Academic literature on the topic 'Object invariants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Object invariants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Object invariants"
Samad, Saleha, Anam Haq, and Shoab A. Khan. "Orientation Invariant Object Recognitions Using Geometric Moments Invariants and Color Histograms." International Journal of Computer and Electrical Engineering 7, no. 2 (2015): 101–8. http://dx.doi.org/10.17706/ijcee.2015.v7.876.
Full textNGUYEN, THU-TRANG, NINH-THUAN TRUONG, and VIET-HA NGUYEN. "VERIFYING JAVA OBJECT INVARIANTS AT RUNTIME." International Journal of Software Engineering and Knowledge Engineering 21, no. 04 (June 2011): 605–19. http://dx.doi.org/10.1142/s0218194011005281.
Full textStejskal, Tomáš. "2D-Shape Analysis Using Shape Invariants." Applied Mechanics and Materials 613 (August 2014): 452–57. http://dx.doi.org/10.4028/www.scientific.net/amm.613.452.
Full textChang, Bor-Yuh Evan, K. Rustan, and M. Leino. "Inferring Object Invariants." Electronic Notes in Theoretical Computer Science 131 (May 2005): 63–74. http://dx.doi.org/10.1016/j.entcs.2005.01.023.
Full textPagano, Christopher C., and Michael T. Turvey. "Eigenvectors of the Inertia Tensor and Perceiving the Orientations of Limbs and Objects." Journal of Applied Biomechanics 14, no. 4 (November 1998): 331–59. http://dx.doi.org/10.1123/jab.14.4.331.
Full textLASENBY, JOAN, and EDUARDO BAYRO-CORROCHANO. "ANALYSIS AND COMPUTATION OF PROJECTIVE INVARIANTS FROM MULTIPLE VIEWS IN THE GEOMETRIC ALGEBRA FRAMEWORKS." International Journal of Pattern Recognition and Artificial Intelligence 13, no. 08 (December 1999): 1105–21. http://dx.doi.org/10.1142/s0218001499000628.
Full textRivlin, Ehud, and Isaac Weiss. "Deformation Invariants in Object Recognition." Computer Vision and Image Understanding 65, no. 1 (January 1997): 95–108. http://dx.doi.org/10.1006/cviu.1996.0478.
Full textWeiss, Isaac. "Geometric invariants and object recognition." International Journal of Computer Vision 10, no. 3 (June 1993): 207–31. http://dx.doi.org/10.1007/bf01539536.
Full textLu, Wei. "Image Retrieval Based on Contour and Relevance Feedback." Applied Mechanics and Materials 182-183 (June 2012): 1771–75. http://dx.doi.org/10.4028/www.scientific.net/amm.182-183.1771.
Full textShan, J. "Photogrammetric object description with projective invariants." ISPRS Journal of Photogrammetry and Remote Sensing 52, no. 5 (October 1997): 222–28. http://dx.doi.org/10.1016/s0924-2716(97)00015-4.
Full textDissertations / Theses on the topic "Object invariants"
Self, T. Benjamin (Thomas Benjamin) 1977. "Expression and localization of object invariants." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86498.
Full textIncludes bibliographical references (leaf 23).
by T. Benjamin Self.
S.B.and M.Eng.
Vinther, Sven. "Active 3D object recognition using geometric invariants." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362974.
Full textBeis, Jeffrey S. "Indexing without invariants in model-based object recognition." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25014.pdf.
Full textZhu, Yonggen. "Feature extraction and 2D/3D object recognition using geometric invariants." Thesis, King's College London (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362731.
Full textSoysal, Medeni. "Joint Utilization Of Local Appearance Descriptors And Semi-local Geometry For Multi-view Object Recognition." Phd thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614313/index.pdf.
Full texts local feature frameworks and previous decade&rsquo
s strong but deserted geometric invariance field are presented in this dissertation. The rationale behind this effort is to complement the lowered discriminative capacity of local features, by the invariant geometric descriptions. Similar to our predecessors, we first start with constrained cases and then extend the applicability of our methods to more general scenarios. Local features approach, on which our methods are established, is reviewed in three parts
namely, detectors, descriptors and the methods of object recognition that employ them. Next, a novel planar object recognition framework that lifts the requirement for exact appearance-based local feature matching is presented. This method enables matching of groups of features by utilizing both appearance information and group geometric descriptions. An under investigated area, scene logo recognition, is selected for real life application of this method. Finally, we present a novel method for three-dimensional (3D) object recognition, which utilizes well-known local features in a more efficient way without any reliance on partial or global planarity. Geometrically consistent local features, which form the crucial basis for object recognition, are identified using affine 3D geometric invariants. The utilization of 3D geometric invariants replaces the classical 2D affine transform estimation /verification step, and provides the ability to directly verify 3D geometric consistency. The accuracy and robustness of the proposed method in highly cluttered scenes with no prior segmentation or post 3D reconstruction requirements, are presented during the experiments.
Wilhelm, Hedwig. "A Neural Network Model of Invariant Object Identification." Doctoral thesis, Universitätsbibliothek Leipzig, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-62050.
Full textSrestasathiern, Panu. "View Invariant Planar-Object Recognition." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1420564069.
Full textTonge, Ashwini Kishor. "Object Recognition Using Scale-Invariant Chordiogram." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc984116/.
Full textDahmen, Jörg. "Invariant image object recognition using Gaussian mixture densities." [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=964586940.
Full textBooth, Michael C. A. "Temporal lobe mechanisms for view-invariant object recognition." Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299094.
Full textBooks on the topic "Object invariants"
Object recognition through invariant indexing. Oxford: Oxford University Press, 1995.
Find full textLamdan, Yehezkel. Object recognition by affine invariant matching. New York: Courant Institute of Mathematical Sciences, New York University, 1988.
Find full textGrace, Alan Edward. Adaptive segmentation for aspect invariant object recognition. Birmingham: Universityof Birmingham, 1993.
Find full textKao, Chang-Lung. Affine invariant matching of noisy objects. Monterey, Calif: Naval Postgraduate School, 1989.
Find full textHsu, Tao-i. Affine invariant object recognition by voting match techniques. Monterey, Calif: Naval Postgraduate School, 1988.
Find full textReiss, Thomas H. Recognizing planar objects using invariant image features. Berlin: Springer-Verlag, 1993.
Find full textReiss, Thomas H., ed. Recognizing Planar Objects Using Invariant Image Features. Berlin/Heidelberg: Springer-Verlag, 1993. http://dx.doi.org/10.1007/bfb0017553.
Full textKyrki, Ville. Local and global feature extraction for invariant object recognition. Lappeenranta, Finland: Lappeenranta University of Technology, 2002.
Find full textGroup, IRIS, ed. Fast learning and invariant object recognition: The sixth-generation breakthrough. New York: Wiley, 1992.
Find full textSoucek, Branko. Fast learning and invariant object recognition: The sixth-generation breakthrough. New York: Wiley, 1992.
Find full textBook chapters on the topic "Object invariants"
Leino, K. Rustan M., and Peter Müller. "Object Invariants in Dynamic Contexts." In ECOOP 2004 – Object-Oriented Programming, 491–515. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24851-4_22.
Full textRothwell, Charles A. "Hierarchical object description using invariants." In Applications of Invariance in Computer Vision, 397–414. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/3-540-58240-1_21.
Full textJackson, Daniel. "Object models as heap invariants." In Monographs in Computer Science, 247–68. New York, NY: Springer New York, 2003. http://dx.doi.org/10.1007/978-0-387-21798-7_12.
Full textMuselet, Damien, and Brian Funt. "Color Invariants for Object Recognition." In Advanced Color Image Processing and Analysis, 327–76. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-6190-7_10.
Full textBalzer, Stephanie, and Thomas R. Gross. "Verifying Multi-object Invariants with Relationships." In Lecture Notes in Computer Science, 358–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22655-7_17.
Full textNair, Sreeja S., Gustavo Petri, and Marc Shapiro. "Proving the Safety of Highly-Available Distributed Objects." In Programming Languages and Systems, 544–71. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44914-8_20.
Full textGopinathan, Madhu, and Sriram K. Rajamani. "Runtime Monitoring of Object Invariants with Guarantee." In Runtime Verification, 158–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-89247-2_10.
