Academic literature on the topic 'Object detection in images'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Object detection in images.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Object detection in images"
Shin, Su-Jin, Seyeob Kim, Youngjung Kim, and Sungho Kim. "Hierarchical Multi-Label Object Detection Framework for Remote Sensing Images." Remote Sensing 12, no. 17 (August 24, 2020): 2734. http://dx.doi.org/10.3390/rs12172734.
Full textJung, Sejung, Won Hee Lee, and Youkyung Han. "Change Detection of Building Objects in High-Resolution Single-Sensor and Multi-Sensor Imagery Considering the Sun and Sensor’s Elevation and Azimuth Angles." Remote Sensing 13, no. 18 (September 13, 2021): 3660. http://dx.doi.org/10.3390/rs13183660.
Full textVajda, Peter, Ivan Ivanov, Lutz Goldmann, Jong-Seok Lee, and Touradj Ebrahimi. "Robust Duplicate Detection of 2D and 3D Objects." International Journal of Multimedia Data Engineering and Management 1, no. 3 (July 2010): 19–40. http://dx.doi.org/10.4018/jmdem.2010070102.
Full textSejr, Jonas Herskind, Peter Schneider-Kamp, and Naeem Ayoub. "Surrogate Object Detection Explainer (SODEx) with YOLOv4 and LIME." Machine Learning and Knowledge Extraction 3, no. 3 (August 6, 2021): 662–71. http://dx.doi.org/10.3390/make3030033.
Full textKarimanzira, Divas, Helge Renkewitz, David Shea, and Jan Albiez. "Object Detection in Sonar Images." Electronics 9, no. 7 (July 21, 2020): 1180. http://dx.doi.org/10.3390/electronics9071180.
Full textYan, Longbin, Min Zhao, Xiuheng Wang, Yuge Zhang, and Jie Chen. "Object Detection in Hyperspectral Images." IEEE Signal Processing Letters 28 (2021): 508–12. http://dx.doi.org/10.1109/lsp.2021.3059204.
Full textWu, Jingqian, and Shibiao Xu. "From Point to Region: Accurate and Efficient Hierarchical Small Object Detection in Low-Resolution Remote Sensing Images." Remote Sensing 13, no. 13 (July 3, 2021): 2620. http://dx.doi.org/10.3390/rs13132620.
Full textLorencs, Aivars, Ints Mednieks, and Juris Siņica-Siņavskis. "Fast object detection in digital grayscale images." Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences. 63, no. 3 (January 1, 2009): 116–24. http://dx.doi.org/10.2478/v10046-009-0026-5.
Full textShen, Jie, Zhenxin Xu, Zhe Chen, Huibin Wang, and Xiaotao Shi. "Optical Prior-Based Underwater Object Detection with Active Imaging." Complexity 2021 (April 27, 2021): 1–12. http://dx.doi.org/10.1155/2021/6656166.
Full textLiu, Wei, Dayu Cheng, Pengcheng Yin, Mengyuan Yang, Erzhu Li, Meng Xie, and Lianpeng Zhang. "Small Manhole Cover Detection in Remote Sensing Imagery with Deep Convolutional Neural Networks." ISPRS International Journal of Geo-Information 8, no. 1 (January 19, 2019): 49. http://dx.doi.org/10.3390/ijgi8010049.
Full textDissertations / Theses on the topic "Object detection in images"
Kok, R. "An object detection approach for cluttered images." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53281.
Full textENGLISH ABSTRACT: We investigate object detection against cluttered backgrounds, based on the MINACE (Minimum Noise and Correlation Energy) filter. Application of the filter is followed by a suitable segmentation algorithm, and the standard techniques of global and local thresholding are compared to watershed-based segmentation. The aim of this approach is to provide a custom region-based object detection algorithm with a concise set of regions of interest. Two industrial case studies are examined: diamond detection in X-ray images, and the reading of a dynamic, and ink stamped, 2D barcode on packaging clutter. We demonstrate the robustness of our approach on these two diverse applications, and develop a complete algorithmic prototype for an automatic stamped code reader.
AFRIKAANSE OPSOMMING: Hierdie tesis ondersoek die herkenning van voorwerpe teen onduidelike agtergronde. Ons benadering maak staat op die MINACE (" Minimum Noise and Correlation Energy") korrelasiefilter. Die filter word aangewend saam met 'n gepaste segmenteringsalgoritme, en die standaard tegnieke van globale en lokale drumpelingsalgoritmes word vergelyk met 'n waterskeidingsgebaseerde segmenteringsalgoritme. Die doel van hierdie deteksiebenadering is om 'n klein stel moontlike voorwerpe te kan verskaf aan enige klassifikasie-algoritme wat fokus op die voorwerpe self. Twee industriële toepassings word ondersoek: die opsporing van diamante in X-straal beelde, en die lees van 'n dinamiese, inkgedrukte, 2D balkieskode op verpakkingsmateriaal. Ons demonstreer die robuustheid van ons benadering met hierdie twee uiteenlopende voorbeelde, en ontwikkel 'n volledige algoritmiese prototipe vir 'n outomatiese stempelkode leser.
Mohan, Anuj 1976. "Robust object detection in images by components." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80554.
Full textGrahn, Fredrik, and Kristian Nilsson. "Object Detection in Domain Specific Stereo-Analysed Satellite Images." Thesis, Linköpings universitet, Datorseende, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-159917.
Full textPapageorgiou, Constantine P. "A Trainable System for Object Detection in Images and Video Sequences." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/5566.
Full textGonzalez-Garcia, Abel. "Image context for object detection, object context for part detection." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/28842.
Full textGadsby, David. "Object recognition for threat detection from 2D X-ray images." Thesis, Manchester Metropolitan University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493851.
Full textVi, Margareta. "Object Detection Using Convolutional Neural Network Trained on Synthetic Images." Thesis, Linköpings universitet, Datorseende, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153224.
Full textRickert, Thomas D. (Thomas Dale) 1975. "Texture-based statistical models for object detection in natural images." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80570.
Full textIncludes bibliographical references (p. 63-65).
by Thomas D. Rickert.
S.B.and M.Eng.
Jangblad, Markus. "Object Detection in Infrared Images using Deep Convolutional Neural Networks." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-355221.
Full textMelcherson, Tim. "Image Augmentation to Create Lower Quality Images for Training a YOLOv4 Object Detection Model." Thesis, Uppsala universitet, Signaler och system, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-429146.
Full textBooks on the topic "Object detection in images"
Bogusław Cyganek. Object Detection and Recognition in Digital Images. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118618387.
Full textLee, Chin-Hwa. Similarity counting architecture for object detection. Monterey, California: Naval Postgraduate School, 1986.
Find full textGeometric constraints for object detection and delineation. Boston: Kluwer Academic Publishers, 2000.
Find full textWosnitza, Matthias Werner. High precision 1024-point FFT processor for 2D object detection. Hartung-Gorre: Konstanz, 1999.
Find full textShaikh, Soharab Hossain, Khalid Saeed, and Nabendu Chaki. Moving Object Detection Using Background Subtraction. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07386-6.
Full textGoulermas, John. Hough transform techniques for circular object detection. Manchester: UMIST, 1996.
Find full textJiang, Xiaoyue, Abdenour Hadid, Yanwei Pang, Eric Granger, and Xiaoyi Feng, eds. Deep Learning in Object Detection and Recognition. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-10-5152-4.
Full textShufelt, Jefferey. Geometric Constraints for Object Detection and Delineation. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-5273-4.
Full textNtalias, A. Automated flaw detection in textile images. Manchester: UMIST, 1995.
Find full textSuk, Minsoo. Three-Dimensional Object Recognition from Range Images. Tokyo: Springer Japan, 1992.
Find full textBook chapters on the topic "Object detection in images"
Topkar, V., B. Kjell, and A. Sood. "Object detection in noisy images." In Active Perception and Robot Vision, 651–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77225-2_34.
Full textYavari, Abulfazl, and H. R. Pourreza. "Object Detection in Foveated Images." In Technological Developments in Networking, Education and Automation, 281–85. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9151-2_49.
Full textZiran, Zahra, and Simone Marinai. "Object Detection in Floor Plan Images." In Artificial Neural Networks in Pattern Recognition, 383–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99978-4_30.
Full textKumar, Nitin, Maheep Singh, M. C. Govil, E. S. Pilli, and Ajay Jaiswal. "Salient Object Detection in Noisy Images." In Advances in Artificial Intelligence, 109–14. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34111-8_15.
Full textSchneiderman, Henry. "Learning Statistical Structure for Object Detection." In Computer Analysis of Images and Patterns, 434–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45179-2_54.
Full textKelm, André Peter, Vijesh Soorya Rao, and Udo Zölzer. "Object Contour and Edge Detection with RefineContourNet." In Computer Analysis of Images and Patterns, 246–58. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29888-3_20.
Full textSharma, Raghav, Rohit Pandey, and Aditya Nigam. "Real Time Object Detection on Aerial Imagery." In Computer Analysis of Images and Patterns, 481–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-29888-3_39.
Full textLecron, Fabian, Mohammed Benjelloun, and Saïd Mahmoudi. "Descriptive Image Feature for Object Detection in Medical Images." In Lecture Notes in Computer Science, 331–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31298-4_39.
Full textCai, Qiang, Liwei Wei, Haisheng Li, and Jian Cao. "Salient Object Detection Based on RGBD Images." In Proceedings of 2016 Chinese Intelligent Systems Conference, 437–44. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2335-4_40.
Full textKollmitzer, Christian. "Object Detection and Measurement Using Stereo Images." In Communications in Computer and Information Science, 159–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30721-8_16.
Full textConference papers on the topic "Object detection in images"
Zhang, Pingping, Wei Liu, Huchuan Lu, and Chunhua Shen. "Salient Object Detection by Lossless Feature Reflection." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/160.
Full textFelix, Heitor, Francisco Simões, Kelvin Cunha, and Veronica Teichrieb. "Image Processing Techniques to Improve Deep 6DoF Detection in RGB Images." In XXI Symposium on Virtual and Augmented Reality. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/svr_estendido.2019.8457.
Full textAyush, Kumar, Burak Uzkent, Marshall Burke, David Lobell, and Stefano Ermon. "Generating Interpretable Poverty Maps using Object Detection in Satellite Images." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/608.
Full textSaha, Ranajit, Ajoy Mondal, and C. V. Jawahar. "Graphical Object Detection in Document Images." In 2019 International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2019. http://dx.doi.org/10.1109/icdar.2019.00018.
Full textLi, Tingtian, and Daniel P. K. Lun. "Salient object detection using array images." In 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2017. http://dx.doi.org/10.1109/apsipa.2017.8282039.
Full textYang, Fan, Heng Fan, Peng Chu, Erik Blasch, and Haibin Ling. "Clustered Object Detection in Aerial Images." In 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2019. http://dx.doi.org/10.1109/iccv.2019.00840.
Full textMedvedeva, Elena. "Moving Object Detection in Noisy Images." In 2019 8th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2019. http://dx.doi.org/10.1109/meco.2019.8760066.
Full textKwan, Chiman, Bryan Chou, David Gribben, Leif Hagen, Jerry Yang, Bulent Ayhan, and Krzysztof Koperski. "Ground object detection in worldview images." In Signal Processing, Sensor/Information Fusion, and Target Recognition XXVIII, edited by Lynne L. Grewe, Erik P. Blasch, and Ivan Kadar. SPIE, 2019. http://dx.doi.org/10.1117/12.2518529.
Full textOrellana, Sonny, Lei Zhao, Helen Boussalis, Charles Liu, Khosrow Rad, and Jane Dong. "Automated object detection for astronomical images." In Optics East 2005, edited by Anthony Vetro, Chang Wen Chen, C. C. J. Kuo, Tong Zhang, Qi Tian, and John R. Smith. SPIE, 2005. http://dx.doi.org/10.1117/12.631033.
Full textWang, Jinwang, Wen Yang, Haowen Guo, Ruixiang Zhang, and Gui-Song Xia. "Tiny Object Detection in Aerial Images." In 2020 25th International Conference on Pattern Recognition (ICPR). IEEE, 2021. http://dx.doi.org/10.1109/icpr48806.2021.9413340.
Full textReports on the topic "Object detection in images"
Repperger, Daniel W., Alan R. Pinkus, Julie A. Skipper, and Christina D. Schrider. Stochastic Resonance Investigation of Object Detection in Images. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada472478.
Full textHeisele, Bernd, Thomas Serre, Sayan Mukherjee, and Tomaso Poggio. Feature Reduction and Hierarchy of Classifiers for Fast Object Detection in Video Images. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada458821.
Full textGastelum, Zoe, and Timothy Shead. How Low Can You Go? Using Synthetic 3D Imagery to Drastically Reduce Real-World Training Data for Object Detection. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1670874.
Full textClausen, Jay, Susan Frankenstein, Jason Dorvee, Austin Workman, Blaine Morriss, Keran Claffey, Terrance Sobecki, et al. Spatial and temporal variance of soil and meteorological properties affecting sensor performance—Phase 2. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41780.
Full textWorkman, Austin, and Jay Clausen. Meteorological property and temporal variable effect on spatial semivariance of infrared thermography of soil surfaces for detection of foreign objects. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/41024.
Full textShah, Jayant. Object Oriented Segmentation of Images. Fort Belvoir, VA: Defense Technical Information Center, December 1994. http://dx.doi.org/10.21236/ada290792.
Full textYan, Yujie, and Jerome F. Hajjar. Automated Damage Assessment and Structural Modeling of Bridges with Visual Sensing Technology. Northeastern University, May 2021. http://dx.doi.org/10.17760/d20410114.
Full textJain, Ramesh. Object Recognition in Range Images Using CAD Databases. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada239326.
Full textOwens, Jason. Object Detection using the Kinect. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada564736.
Full textAufderheide, M., A. Barty, S. Lehman, B. Kozioziemski, and D. Schneberk. Phase Effects on Mesoscale Object X-ray Absorption Images. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/15014410.
Full text