Academic literature on the topic 'Nutrient film technique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nutrient film technique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nutrient film technique"
Wibisono, Vicky, and Yudi Kristyawan. "An Efficient Technique for Automation of The NFT (Nutrient Film Technique) Hydroponic System Using Arduino." International Journal of Artificial Intelligence & Robotics (IJAIR) 3, no. 1 (May 31, 2021): 44–49. http://dx.doi.org/10.25139/ijair.v3i1.3209.
Full textBurrage, S. W. "NUTRIENT FILM TECHNIQUE IN PROTECTED CULTIVATION." Acta Horticulturae, no. 323 (February 1993): 23–38. http://dx.doi.org/10.17660/actahortic.1993.323.1.
Full textMortley, D. G., C. K. Bonsi, J. H. Hill, and W. A. Hill. "NUTRIENT MANAGEMENT OF SWEETPOTATO GROWN IN NUTRIENT FILM TECHNIQUE." Acta Horticulturae, no. 548 (March 2001): 567–74. http://dx.doi.org/10.17660/actahortic.2001.548.70.
Full textSilva, Marina Galdez de Castro, Cristina Moll Hüther, Bruno Bernardo Ramos, Patrícia da Silva Araújo, Leonardo da Silva Hamacher, and Carlos Rodrigues Pereira. "GLOBAL OVERVIEW OF HYDROPONICS: NUTRIENT FILM TECHNIQUE." Revista Engenharia na Agricultura - Reveng 29 (August 5, 2021): 138–45. http://dx.doi.org/10.13083/reveng.v29i1.11679.
Full textde Kreij, C., and H. Başar. "Effect of humic substances in nutrient film technique on nutrient uptake." Journal of Plant Nutrition 18, no. 4 (April 1995): 793–802. http://dx.doi.org/10.1080/01904169509364938.
Full textMackowiak, C. L., R. M. Wheeler, G. W. Stutte, and N. C. Yorio. "Peanut Production using Recirculating Nutrient Film Technique (NFT)." HortScience 30, no. 4 (July 1995): 810E—810. http://dx.doi.org/10.21273/hortsci.30.4.810e.
Full textIbrahim, Muhammad Naufal Rauf, Mohamad Solahudin, and Slamet Widodo. "Control System for Nutrient Solution of Nutrient Film Technique Using Fuzzy Logic." TELKOMNIKA (Telecommunication Computing Electronics and Control) 13, no. 4 (December 1, 2015): 1281. http://dx.doi.org/10.12928/telkomnika.v13i4.2113.
Full textSumarni, Eni, Loekas Soesanto, Noor Farid, and Hanif Nasiatul Baroroh. "PERTUMBUHAN DAN PERKEMBANGAN TANAMAN PURWOCENG PADA BUDIDAYA SECARA HIDROPONIK NUTRIENT FILM TECHNIQUE (NFT)." Jurnal Litbang Provinsi Jawa Tengah 15, no. 2 (December 1, 2017): 145–51. http://dx.doi.org/10.36762/litbangjateng.v15i2.410.
Full textSuhl, Johanna, Berry Oppedijk, Daniela Baganz, Werner Kloas, Uwe Schmidt, and Bert van Duijn. "Oxygen consumption in recirculating nutrient film technique in aquaponics." Scientia Horticulturae 255 (September 2019): 281–91. http://dx.doi.org/10.1016/j.scienta.2019.05.033.
Full textYamasaki, A., A. Uragami, and M. Yamada. "HYDROPONIC FORCING OF TULIP USING A NUTRIENT FILM TECHNIQUE." Acta Horticulturae, no. 570 (February 2002): 423–27. http://dx.doi.org/10.17660/actahortic.2002.570.60.
Full textDissertations / Theses on the topic "Nutrient film technique"
Kazakidou, Despina. "The effect of some environmental factors on carotenoid production in African marigold (Tagetes erecta L.)." Thesis, Imperial College London, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246440.
Full textIncemehmetoglu, Ali. "Investigation The Effects Of Different Support Medium On Product With Nutrient Film Technique." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615360/index.pdf.
Full textCull, D. C. "Nutrient-Film Technique : The growth of sweet pepper in relation to iron and chelating agent." Thesis, University of Bath, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374596.
Full textLima, Tiago José Leme de. "Desempenho de mudas de alface produzidas nos diferentes volumes de células em bandejas e cultivadas em sistema hidropônico." Universidade Federal de São Carlos, 2017. https://repositorio.ufscar.br/handle/ufscar/9175.
Full textApproved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-31T12:33:09Z (GMT) No. of bitstreams: 1 DissTJLL: 1290412 bytes, checksum: 0b28361bb68784461caec72b35759be1 (MD5)
Approved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-31T12:33:22Z (GMT) No. of bitstreams: 1 DissTJLL: 1290412 bytes, checksum: 0b28361bb68784461caec72b35759be1 (MD5)
Made available in DSpace on 2017-10-31T12:46:52Z (GMT). No. of bitstreams: 1 DissTJLL: 1290412 bytes, checksum: 0b28361bb68784461caec72b35759be1 (MD5) Previous issue date: 2017-04-05
Não recebi financiamento
The hydroponic cultivation of lettuce in the NFT (Nutrient Film Technique) system has use seedlings obtained in trays with smaller volumes, requiring two transplants (from the tray to the nursery and then to the definitive). The use of seedlings produced in larger volumes of cells could provide the transplant directly to the definitive profiles, besides possibly ensuring the smallest cycle of lettuce plant growth in this system. Thus, the objective of this work was to verify the performance of lettuce seedlings produced in different volumes of trays cells and their subsequente transplant aiming at precocity at harvest and exemption from the use of nursery phase in hydroponic NFT system. Two subsequent experiments were performed. In the first experiment, seedlings were grown and evaluated in different volumes cells of trays (50, 40, 35, 31, 30, 29, 27, 20 and 10 cm³ céll-1) and, after 40 days, in the second experiment, Were transplanted directly to the definitive profiles of the NFT, with exception of the seedlings produced in volume 10 cm³ cell-1 that first remained 10 days in the nursery before its definitive transplant. In both experiments, it was adopted a completely randomized block design with four replications. In the seedlings, the following characteristics were evaluated: Plant height (PH cm plant-1); Root lenght of seedlings (RLs cm plant-1); Total leaves of seedlings (TLs leaves plant-1); Fresh seedling aerial mass (FSAM g plant-1); Dry mass of the aerial part of the seedlings (DMAPS g plant-1); Fresh seedlings and root pasta (FSRP g plant-1); Dry mass of seedlings root (DMSR g plant-1). After the transplanting of lettuces in the NFT system, were evaluated at 22 days after transplant (DAT) and 29 (DAT) the characteristics: Number of leaves in senescence (NLS plant-1); Total leaves (TL plant-1); Fresh mass of the aerial part (FMAP g plant-1); Fresh root pasta (FRP g plant-1); Aerial shoot dry mass (ASDM g plant-1); Stem length (ST cm) and Productivity (Kg m-2). The best performance of the seedlings was ally with the increase in volume per cell of trays. After transplant, the best performance of lettuces was generated from the use of seedlings produced in larger cell volumes. In the volumes of 20 to 50 cm³ cell-1, there was no need for the nursery for the seedlings and the number of transplants reduced from two to one, contrary to the volume of 10 cm³ cell-1. Seedlings produced in trays with 40 and 50 cm³ cell-1 provided harvest at 22 DAT of cultivtion in the NFT system.
O cultivo hidropônico de alface em sistema NFT (Nutrient Film Technique) tem utilizado mudas obtidas em bandejas com volumes menores, exigindo dois transplantes (da bandeja para a fase intermediária e posteriormente para o definitivo). O uso de mudas produzidas em maiores volumes de célula poderia proporcionar o transplante diretamente aos perfis definitivos, além de, possivelmente assegurar o menor ciclo de cultivo de plantas de alface nesse sistema. Assim, o objetivo deste trabalho foi verificar o desempenho de mudas de alface produzidas em diferentes volumes de células de bandejas e seu posterior transplante visando a precocidade na colheita e dispensa da utilização da fase intermediária em sistema hidropônico NFT. Foram realizados dois experimentos subsequentes. No primeiro experimento, efetuou-se a produção e avaliação das mudas em diferentes volumes de células de bandejas (50, 40, 35, 31, 30, 29, 27 e 20 e 10 cm³ célula-1) e, após 40 dias, no segundo experimento, estas foram transplantadas diretamente aos perfis definitivos do NFT, com exceção das mudas produzidas no volume 10 cm³ célula-1 que primeiramente permaneceram 10 dias na fase intermediária antes do seu transplante no definitivo. Nos dois experimentos adotou-se o delineamento em blocos inteiramente casualizados, com quatro repetições. Nas mudas, avaliaram-se as características: Altura da planta (APm cm planta-1); Comprimento da raiz das mudas (CRm cm planta-1); Total de folhas das mudas (TFm folhas planta-1); Massa fresca da parte aérea das mudas (MFPAm g planta-1); Massa seca da parte aérea das mudas (MSPAm g planta-1); Massa fresca da raiz das mudas (MFRm g planta-1) e; Massa seca da raiz das mudas (MSRm g planta-1). Após o transplante das alfaces no sistema NFT, avaliaram-se aos 22 dias após transplante (DAT) e 29 (DAT), as características: Número de folhas em senescência (NFS planta-1); Total de folhas (TF planta-1); Massa fresca da parte aérea (MFPA g planta-1); Massa fresca da raiz (MFR g planta-1); Massa seca da parte aérea (MSPA g planta-1); Comprimento do caule (CC cm) e Produtividade (Kg m-2). O melhor desempenho das mudas esteve aliado ao aumento do volume por célula das bandejas. Após o transplante, o melhor desempenho das alfaces foi gerado da utilização de mudas produzidas em maiores volumes de célula. Nos volumes de 20 a 50 cm³ célula-1, não houve a necessidade da fase intermediária para as mudas e o número de transplantes reduziu de dois para um, contraio ao volume de 10 cm³ célula-1. Mudas produzidas nas bandejas com 40 e 50 cm³ célula-1 proporcionaram colheita aos 22 DAT de cultivo no sistema NFT.
Dalastra, Cleiton [UNESP]. "Nutrição e produção de alface americana em função da vazão, periodicidade de exposição e condutividade elétrica da solução nutritiva em sistema hidropônico." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/152065.
Full textApproved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-11-09T15:35:04Z (GMT) No. of bitstreams: 1 dalastra_c_dr_ilha.pdf: 4821380 bytes, checksum: fad04c9fa5853e9c381aeb892db6a996 (MD5)
Made available in DSpace on 2017-11-09T15:35:04Z (GMT). No. of bitstreams: 1 dalastra_c_dr_ilha.pdf: 4821380 bytes, checksum: fad04c9fa5853e9c381aeb892db6a996 (MD5) Previous issue date: 2017-08-31
A produção de alimento face a demanda mundial é um desafio para este século, devendo-se, obrigatoriamente, destinar atenção ao ganho de eficiência produtiva, incorporada as tecnologias disponíveis. Dentre as hortaliças folhosas, a alface se destaca em toda culinária global. A produção atual da alface tem passado por grandes avanços, atribuídos especialmente à técnica de produção hidropônica, contudo, ainda é necessita melhorias na adaptabilidade da tecnologia hidropônica às condições climáticas das diversas regiões e às diferentes necessidades da gama de cultivares presentes no mercado. Neste cenário, a proposição desta pesquisa surge em resposta à demanda de informações pelo setor produtivo, cumprindo seu papel na integração entre ensino, pesquisa e extensão rural, de maneira a contribuir modestamente com o setor produtivo. Para isso, foram realizados três experimentos isolados em sistema hidropônico NFT (Técnica de Fluxo Laminar de Nutrientes), com o objetivo de avaliar a nutrição e a produção econômica de alface americana em função da vazão, periodicidade de exposição e condutividade elétrica da solução nutritiva, respectivamente. O delineamento experimental foi em blocos casualisados, com cinco repetições e cada tratamento foi composto por 15 plantas. No experimento 1, os tratamentos utilizados constaram da aplicação de solução nutritiva nas vazões de 0,5; 1; 2 e 4 litros por minuto em cada canal de cultivo. No experimento 2, os tratamentos foram quatro combinações de intermitência de exposição da solução nutritiva em intervalos de bombeamento / intervalo de ausência de bombeamento em minutos: 15/60; 15/30; 15/15 e FI (Fluxo initermitente). No experimento 3, os tratamentos foram a manutenção diária da solução nutritiva em quatro valores de condutividade elétrica, de 0,8; 1,3; 1,8 e 2,3 dS m-1, em função da concentração de nutrientes. A maior produção e lucratividade de alface americana foi obtida com a vazão da solução nutritiva de 1 L/min, devido ao maior acúmulo de nutrientes na parte aérea e eficiência de sua utilização; também houve a maior produção e lucratividade de alface americana obtida com fluxo contínuo da solução nutritiva (FI), devido ao maior acúmulo de nutrientes na parte aérea e raízes, maior assimilação de nitrato e eficiência de utilização de nutrientes; economicamente, a condução em intervalo 15/30 minutos acarreta em prejuízo financeiro; o acompanhamento dos tratamentos de condutividade elétrica no decorrer do ciclo da alface aponta para produção superior com condutividade elétrica recomendada por fase de cultivo, sendo: 0,8 dS m-1 até os 10 dias após o transplantio (DAT); 1,30 dS m-1 dos 10 aos 17 DAT; 1,80 dS m-1 dos 17 aos 24 DAT e 1,30 dS m-1 dos 24 aos 31 DAT.
The food production to meet global demand is a challenge for this century, should be compulsorily intended attention to productive efficiency gains incorporated the available technologies. Among the leafy vegetables, the lettuce stands out in all global cuisine. The current production of lettuce has undergone great advances, especially attributed to the hydroponic production technique. However, it is still necessary to improve the adaptability of hydroponic technology to the climatic conditions of the different regions and to the different needs of the wide range of cultivars present in the market. In this scenario, the proposition of this research arises in response to the demand for information by the productive sector, fulfilling its role in the integration between teaching, research and rural extension, in order to contribute modestly with the productive sector. For that, three experiments were carried out in a NFT hydroponic system, with the objective of evaluating the nutrition and economic production of American lettuce as a function of flow rate, periodicity of exposure and electrical conductivity of the nutrient solution, respectively. The experimental design was in randomized blocks, with five replicates and each treatment consisted of 15 plants. In the experiment 1, the treatments used consisted of the application of nutrient solution at the flow rates of 0.5; 1; 2 and 4 liters per minute in each culture channel. In experiment 2, the treatments were four combinations of intermittent exposure of the nutrient solution at pumping intervals / no pumping interval in minutes: 15/60; 15/30; 15/15 and 15/0. In experiment 3, the treatments were daily maintenance of the nutrient solution in four values of electrical conductivity, of 0.8; 1,3; 1.8 and 2.3 dS m-1, depending on the concentration of nutrients. The conclusions were: The highest production and profitability of American lettuce was obtained with the flow of the nutrient solution of 1 L/min, due to the greater accumulation of nutrients in the aerial part and efficiency of use of these; The highest production and profitability of American lettuce was with cycles of 15/0 minutes, that is, with continuous flow of the nutrient solution due to the greater accumulation of nutrients in the aerial part and efficiency of use of these; Economically, driving in interval 15/30 minutes under the conditions studied, does not supply the cost of production and entails financial loss; The treatments were monitored during the lettuce cycle, indicating a higher yield than the one obtained with the recommended electrical conductivity at each cultivation stage: 0.8 dS m-1 until 10 days after transplanting (DAT) of lettuce; 1.30 dS m-1 from 10 to 17 DAT; 1.80 dS m-1 from 17 to 24 DAT and 1.30 dS m-1 from 24 to 31 DAT.
Dalastra, Cleiton. "Nutrição e produção de alface americana em função da vazão, periodicidade de exposição e condutividade elétrica da solução nutritiva em sistema hidropônico /." Ilha Solteira, 2017. http://hdl.handle.net/11449/152065.
Full textResumo: A produção de alimento face a demanda mundial é um desafio para este século, devendo-se, obrigatoriamente, destinar atenção ao ganho de eficiência produtiva, incorporada as tecnologias disponíveis. Dentre as hortaliças folhosas, a alface se destaca em toda culinária global. A produção atual da alface tem passado por grandes avanços, atribuídos especialmente à técnica de produção hidropônica, contudo, ainda é necessita melhorias na adaptabilidade da tecnologia hidropônica às condições climáticas das diversas regiões e às diferentes necessidades da gama de cultivares presentes no mercado. Neste cenário, a proposição desta pesquisa surge em resposta à demanda de informações pelo setor produtivo, cumprindo seu papel na integração entre ensino, pesquisa e extensão rural, de maneira a contribuir modestamente com o setor produtivo. Para isso, foram realizados três experimentos isolados em sistema hidropônico NFT (Técnica de Fluxo Laminar de Nutrientes), com o objetivo de avaliar a nutrição e a produção econômica de alface americana em função da vazão, periodicidade de exposição e condutividade elétrica da solução nutritiva, respectivamente. O delineamento experimental foi em blocos casualisados, com cinco repetições e cada tratamento foi composto por 15 plantas. No experimento 1, os tratamentos utilizados constaram da aplicação de solução nutritiva nas vazões de 0,5; 1; 2 e 4 litros por minuto em cada canal de cultivo. No experimento 2, os tratamentos foram quatro combinações de int... (Resumo completo, clicar acesso eletrônico abaixo)
Doutor
Chang, Hao-Wei, and 張皓崴. "The Thermal Analysis and Optimization of Nutrient Film Technique with Shallow Geothermal Energy." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/njesyn.
Full text國立臺灣大學
機械工程學研究所
105
Temperature of Nutrient Film Technique(NFT) is one of the types of Hydroponics. As compared to other Hydroponics, it can be controlled by temperature. The purpose of this study is to derive the mathematical model by heat transfer analysis, and the model can be used to predict the changes of the temperature with different operating and environmental conditions. This study used MATLAB to simulate the changes of the temperature of NFT during the summer time based on Steady State, Incompressible Flow, Navier-Stokes equations, and Thermal Resistance Analysis. According to the results of numerical analysis, with 35 °C ambient temperature and 40 °C the top of the planting tube, if we only change the input water temperature and its flow rate, the temperature of the water in the planting tube can reach the target temperature (15 ~ 24 °C), but the temperature of the air in the planting tube cannot reach the target temperature. Therefore, we need to change the parameters of hardware to optimize the design. This study used Taguchi Method and Gray Relation Analysis to approach the optimum parametric combination, with the considering of the temperature of NFT and the power consumption. The parameters include cooling method of heat pump, volume flow rate of water, wide of planting tube, temperature of inlet water of planting tube, and slope of planting tube. The result show, cooling method of heat pump with Shallow Geothermal Energy, volume flow rate of water of 2 (L/min), wide of planting tube of 0.06 (m), temperature of inlet water of planting tube of 16 (°C), and slope of planting tube of 4 % is the best in all level for system. According to the results of optimization, the highest temperature of water of inside planting tube of 21.66 (°C) can be reduced to 17.87 (°C), the highest temperature of air of inside planting tube of 30.65 (°C) can be reduced to 25.14 (°C), and power consumption of planting tube can save 53%. Shallow Geothermal Energy accounts for 43% of the contribution in the saving energy. According to the results of simulating operation, it''s payback period is 5 months, and it can reduce carbon emission by 1,000 (kg) monthly.
Mason, Sean David. "Diffusive gradients in thin films (DGT) as a technique to predict nutrient availability to plants." 2007. http://hdl.handle.net/2440/57973.
Full textThesis (Ph.D.)-- University of Adelaide, School of Earth and Environmental Sciences, 2007.
Books on the topic "Nutrient film technique"
Gilbert, Henry. Hydroponics-nutrient film technique, 1981-1986: 197 citations. Beltsville, Md: U.S. Dept. of Agriculture, National Agricultural Library, 1987.
Find full textGilbert, Henry. Hydroponics/nutrient film technique, 1979-85: 187 citations. Beltsville, Md: U.S Dept. of Agriculture, National Agricultural Library, 1985.
Find full textGilbert, Henry. Hydroponics/nutrient film technique 1982-May 1988: 233 citations. Beltsville, Md: U.S. Dept. of Agriculture, National Agricultural Library, 1988.
Find full textGilbert, Henry. Hydroponics - nutrient film techniques: January 1983 - December 1991. Beltsville, Md: National Agricultural Library, 1992.
Find full textL, Mackowiak C., and United States. National Aeronautics and Space Administration., eds. Effect of carbon dioxide enrichment on radish production using Nutrient Film Technique (NFT). [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textThe ABC of NFT , Nutrient Film Technique : The World's first method of Crop Production without a solid rooting medium. Casper Publications Pty Ltd, 2002.
Find full textHydroponics Nutrient Film Techniques: January 1984-March 1994. Diane Pub Co, 1994.
Find full textBook chapters on the topic "Nutrient film technique"
Graves, Chris J. "The Nutrient Film Technique." In Horticultural Reviews, 1–44. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118060728.ch1.
Full textMohammed, Stephanie. "Introduction to Nutrient Film Technique." In Tomorrow's Agriculture, 7–11. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99202-0_2.
Full textMohammed, Stephanie. "Formula for Nutrient Film Technique." In Tomorrow's Agriculture, 25–26. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99202-0_5.
Full textMohammed, Stephanie. "Nutrient Film Technique Greenhouse Set-up." In Tomorrow's Agriculture, 15–24. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99202-0_4.
Full textGrote, D. "Quantification of Phytophthora Nicotianae on Tomatos Grown with The Nutrient Film Technique (NFT)." In Developments in Plant Pathology, 495–97. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0043-1_109.
Full textMorgan, Lynette. "Hydroponic System - Solution Culture." In Hydroponics and protected cultivation: a practical guide, 61–76. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0061.
Full textMorgan, Lynette. "Hydroponic System - Solution Culture." In Hydroponics and protected cultivation: a practical guide, 61–76. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789244830.0005.
Full textPostma, J. W. M., and W. G. Keltjens. "The use of nutrient-film technique for monitoring Al (Al citrate) effects on root development and nutrient uptake in roots of Triticum aestivum L." In Plant Nutrition, 496–97. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/0-306-47624-x_240.
Full text"Nutrient Film Technique." In Hydroponic Food Production, 145–97. CRC Press, 2012. http://dx.doi.org/10.1201/b12500-7.
Full text"Nutrient Film Technique (NFT)." In Microbial Biotechnology in Horticulture, Vol. 1, 42. CRC Press, 2006. http://dx.doi.org/10.1201/9781482280432-8.
Full textConference papers on the topic "Nutrient film technique"
Shankar, Abhai, Anju K., Giya ., Ajith Abraham, and Jawahar Saud S. "Sewage Treatment using Nutrient Film Technique." In Proceedings of the Advances in Technology, Engineering and Computing A Multinational Colloquium - 2017. Singapore: Research Publishing Services, 2017. http://dx.doi.org/10.3850/978-981-11-0744-3_c17-24.
Full textMashumah, Siti, Muhammad Rivai, and Astria Nur Irfansyah. "Nutrient Film Technique based Hydroponic System Using Fuzzy Logic Control." In 2018 International Seminar on Intelligent Technology and Its Applications (ISITIA). IEEE, 2018. http://dx.doi.org/10.1109/isitia.2018.8711201.
Full textIswanto, Prisma Megantoro, and Alfian Ma'arif. "Nutrient Film Technique for Automatic Hydroponic System Based on Arduino." In 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE). IEEE, 2020. http://dx.doi.org/10.1109/iciee49813.2020.9276920.
Full textHelmy, Marsha Gresia Mahaidayu, Arif Nursyahid, Thomas Agung Setyawan, and Abu Hasan. "Nutrient Film Technique (NFT) hydroponic monitoring system based on wireless sensor network." In 2017 IEEE International Conference on Communication, Networks and Satellite (Comnetsat). IEEE, 2017. http://dx.doi.org/10.1109/comnetsat.2017.8263577.
Full textZaini, A., A. Kurniawan, and A. D. Herdhiyanto. "Internet of Things for Monitoring and Controlling Nutrient Film Technique (NFT) Aquaponic." In 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM). IEEE, 2018. http://dx.doi.org/10.1109/cenim.2018.8711304.
Full textPuno, John Carlo V., Jenskie Jerlin I. Haban, Jonnel D. Alejandrino, Argel A. Bandala, and Elmer P. Dadios. "Design of A Nutrient Film Technique Hydroponics System with Fuzzy Logic Control." In TENCON 2020 - 2020 IEEE REGION 10 CONFERENCE (TENCON). IEEE, 2020. http://dx.doi.org/10.1109/tencon50793.2020.9293749.
Full textMortley, D. G., C. K. Bonsi, W. A. Hill, and C. E. Morris. "Daily Light Period Influences Pod Yield, Harvest Index, and Flowering of Peanut Grown in Nutrient Film Technique." In International Conference On Environmental Systems. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2002. http://dx.doi.org/10.4271/2002-01-2488.
Full textHepriyadi, Selvy Uftovia, Intan Dwi Kurniawati, Wilda Prihasty, and Hendra Cordova. "Analysis of AB nutrient film technique variation towards chlorophyll concentration of lettuce (Lactuca Sativa) on integrated hydroponic system." In ADVANCED INDUSTRIAL TECHNOLOGY IN ENGINEERING PHYSICS. Author(s), 2019. http://dx.doi.org/10.1063/1.5095349.
Full textEridani, Dania, Olivia Wardhani, and Eko Didik Widianto. "Designing and implementing the arduino-based nutrition feeding automation system of a prototype scaled nutrient film technique (NFT) hydroponics using total dissolved solids (TDS) sensor." In 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE). IEEE, 2017. http://dx.doi.org/10.1109/icitacee.2017.8257697.
Full text