Full textNaumann, David A. "Assertion-Based Encapsulation, Object Invariants and Simulations." In Formal Methods for Components and Objects, 251–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11561163_11.
Full textHuizing, Kees, and Ruurd Kuiper. "Verification of Object Oriented Programs Using Class Invariants." In Fundamental Approaches to Software Engineering, 208–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-46428-x_15.
Full textLau, K. L., W. C. Siu, and N. F. Law. "Improved Scheme for Object Searching Using Moment Invariants." In Advances in Multimedia Information Processing — PCM 2002, 783–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36228-2_97.
Full textConference papers on the topic "Object invariants"
Leino, K. Rustan M., and Angela Wallenburg. "Class-local object invariants." In the 1st conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1342211.1342225.
Full textKautsky, Jaroslav, Jan Flusser, and Filip Sroubek. "Implicit Invariants and Object Recognition." In 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007). IEEE, 2007. http://dx.doi.org/10.1109/dicta.2007.4426833.
Full textFahndrich, Manuel, and Songtao Xia. "Establishing object invariants with delayed types." In the 22nd annual ACM SIGPLAN conference. New York, New York, USA: ACM Press, 2007. http://dx.doi.org/10.1145/1297027.1297052.
Full textSummers, Alexander J., Sophia Drossopoulou, and Peter Müller. "The need for flexible object invariants." In International Workshop. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1562154.1562160.
Full textXiao, Bai, Richard Wilson, and Edwin Hancock. "Object recognition using graph spectral invariants." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761245.
Full textGong, Weibo. "Invariants in Object Deformation and Concept Abstraction." In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619352.
Full textTham, Jie Sheng, Yong-Shen Chen, Mohammad Faizal Ahmad Fauzi, and Yoong Choon Chang. "Depth image object recognition using moment invariants." In 2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). IEEE, 2016. http://dx.doi.org/10.1109/icce-tw.2016.7520900.
Full textRahtu, E., M. Salo, J. Heikkil, and J. Flusser. "Generalized affine moment invariants for object recogn." In 18th International Conference on Pattern Recognition (ICPR'06). IEEE, 2006. http://dx.doi.org/10.1109/icpr.2006.599.
Full textJannson, Tomasz P. "Manifold geometric invariants and object-centric approach." In International Symposium on Optical Science and Technology, edited by Bruno Bosacchi, David B. Fogel, and James C. Bezdek. SPIE, 2002. http://dx.doi.org/10.1117/12.453564.
Full textBayro-Corrochano, E., and C. Lopez-Franco. "Invariants and omnidirectional vision for robot object recognition." In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005. http://dx.doi.org/10.1109/iros.2005.1545165.
Full textReports on the topic "Object invariants"
Weiss, Isaac. Geometric Invariants and Object Recognition. Fort Belvoir, VA: Defense Technical Information Center, August 1992. http://dx.doi.org/10.21236/ada255317.
Full textWeiss, Isaac, and Manjit Ray. Recognizing Articulated Objects in Range Images Using Invariants. Fort Belvoir, VA: Defense Technical Information Center, February 2002. http://dx.doi.org/10.21236/ada408100.
Full textKeren, David, Ehud Rivlin, Han Shimshoni, and Isaac Weiss. Recognizing 3D Objects Using Tactile Sensing and Curve Invariants. Fort Belvoir, VA: Defense Technical Information Center, July 1997. http://dx.doi.org/10.21236/ada353693.
Full textNagao, Kenji, and Eric Grimson. Object Recognition by Alignment Using Invariant Projections of Planar Surfaces. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada279841.
Full textVoils, Danny. Scale Invariant Object Recognition Using Cortical Computational Models and a Robotic Platform. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.632.
Full textLogothetis, Nikos K., Thomas Vetter, Anya Hurlbert, and Tomaso Poggio. View-Based Models of 3D Object Recognition and Class-Specific Invariance. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada279858.
Full textKim, Dae-Shik. Predictive Coding Strategies for Invariant Object Recognition and Volitional Motion Control in Neuromorphic Agents. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada626818.
Full textSerre, Thomas, and Maximilian Riesenhuber. Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex. Fort Belvoir, VA: Defense Technical Information Center, July 2004. http://dx.doi.org/10.21236/ada459692.
Full text