, no. 11 (November 15, 2019): 409. http://dx.doi.org/10.3390/insects10110409.

Full text
Abstract:
Odorant-binding proteins (OBPs) are important in insect chemical communication. The objective of this research was to identify the functions of two OBPs in Sitophilus zeamais. qRT-PCR and western blot (WB) were performed to investigate the expression profiles at the transcript and protein levels, respectively. Fluorescence competitive binding assays were used to measure the ability of the OBPs to bind to host volatiles, and a Y-tube olfactometer was used to verify the results (attraction/no response) via behavioral experiments. The RNAi was used to verify the function by knocking down the ability of proteins to bind odorants. qRT-PCR showed the highest expression SzeaOBP1 and SzeaOBP28 at the low-instar larva (LL) and eclosion adult (EA) stages, respectively. WB showed that both SzeaOBP1 and SzeaOBP28 were highly expressed in the EA stage. Fluorescence competitive binding assays indicated that SzeaOBP1 exhibited extremely high binding affinity with cetanol. SzeaOBP28 exhibited a pronounced binding affinity for 4-hydroxy-3-methoxybenzaldehyde. The behavioral experiment showed that the adult S. zeamais responded strongly to 4-hydroxy-3-methoxybenzaldehyde and valeraldehyde from Sorghum bicolor. The RNAi knockdown individuals displayed behavioral differences between normal insects and dsRNA (SzeaOBP1)-treated insects. We infer that they both have functions in perception and recognition of host volatiles, whereas SzeaOBP28 may also have other functions.
APA, Harvard, Vancouver, ISO, and other styles
40

Sun, Jennifer S., Shuke Xiao, and John R. Carlson. "The diverse small proteins called odorant-binding proteins." Open Biology 8, no. 12 (December 2018): 180208. http://dx.doi.org/10.1098/rsob.180208.

Full text
Abstract:
The term ‘odorant-binding proteins (Obps)’ is used to refer to a large family of insect proteins that are exceptional in their number, abundance and diversity. The name derives from the expression of many family members in the olfactory system of insects and their ability to bind odorants in vitro. However, an increasing body of evidence reveals a much broader role for this family of proteins. Recent results also provoke interesting questions about their mechanisms of action, both within and outside the olfactory system. Here we describe the identification of the first Obps and some cardinal properties of these proteins. We then consider their function, discussing both the prevailing orthodoxy and the increasing grounds for heterodox views. We then examine these proteins from a broader perspective and consider some intriguing questions in need of answers.
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Sufang, Xizhuo Wang, Yanlong Zhang, Yanan Zheng, Zhizhi Fan, and Rong Zhang. "Identification of Olfactory Genes in Monochamus saltuarius and Effects of Bursaphelenchus xylophilus Infestation on Their Expression." Forests 13, no. 2 (February 7, 2022): 258. http://dx.doi.org/10.3390/f13020258.

Full text
Abstract:
The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused disastrous losses of pine forests in many countries, and the success of PWN depends strongly on interactions with its insect vectors. Monochamus saltuarius is a newly recorded vector in Northeast China. Feeding (i.e., immature) and egg-laying (i.e., mature) Monochamus spp. target different host plants, and olfactory cues play important roles regarding host choice. Whether infestation with PWN affects olfactory mechanisms in M. saltuarius related to feeding and oviposition is of interest as this may affect the spread of nematodes to new healthy hosts. However, little is known about molecular mechanisms of the olfactory system of M. saltuarius. We identified chemosensory-related genes in adult M. saltuarius and examined the influence of B. xylophilus on the respective expression patterns. Fifty-three odorant-binding proteins (OBPs), 15 chemosensory proteins, 15 olfactory receptors (ORs), 10 gustatory receptors, 22 ionotropic receptors (IRs), and two sensory neuron membrane proteins were identified, and sex bias among non-infested beetles was mainly found with respect to expression of OBPs. Interestingly, OBPs and ORs were markedly down-regulated in male M. saltuarius infested with B. xylophilus, which may reduce olfactory sensitivity of male M. saltuarius and affect the spreading of B. xylophilus to new hosts. Our results will help understand the interactions between B. xylophilus and M. saltuarius, which may lead to the identification of new control targets in the olfactory system of M. saltuarius.
APA, Harvard, Vancouver, ISO, and other styles
42

Leal, Walter Soares. "Molecules and macromolecules involved in chemical communication of scarab beetles." Pure and Applied Chemistry 73, no. 3 (January 1, 2001): 613–16. http://dx.doi.org/10.1351/pac200173030613.

Full text
Abstract:
Chemical communication involves the production and release of specific chemicals (pheromones and other semiochemicals) by the emitter, and the detection and olfactory processing of these signals leading to appropriate behavioral responses in the receiver. In contrast to most of the scarab species investigated to date, the Japanese and Osaka beetles have the ability to detect the allospecific pheromone, which plays a pivotal role in the isolation mechanism between these two species. Each species produces a single enantiomer of japonilure [(Z)-5-(dec1-enyl)oxacyclopentan-2-one], but they have evolved the ability to detect both enantiomers, one as an attractant and the other as a behavioral antagonist (stop signal). There is growing evidence in the literature that the inordinate sensitivity and selectivity of the insect olfactory system is achieved by a combination of various olfactory-specific proteins, namely, odorant-binding proteins (OBPs), odorant receptors (ORs), and odorant-degrading enzymes. The relationship between the pheromone structures and the primary sequences of the proteins suggest that OBPs play a part in the selectivity of the olfactory system in scarab beetles by "filtering" chemical signals during the early olfactory processing (perireceptor events). Nevertheless, it is unlikely that pheromone-binding proteins are "chiral filters" as the Japanese and Osaka beetles each possess only one single binding protein. Upon interaction with negatively charged membranes, OBPs undergo conformational changes that may lead to the release of the ligands.
APA, Harvard, Vancouver, ISO, and other styles
43

Moitrier, Lucie, Christine Belloir, Maxence Lalis, Yanxia Hou, Jérémie Topin, and Loïc Briand. "Ligand Binding Properties of Odorant-Binding Protein OBP5 from Mus musculus." Biology 12, no. 1 (December 20, 2022): 2. http://dx.doi.org/10.3390/biology12010002.

Full text
Abstract:
Odorant-binding proteins (OBPs) are abundant soluble proteins secreted in the nasal mucus of a variety of species that are believed to be involved in the transport of odorants toward olfactory receptors. In this study, we report the functional characterization of mouse OBP5 (mOBP5). mOBP5 was recombinantly expressed as a hexahistidine-tagged protein in bacteria and purified using metal affinity chromatography. The oligomeric state and secondary structure composition of mOBP5 were investigated using gel filtration and circular dichroism spectroscopy. Fluorescent experiments revealed that mOBP5 interacts with the fluorescent probe N-phenyl naphthylamine (NPN) with micromolar affinity. Competitive binding experiments with 40 odorants indicated that mOBP5 binds a restricted number of odorants with good affinity. Isothermal titration calorimetry (ITC) confirmed that mOBP5 binds these compounds with association constants in the low micromolar range. Finally, protein homology modeling and molecular docking analysis indicated the amino acid residues of mOBP5 that determine its binding properties.
APA, Harvard, Vancouver, ISO, and other styles
44

Leal, Gabriel M., and Walter S. Leal. "Binding of a fluorescence reporter and a ligand to an odorant-binding protein of the yellow fever mosquito, Aedes aegypti." F1000Research 3 (December 12, 2014): 305. http://dx.doi.org/10.12688/f1000research.5879.1.

Full text
Abstract:
Odorant-binding proteins (OBPs), also named pheromone-binding proteins when the odorant is a pheromone, are essential for insect olfaction. They solubilize odorants that reach the port of entry of the olfactory system, the pore tubules in antennae and other olfactory appendages. Then, OBPs transport these hydrophobic compounds through an aqueous sensillar lymph to receptors embedded on dendritic membranes of olfactory receptor neurons. Structures of OBPs from mosquito species have shed new light on the mechanism of transport, although there is considerable debate on how they deliver odorant to receptors. An OBP from the southern house mosquito, Culex quinquefasciatus, binds the hydrophobic moiety of a mosquito oviposition pheromone (MOP) on the edge of its binding cavity. Likewise, it has been demonstrated that the orthologous protein from the malaria mosquito binds the insect repellent DEET on a similar edge of its binding pocket. A high school research project was aimed at testing whether the orthologous protein from the yellow fever mosquito, AaegOBP1, binds DEET and other insect repellents, and MOP was used as a positive control. Binding assays using the fluorescence reporter N-phenyl-1-naphtylamine (NPN) were inconclusive. However, titration of NPN fluorescence emission in AaegOBP1 solution with MOP led to unexpected and intriguing results. Quenching was observed in the initial phase of titration, but addition of higher doses of MOP led to a stepwise increase in fluorescence emission coupled with a blue shift, which can be explained at least in part by formation of MOP micelles to house stray NPN molecules.
APA, Harvard, Vancouver, ISO, and other styles
45

Leal, Gabriel M., and Walter S. Leal. "Binding of a fluorescence reporter and a ligand to an odorant-binding protein of the yellow fever mosquito, Aedes aegypti." F1000Research 3 (January 9, 2015): 305. http://dx.doi.org/10.12688/f1000research.5879.2.

Full text
Abstract:
Odorant-binding proteins (OBPs), also named pheromone-binding proteins when the odorant is a pheromone, are essential for insect olfaction. They solubilize odorants that reach the port of entry of the olfactory system, the pore tubules in antennae and other olfactory appendages. Then, OBPs transport these hydrophobic compounds through an aqueous sensillar lymph to receptors embedded on dendritic membranes of olfactory receptor neurons. Structures of OBPs from mosquito species have shed new light on the mechanism of transport, although there is considerable debate on how they deliver odorant to receptors. An OBP from the southern house mosquito, Culex quinquefasciatus, binds the hydrophobic moiety of a mosquito oviposition pheromone (MOP) on the edge of its binding cavity. Likewise, it has been demonstrated that the orthologous protein from the malaria mosquito binds the insect repellent DEET on a similar edge of its binding pocket. A high school research project was aimed at testing whether the orthologous protein from the yellow fever mosquito, AaegOBP1, binds DEET and other insect repellents, and MOP was used as a positive control. Binding assays using the fluorescence reporter N-phenyl-1-naphtylamine (NPN) were inconclusive. However, titration of NPN fluorescence emission in AaegOBP1 solution with MOP led to unexpected and intriguing results. Quenching was observed in the initial phase of titration, but addition of higher doses of MOP led to a stepwise increase in fluorescence emission coupled with a blue shift, which can be explained at least in part by formation of MOP micelles to house stray NPN molecules.
APA, Harvard, Vancouver, ISO, and other styles
46

Frank, Nyorere, and Emu Alfred. "FLEXURAL PROPERTIES OF WOOD SAWDUST AND OIL BEAN POD SHELL FILLED COMPOSITE." International Journal of Research -GRANTHAALAYAH 6, no. 11 (November 30, 2018): 337–44. http://dx.doi.org/10.29121/granthaalayah.v6.i11.2018.1136.

Full text
Abstract:
Composites reinforced with natural materials play a vital role in engineering applications, like the fabrication of automobile parts, furniture making, etc. The objective of this present research is to determine the flexural properties (flexural strength, flexural energy) of oil bean pod shell (OBPS) and hardwood sawdust (SD) reinforced composite in epoxy matrix, at different filler loading. Hybridized composite samples used for this research were prepared with 20, 25, 30, 35, and 40% filler (SD and OBPS in the ratio of 1:1) reinforcements in the ratio of 1:1. The flexural test was conducted on the samples according to ASTM D-790, using the Universal Testing Machine. From the results obtained, the fillers loading had significant (P ≤0.05) effect on the three flexural properties studied. The flexural strength increased from 33.44 to 67.65 MPa, the flexural energy increased 53.1%, while the flexural yield strength increased from 23.58 to 55.4 MPa. The results obtained from this research will be helpful the automobile and construction companies.
APA, Harvard, Vancouver, ISO, and other styles
47

Nardiello, Marisa, Carmen Scieuzo, Rosanna Salvia, Donatella Farina, Antonio Franco, Jonathan A. Cammack, Jeffrey K. Tomberlin, Patrizia Falabella, and Krishna C. Persaud. "Odorant binding proteins from Hermetia illucens: potential sensing elements for detecting volatile aldehydes involved in early stages of organic decomposition." Nanotechnology 33, no. 20 (February 21, 2022): 205501. http://dx.doi.org/10.1088/1361-6528/ac51ab.

Full text
Abstract:
Abstract Organic decomposition processes, involving the breakdown of complex molecules such as carbohydrates, proteins and fats, release small chemicals known as volatile organic compounds (VOCs), smelly even at very low concentrations, but not all readily detectable by vertebrates. Many of these compounds are instead detected by insects, mostly by saprophytic species, for which long-range orientation towards organic decomposition matter is crucial. In the present work the detection of aldehydes, as an important measure of lipid oxidation, has been possible exploiting the molecular machinery underlying odour recognition in Hermetia illucens (Diptera: Stratiomyidae). This voracious scavenger insect is of interest due to its outstanding capacity in bioconversion of organic waste, colonizing very diverse environments due to the ability of sensing a wide range of chemical compounds that influence the choice of substrates for ovideposition. A variety of soluble odorant binding proteins (OBPs) that may function as carriers of hydrophobic molecules from the air-water interface in the antenna of the insect to the receptors were identified, characterised and expressed. An OBP-based nanobiosensor prototype was realized using selected OBPs as sensing layers for the development of an array of quartz crystal microbalances (QCMs) for vapour phase detection of selected compounds at room temperature. QCMs coated with four recombinant H. illucens OBPs (HillOBPs) were exposed to a wide range of VOCs indicative of organic decomposition, showing a high sensitivity for the detection of three chemical compounds belonging to the class of aldehydes and one short-chain fatty acid. The possibility of using biomolecules capable of binding small ligands as reversible gas sensors has been confirmed, greatly expanding the state-of the-art in gas sensing technology.
APA, Harvard, Vancouver, ISO, and other styles
48

Picimbon, Jean-François. "Interpopulational Variations of Odorant-Binding Protein Expression in the Black Cutworm Moth, Agrotis ipsilon." Insects 11, no. 11 (November 13, 2020): 798. http://dx.doi.org/10.3390/insects11110798.

Full text
Abstract:
A long-range migrant species of moth (Agrotis ipsilon) has served as a model to compare the expression profiles of antennal proteins between different continental populations. Our results showed that the American and French populations of the black cutworm moth, A. ipsilon, expressed the same odorant-binding proteins (OBPs), but apparently in different levels. Electrophoretic analysis of antennal protein profiles and reverse transcription polymerase chain reaction using RNA as a template showed significant differences between the two populations in the expression of antennal binding protein-X (ABPX) and general odorant-binding protein-2 (GOBP2). However, the two A. ipsilon populations showed no differences in RNA levels coding for pheromone binding proteins (PBPs), suggesting that the expression of generalist OBPs is population-specific and could be affected by specific odor and/or chemical changes in external environmental conditions. To support the role of ABPX and GOBP2 with expression, the role of ABPX and GOBP2 is discussed in regard to odor detection, memorization and/or degradation of toxic chemical insecticides.
APA, Harvard, Vancouver, ISO, and other styles
49

Dimitratos, Spiros D., Allison S. Hommel, Kenneth D. Konrad, Lauren M. Simpson, Jessica J. Wu-Woods, and Daniel F. Woods. "Biosensors to Monitor Water Quality Utilizing Insect Odorant-Binding Proteins as Detector Elements." Biosensors 9, no. 2 (May 14, 2019): 62. http://dx.doi.org/10.3390/bios9020062.

Full text
Abstract:
In the developing world, the identification of clean, potable water continues to pose a pervasive challenge, and waterborne diseases due to fecal contamination of water supplies significantly threaten public health. The ability to efficiently monitor local water supplies is key to water safety, yet no low-cost, reliable method exists to detect contamination quickly. We developed an in vitro assay utilizing an odorant-binding protein (OBP), AgamOBP1, from the mosquito, Anopheles gambiae, to test for the presence of a characteristic metabolite, indole, from harmful coliform bacteria. We demonstrated that recombinantly expressed AgamOBP1 binds indole with high sensitivity. Our proof-of-concept assay is fluorescence-based and demonstrates the usefulness of insect OBPs as detector elements in novel biosensors that rapidly detect the presence of bacterial metabolic markers, and thus of coliform bacteria. We further demonstrated that rAgamOBP1 is suitable for use in portable, inexpensive “dipstick” biosensors that improve upon lateral flow technology since insect OBPs are robust, easily obtainable via recombinant expression, and resist detector “fouling.” Moreover, due to their wide diversity and ligand selectivity, insect chemosensory proteins have other biosensor applications for various analytes. The techniques presented here therefore represent platform technologies applicable to various future devices.
APA, Harvard, Vancouver, ISO, and other styles
50

Wu, Zheran, Na Tong, Yang Li, Jinmeng Guo, Min Lu, and Xiaolong Liu. "Foreleg Transcriptomic Analysis of the Chemosensory Gene Families in Plagiodera versicolora (Coleoptera: Chrysomelidae)." Insects 13, no. 9 (August 24, 2022): 763. http://dx.doi.org/10.3390/insects13090763.

Full text
Abstract:
Plagiodera versicolora (Coleoptera: Chrysomelidae) is a worldwide leaf-eating forest pest in salicaceous trees. The forelegs play important roles in the chemoreception of insects. In this study, we conducted a transcriptome analysis of adult forelegs in P. versicolora and identified a total of 53 candidate chemosensory genes encoding 4 chemosensory proteins (CSPs), 19 odorant binding proteins (OBPs), 10 odorant receptors (ORs), 10 gustatory receptors (GRs), 6 ionotropic receptors (IRs), and 4 sensory neuron membrane proteins (SNMPs). Compared with the previous antennae transcriptome data, 1 CSP, 4 OBPs, 1 OR, 3 IRs, and 4 GRs were newly identified in the forelegs. Subsequently, the tissue expression profiles of 10 P. versicolora chemosensory genes were performed by real-time quantitative PCR. The results showed that PverOBP25, PverOBP27, and PverCSP6 were highly expressed in the antennae of both sexes. PverCSP11 and PverIR9 are predominately expressed in the forelegs than in the antennae. In addition, the expression levels of PverGR15 in female antennae and forelegs were significantly higher than those in the male antennae, implying that it may be involved in some female-specific behaviors such as oviposition site seeking. This work would greatly further the understanding of the chemoreception mechanism in P. versicolora.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography