Academic literature on the topic 'Numerical modelling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical modelling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Numerical modelling"

1

Jaichuang, Atit, and Wirawan Chinviriyasit. "Numerical Modelling of Influenza Model with Diffusion." International Journal of Applied Physics and Mathematics 4, no. 1 (2014): 15–21. http://dx.doi.org/10.7763/ijapm.2014.v4.247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gerya, Taras V., David Fossati, Curdin Cantieni, and Diane Seward. "Dynamic effects of aseismic ridge subduction: numerical modelling." European Journal of Mineralogy 21, no. 3 (June 29, 2009): 649–61. http://dx.doi.org/10.1127/0935-1221/2009/0021-1931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Higdon, Robert L. "Numerical modelling of ocean circulation." Acta Numerica 15 (May 2006): 385–470. http://dx.doi.org/10.1017/s0962492906250013.

Full text
Abstract:
Computational simulations of ocean circulation rely on the numerical solution of partial differential equations of fluid dynamics, as applied to a relatively thin layer of stratified fluid on a rotating globe. This paper describes some of the physical and mathematical properties of the solutions being sought, some of the issues that are encountered when the governing equations are solved numerically, and some of the numerical methods that are being used in this area.
APA, Harvard, Vancouver, ISO, and other styles
4

Constantin, Albert Titus, Marie Alice Ghitescu, Gheorghe I. Lazar, and Serban Vlad Nicoara. "Fish Ladder Numerical Modelling." Revista de Chimie 69, no. 3 (April 15, 2018): 591–96. http://dx.doi.org/10.37358/rc.18.3.6156.

Full text
Abstract:
The paper presents a 1D numerical modeling of the sanitary water flow passing through a fish ladder designed for the low head step built across the Alb (White) River near Coroiesti Vilage in Hunedoara County. The model aims to evaluate the water velocity spectrum, emphasizing the maximum values, in the cross sections along this passing structure and in the same time to establish the water levels development. In order to reach this goal, the numerical model will consider a sinthetical hydrograph based on the maximum value of the sanitary water flow required on the river.
APA, Harvard, Vancouver, ISO, and other styles
5

Pritchard, M. A., and K. W. Savigny. "Numerical modelling of toppling." Canadian Geotechnical Journal 27, no. 6 (December 1, 1990): 823–34. http://dx.doi.org/10.1139/t90-095.

Full text
Abstract:
Evidence of large-scale toppling deformation has been reported in association with deep-seated landslides affecting mountain slopes along the Beaver River valley, Glacier National Park, British Columbia, Canada. A study has been undertaken to quantitatively investigate the relationship between the toppling mass movement process and the deep-seated landslides; specifically, whether the landslides represent a limiting condition of the toppling process. This is the first of two papers that describe the study. Methods of toppling analysis, including limit-equilibrium, finite-element, and distinct-element methods, are critically reviewed. The distinct-element method emerges as the best technique for modelling both block and flexural modes of toppling. The method is verified by modelling three examples of toppling: a theoretical block topple, a physical model of flexural toppling, and an engineered slope from the Brenda mine near Peachland, British Columbia. The results demonstrate that the Universal Distinct Element Code (UDEC) is capable of modelling both block and flexural types of toppling, that the toppling mass movement process limits to deep-seated planar aswell as curvilinear landslides, and that other landforms such as obsequent scarps and grabens are a manifestation of the toppling process. The research reported here contributes to understanding of the deformation behaviour of engineered slopes and the evolution of natural slopes in rock masses containing pervasive discontinuities. Key words: block toppling, flexural toppling, landslide, numerical modelling, distinct element, DDEC, sackung.
APA, Harvard, Vancouver, ISO, and other styles
6

CUNDALL, PETER A., and ROGER D. HART. "NUMERICAL MODELLING OF DISCONTINUA." Engineering Computations 9, no. 2 (February 1992): 101–13. http://dx.doi.org/10.1108/eb023851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jeremic, Radun. "Numerical modelling of detonation." Vojnotehnicki glasnik 50, no. 2 (2002): 155–65. http://dx.doi.org/10.5937/vojtehg0202155j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lindgren, L. E. "Numerical modelling of welding." Computer Methods in Applied Mechanics and Engineering 195, no. 48-49 (October 2006): 6710–36. http://dx.doi.org/10.1016/j.cma.2005.08.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gyasi Agyemang, Eugene. "Numerical Modelling of Nanopores." ECS Meeting Abstracts MA2024-01, no. 52 (August 9, 2024): 3035. http://dx.doi.org/10.1149/ma2024-01523035mtgabs.

Full text
Abstract:
Nanopores are used for resistive pulse sensing of single analytes and as nanopipette probes for electrochemical scanned probe microscopy. The current-voltage responses of nanopores display a rich range of behaviors, which arise due to interactions between the electric fields (applied potential and surface charges), ion concentrations, and fluid flows.1 To understand these behaviors and interpret experimental results, numerical simulation of the coupled physics are typically performed.2 Yet despite simulations of conical nanopores being commonplace, they remain challenging. As the electric double layer requires resolution of concentrations and electric fields at sub-nm length scales, while concentration enhancements and depletions occur 10s of μm inside the pore simulations must resolve differences over length scales that vary by ~5 orders of magnitude. While various strategies have been employed to make these simulations more manageable including simulating a small portion of the pore, ignoring surface charge beyond a certain distance [others]. However, no consensus exists as to best practices or the impact of these simplifications. In this work we assess the impact of commonly made simplifications and describe best practices for efficient modelling of conical nanopores to ensure accurate results are readily obtained. Suggestions include effective choices of mesh, initial conditions, and the handling of semi-infinite boundaries. (1) Lan, W.-J.; Holden, D. A.; White, H. S. Pressure-Dependent Ion Current Rectification in Conical-Shaped Glass Nanopores. J. Am. Chem. Soc. 2011, 133 (34), 13300–13303. https://doi.org/10.1021/ja205773a. (2) White, H. S.; Bund, A. Ion Current Rectification at Nanopores in Glass Membranes. Langmuir 2008, 24 (5), 2212–2218. https://doi.org/10.1021/la702955k.
APA, Harvard, Vancouver, ISO, and other styles
10

Chenari, B., S. S. Saadatian, and Almerindo D. Ferreira. "Numerical Modelling of Regular Waves Propagation and Breaking Using Waves2Foam." Journal of Clean Energy Technologies 3, no. 4 (2015): 276–81. http://dx.doi.org/10.7763/jocet.2015.v3.208.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Numerical modelling"

1

Lismanis, Brandon. "Numerical Modelling of Dam Breaching." Thèse, Université d'Ottawa / University of Ottawa, 2013. http://hdl.handle.net/10393/24004.

Full text
Abstract:
Until recently, research has been scarce in the field of physical modelling of dam breaching. Over the past few years, teams from the University of Ottawa, Canada, Delft University of Technology, Netherlands, and HR Wallingford, United Kingdom have worked on several physical models to help determine how various dam breaching characteristics vary due to changes in dam geometry and geotechnical properties. The purpose of this project is to use these new experimental data sets to compare and validate the applicability range of two existing pieces of software, MIKE11-DB and BREACH developed by the Danish Hydraulic Institute and National Weather Service, respectively. Several breaching characteristics such as the outflow hydrograph, peak flow, lag time, breaching time, breach width, and water level are considered in the present study. A sensitivity analysis is also performed on the model’s main input parameters and their sensitivity and performance is ranked accordingly.
APA, Harvard, Vancouver, ISO, and other styles
2

Bayliss, Martin. "The numerical modelling of elastomers." Thesis, Cranfield University, 2003. http://hdl.handle.net/1826/87.

Full text
Abstract:
This thesis reports onreview and research work carried out on the numerical analysis of elastomers. The two numerical techniques investigated for this purpose are the finite and boundary element methods. The finite element method is studied so that existing theory is used to develop a finite element code both to review the finite element method as applied to the stress analysis of elastomers and to provide a comparison of results and numerical approach with the boundary element method. The research work supported on in this thesis covers the application of the boundary element method to the stress analysis of elastomers. To this end a simplified regularization approach is discussed for the removal of strong and hypersingularities generated in the system on non-linear boundary integral equations. The necessary programming details for the implementation of the boundary element method are discussed based on the code developed for this research. Both the finite and boundary element codes developed for this research use the Mooney-Rivlin material model as the strain energy based constitutive stress strain function. For validation purposes four test cases are investigated. These are the uni-axial patch test, pressurized thick wall cylinder, centrifugal loading of a rotating disk and the J-Integral evaluation for a centrally cracked plate. For the patch test and pressurized cylinder, both plane stress and strain have been investigated. For the centrifugal loading and centrally cracked plate test cases only plane stress has been investigated. For each test case the equivalent results for an equivalent FEM program mesh have been presented. The test results included in this thesis prove that the FE and BE derivations detailed in this work are correct. Specifically the simplified domain integral singular and hyper-singular regularization approach was shown to lead to accurate results for the test cases detailed. Various algorithm findings specific to the BEM implementation of the theory are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
3

Nejad, Mehdi Afsari. "Numerical modelling of inclined seams." Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hudson, Justin. "Numerical techniques for morphodynamic modelling." Thesis, University of Reading, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Adrian Michael. "Numerical modelling of stratospheric ozone." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Patterson, Robert Iain Arthur. "Numerical modelling of soot formation." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yin, Kek K. "Numerical modelling of agglomerate degradation." Thesis, Aston University, 1992. http://publications.aston.ac.uk/14293/.

Full text
Abstract:
In the processing industries particulate materials are often in the form of powders which themselves are agglomerations of much smaller sized particles. During powder processing operations agglomerate degradation occurs primarily as a result of collisions between agglomerates and between agglomerates and the process equipment. Due to the small size of the agglomerates and the very short duration of the collisions it is currently not possible to obtain sufficiently detailed quantitative information from real experiments to provide a sound theoretically based strategy for designing particles to prevent or guarantee breakage. However, with the aid of computer simulated experiments, the micro-examination of these short duration dynamic events is made possible. This thesis presents the results of computer simulated experiments on a 2D monodisperse agglomerate in which the algorithms used to model the particle-particle interactions have been derived from contact mechanics theories and, necessarily, incorporate contact adhesion. A detailed description of the theoretical background is included in the thesis. The results of the agglomerate impact simulations show three types of behaviour depending on whether the initial impact velocity is high, moderate or low. It is demonstrated that high velocity impacts produce extensive plastic deformation which leads to subsequent shattering of the agglomerate. At moderate impact velocities semi-brittle fracture is observed and there is a threshold velocity below which the agglomerate bounces off the wall with little or no visible damage. The micromechanical processes controlling these different types of behaviour are discussed and illustrated by computer graphics. Further work is reported to demonstrate the effect of impact velocity and bond strength on the damage produced. Empirical relationships between impact velocity, bond strength and damage are presented and their relevance to attrition and comminution is discussed. The particle size distribution curves resulting from the agglomerate impacts are also provided. Computer simulated diametrical compression tests on the same agglomerate have also been carried out. Simulations were performed for different platen velocities and different bond strengths. The results show that high platen velocities produce extensive plastic deformation and crushing. Low platen velocities produce semi-brittle failure in which cracks propagate from the platens inwards towards the centre of the agglomerate. The results are compared with the results of the agglomerate impact tests in terms of work input, applied velocity and damage produced.
APA, Harvard, Vancouver, ISO, and other styles
8

Mate, Marc. "Numerical Modelling of Wood Pyrolysis." Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-206852.

Full text
Abstract:
In this project, a numerical model describing the reaction mechanism and the mass and energy transport in wood pyrolysis is studied. The applicability of the model in predicting actual biomass pyrolysis assessed by comparing the model to TGA experimental measurements. The comparison to experiments is done in relation to the mass loss characteristics of chips of varying sizes. The mass loss is of interest as it is a variable necessary in the coupling of reactor and particle models. Three reaction models were simulated and results compared to experimental data, namely, the reaction model developed by Park et al. [Combustion and Flame 157 (2010) 481-494], a simple multicomponent parallel reaction model, and a competitive reaction model. The model of Park et al. did not fit with the experimental data as it underestimates the char yield. The parallel reaction model, which is based on hemicellulose and cellulose decomposition to char and volatiles, also did not agree with the experiments even when fitting the parameters to the data. The downward trend of char yield with increasing temperature suggests there exists competition between the volatiles and char in wood pyrolysis. The proposed competitive reaction model which consists of a hemicellulose reaction to volatiles and a cellulose reaction to volatiles and char is in good agreement with the experimental data. The mass loss characteristics in the experimental temperature range is fairly predicted within reasonable accuracy.
APA, Harvard, Vancouver, ISO, and other styles
9

Juřena, Tomáš. "Numerical Modelling of Grate Combustion." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-233992.

Full text
Abstract:
Předkládaná práce je zaměřena na numerické modelování spalování tuhých paliv na roštu metodami výpočtové dynamiky tekutin (CFD). Jelikož výsledky CFD simulací roštového spalování závisí na kvalitě vstupních dat, která zahrnují i údaje o teplotě, hmotnostním toku a chemickém složení spalin vystupujících z lože, pozornost je věnována především procesům, probíhajícím v loži během spalování na roštu. Velká část práce je věnována vývoji spolehlivého modelu spalování v sypaných ložích, jelikož může napomoci zkvalitnit výsledky simulací i rozšířit znalosti principů spalování tuhých paliv v sypaných ložích. V rámci práce byl vyvinut jednorozměrný nestacionární model spalování v experimentálním reaktoru a implementován do počítačového programu GRATECAL 1.3 včetně grafického uživatelského rozhraní. Zvláštní důraz byl kladen na konzervativnost modelu. Proto byla vyvinuta metoda pro kontrolu hmotnostní a energetické bilance systému a následně aplikována v řadě studií, v rámci nichž byly odhaleny některé chyby týkající se definic zdrojových členů, které byly převzaty z literatury a opraveny. Pomocí modelu byla provedena analýza šíření čela sušení a reakce hoření koksu po výšce lože pšeničné slámy. Na základě výsledků těchto analýz bylo doporučeno zahrnout i modelování změny porozity částic paliva, aby šířka reakční zóny byla predikována korektně v případě, že je uvažována změna porozity celého lože. Rovněž vyvinutá bilanční metoda byla použita k analýze vlivu kritérií konvergence na hmotnostní a energetickou nerovnováhu simulovaného systému. Bylo zjištěno, že škálovaná rezidua rovnic všech veličin by měla poklesnout aspoň na hodnotu $10^{-6}$, aby bylo dosaženo nízké hmotnostní a energetické nerovnováhy a tudíž uspokojivě přesných výsledků ze simulací v loži. Druhá část práce je věnována vývoji a implementaci knihovny uživatelem definovaných funkcí pro komerční CFD nástroj ANSYS FLUENT, které slouží k propojení modelu lože s modelem komory reálné spalovací jednotky, aby byla umožněna dynamická změna okrajových podmínek na vstupu do komory v závislosti na výstupech ze simulací v loži. Vytvořené rozhraní pro propojení těchto dvou modelů je dostatečně obecné pro aplikaci na širokou škálu modelů roštových kotlů. Popsané výsledky přispívají k lepšímu porozumění numerickému modelování spalování na roštu, a to zejména ve fázi sestavování numerického modelu a nastavení parametrů řešiče pro kontrolu konvergence.
APA, Harvard, Vancouver, ISO, and other styles
10

Lu, Zhengxin. "Modelling geotechnical uncertainty using numerical modelling techniques : Kuldip Narbheshankar Modha." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446386.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Numerical modelling"

1

Miidla, Peep. Numerical modelling. Rijeka, Croatia: InTech, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fischer, C. T. Numerical modelling of impedance spectra. Manchester: UMIST, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schmidt, Wolfram. Numerical Modelling of Astrophysical Turbulence. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-01475-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

O’Brien, James J., ed. Advanced Physical Oceanographic Numerical Modelling. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-017-0627-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krawczyk, Andrzej. Numerical modelling of eddy currents. Oxford: Clarendon Press, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Anne, De Cogan, ed. Applied numerical modelling for engineers. Oxford: Oxford University Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Andrzej, Wakulicz, ed. Numerical analysis and mathematical modelling. Warszawa: PWN-Polish Scientific Publishers, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pulkkinen, Erkki. Numerical Modelling of Ice Behaviour. Oulu: Univeristy of Oulu, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1955-, Saanouni Khémais, ed. Numerical modelling in damage mechanics. Sterling, VA: Kogan Page Science, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yin, Kek Kiong. Numerical modelling of agglomerate degradation. Birmingham: Aston University. Department of Civil Engineering, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Numerical modelling"

1

Waugh, Rachael C. "Numerical Modelling." In Development of Infrared Techniques for Practical Defect Identification in Bonded Joints, 77–95. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22982-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pesavento, Francesco, Agnieszka Knoppik, Vít Šmilauer, Matthieu Briffaut, and Pierre Rossi. "Numerical Modelling." In Thermal Cracking of Massive Concrete Structures, 181–255. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76617-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leppäranta, Matti. "Numerical modelling." In The Drift of Sea Ice, 259–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-04683-4_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vyzikas, Thomas, and Deborah Greaves. "Numerical Modelling." In Wave and Tidal Energy, 289–363. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119014492.ch8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Huilgol, Raja R., and Georgios C. Georgiou. "Numerical Modelling." In Fluid Mechanics of Viscoplasticity, 323–86. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98503-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Huilgol, Raja R. "Numerical Modelling." In Fluid Mechanics of Viscoplasticity, 225–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45617-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Towers, O. L. "Process modelling." In Numerical Techniques, 163–226. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003422013-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

McLean, M. "Material behaviour modelling." In Numerical Techniques, 126–62. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003422013-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Caldwell, J., and Y. M. Ram. "Numerical Cam Design." In Mathematical Modelling, 243–60. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2201-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bruner de Miranda, Luiz, Fernando Pinheiro Andutta, Björn Kjerfve, and Belmiro Mendes de Castro Filho. "Numerical Hydrodynamic Modelling." In Fundamentals of Estuarine Physical Oceanography, 439–80. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3041-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Numerical modelling"

1

Kozák, Vladislav. "Cohesive Zone Modelling." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

UTYUZH, O. V., G. WILK, and Z. WŁODARCZYK. "NUMERICAL MODELLING OF CORRELATIONS." In Proceedings of the XXXI International Symposium. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778048_0056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Magnucka-Blandzi, E. "Mathematical and numerical modelling." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gale, J. D. "Modelling the thermal expansion of zeolites." In Neutrons and numerical methods. AIP, 1999. http://dx.doi.org/10.1063/1.59485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

French, S. A., and C. R. A. Catlow. "Molecular modelling of organic superconducting salts." In Neutrons and numerical methods. AIP, 1999. http://dx.doi.org/10.1063/1.59479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Babovsky, Hans. "Numerical Modelling of Gelating Aerosols." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Venturino, Ezio, and Andrea Ghersi. "Modelling Crop Biocontrol by Wanderer Spiders." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dular, Matevzˇ, and Olivier Coutier-Delgosha. "Numerical Modelling of Cavitation Erosion." In ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55034.

Full text
Abstract:
The goal of the work is to develop an expert system for monitoring and control of cavitation in hydraulic machines and to research the possibility of cavitation erosion prediction using CFD tools only. The geometry in question is a simple single hydrofoil, which is exposed to the developed cavitating flow at different flow conditions. The work was divided in more parts: numerical simulation of cavitating flow, experimental evaluation of the simulation, measurements of cavitation erosion, development of cavitation erosion model and finally the prediction of cavitation erosion using solely CFD. A study of erosion effects of cavitation on simple single hydrofoil configurations in a cavitation tunnel was made. A thin copper foil, applied to the surface of the hydrofoils, was used as an erosion sensor. A pit-count method was used to evaluate the damage. The cavitation phenomenon on hydrofoils at different flow conditions (system pressure, flow velocity) was observed. The erosion model is based on the physical description of different phenomena (cavitation cloud implosion, pressure wave emission and its attenuation, micro-jet formation and finally pit formation), which are involved in the process of pit formation. The cavitating flow was simulated using an “in house” CFD code which uses barotropic state law. The code was previously tested on numerous experiments. For the present case the predictions of velocity profiles and pressure evolutions in the vicinity of the hydrofoil were compared to experimentally measured data. In all cases a very good correlation was obtained. The erosion model was implemented into the code. It used values of local pressure, local void fraction and flow velocity to determine the magnitude of damage at a certain point. The results of prediction were compared to the experimentally measured damage on the hydrofoil and it was shown that it is possible, for this simple case, to use solely CFD tools to predict cavitation erosion evolution in time, final extent and final magnitude with a very good accuracy.
APA, Harvard, Vancouver, ISO, and other styles
9

Rees, P. E., Craig D. Stacey, Christopher Stace, and Roy G. Clarke. "Numerical modelling of laser filamentation." In High Power Lasers: Technology and Systems, Platforms, Effects III, edited by David H. Titterton, Harro Ackermann, and Willy L. Bohn. SPIE, 2019. http://dx.doi.org/10.1117/12.2538461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McGuinness, Mark J., Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Mathematical Modelling of Extremes." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241364.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Numerical modelling"

1

Krzanowsky, R. M., R. K. Singhal, and N. H. Wade. Numerical modelling of material diggability. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Strain, John. Numerical Modelling of Crystal Growth. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada271206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cohen, R. H., B. I. Cohen, and P. F. Dubois. Comprehensive numerical modelling of tokamaks. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6205417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prosperetti, A., and A. Sangani. Numerical and physical modelling of bubbly flow phenomena. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/7200325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

MLS, Jiří, and Tomáš ONDOVČIN. Tidal oscillations of groundwater: Observation and numerical modelling. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Froment, Marouchka, Philippe Lognonné, Taichi Kawaruma, Carene Larmat, Esteban Rougier, Zhou Lei, Bryan Jeffry Euser, and Sharon Kedar. Numerical modelling of impact seismic signals on regolith. Office of Scientific and Technical Information (OSTI), June 2019. http://dx.doi.org/10.2172/1530752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sangani, A. S. Numerical and physical modelling of bubbly flow phenomena. Office of Scientific and Technical Information (OSTI), February 1992. http://dx.doi.org/10.2172/5808965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hsu, Hsiao-ming, and Robert C. Beardsley. Numerical Modelling of the Continental Shelf Bottom Boundary Layer. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada310672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prudencio, E. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/923310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Darby, Stephen E., and Colin R. Thorne. Bank Erosion Algorithm for Numerical Modelling of Channel Width Adjustments. Fort Belvoir, VA: Defense Technical Information Center, October 1994. http://dx.doi.org/10.21236/ada286553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography