Dissertations / Theses on the topic 'Numerical modeling'

To see the other types of publications on this topic, follow the link: Numerical modeling.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Numerical modeling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Lin, Yuan. "Numerical modeling of dielectrophoresis." Licentiate thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vedin, Jörgen. "Numerical modeling of auroral processes." Doctoral thesis, Umeå University, Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.

Full text
Abstract:

One of the most conspicuous problems in space physics for the last decades has been to theoretically describe how the large parallel electric fields on auroral field lines can be generated. There is strong observational evidence of such electric fields, and stationary theory supports the need for electric fields accelerating electrons to the ionosphere where they generate auroras. However, dynamic models have not been able to reproduce these electric fields. This thesis sheds some light on this incompatibility and shows that the missing ingredient in previous dynamic models is a correct description of the electron temperature. As the electrons accelerate towards the ionosphere, their velocity along the magnetic field line will increase. In the converging magnetic field lines, the mirror force will convert much of the parallel velocity into perpendicular velocity. The result of the acceleration and mirroring will be a velocity distribution with a significantly higher temperature in the auroral acceleration region than above. The enhanced temperature corresponds to strong electron pressure gradients that balance the parallel electric fields. Thus, in regions with electron acceleration along converging magnetic field lines, the electron temperature increase is a fundamental process and must be included in any model that aims to describe the build up of parallel electric fields. The development of such a model has been hampered by the difficulty to describe the temperature variation. This thesis shows that a local equation of state cannot be used, but the electron temperature variations must be descibed as a nonlocal response to the state of the auroral flux tube. The nonlocal response can be accomplished by the particle-fluid model presented in this thesis. This new dynamic model is a combination of a fluid model and a Particle-In-Cell (PIC) model and results in large parallel electric fields consistent with in-situ observations.

APA, Harvard, Vancouver, ISO, and other styles
3

Xie, Jinsong. "Numerical modeling of tsunami waves." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27936.

Full text
Abstract:
This thesis provides a synthetic understanding and an extensive analysis on megathrust earthquake generated tsunamis, with emphasis on the application of numerical modeling. In the present thesis, the tsunami characteristics are first depicted as a special hydrodynamic phenomenon. Further, a detailed literature review on the recent developments in tsunami numerical modeling techniques and on their applications is presented. A common approach in modeling the generation, propagation and inundation of tsunamis is discussed and used in the thesis. Based on the assumption of a vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake, and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. A general analysis of the Indian Ocean Tsunami of December 26th, 2004 is provided; and tsunami generation and propagation is conducted for this tsunami, as well as for tsunamis occurring in the Arabian Sea and Northwest Pacific Ocean, near the coast of the Vancouver Island. The analyses are based on geological and seismological parameters collected by the author. In this paper the author uses the collected bathymetry and earthquake information, plus tide gauge records and field survey results, and focuses on the theoretical assumptions, validation and limitation of the existing numerical models. Numerical simulations are performed using MIRONE, a tsunami modelling software developed based on the nonlinear shallow water theory. Through numerical modeling of three tsunami scenarios, e.g. December 26, 2004 Indian Ocean Tsunami, November 28, 1945 Arabian Sea Tsunami and the potential Cascadia Tsunami, a vivid overview of the tsunami features is provided as discussed. Generally, the results fairly agree with the observed data. The GEOWARE software is used to compute the tsunami travel time necessary to calibrate the results from MIRONE, using different numerical techniques. Several sensitivity analyses are conducted so that one can understand how oceanic topography affects tsunami wave propagation, determine how smoothing the topography affects the simulated tsunami travel time, and interpret the tsunami wave-height patterns as seen in the model simulations. The model can predict reasonably the tsunami behaviour, and are thus useful for tsunami warning system (tsunami mitigation and preparedness); and coastal population and industry can prepare for such possible catastrophic events.
APA, Harvard, Vancouver, ISO, and other styles
4

Pak, Ali. "Numerical modeling of hydraulic fracturing." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21618.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vedin, Jörgen. "Numerical modeling of auroral processes /." Umeå : Dept. of Physics, Umeå Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johansson, Christer. "Numerical methods for waveguide modeling /." Stockholm : Numerical Analysis and Computing Science (NADA), Stockholm university, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Chu-p'yŏ. "Numerical modeling of MILD combustion." Aachen Shaker, 2008. http://d-nb.info/988365464/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DePaoli, Laura L. (Laura Lynn) 1975. "Numerical modeling of wetland hydrodynamics." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nigam, Mats S. (Mats Sandje) 1970. "Numerical modeling of suspension flows." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stathas, Alexandros. "Numerical modeling of earthquake faults." Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0053.

Full text
Abstract:
Lors d’un glissement sismique, l’énergie libérée par la décharge élastique des blocs de terre adjacente peut être séparée en trois parties principales : L’énergie qui est rayonnée à la surface de la terre (_ 5% du budget énergétique total), l’énergie de fracture pour la création de nouvelles surfaces de faille et enfin, l’énergie dissipée à l’intérieur d’une région de la faille, d’épaisseur finie, que l’on appelle le “fault gouge ". Cette région accumule la majorité du glissement sismique. Estimer correctement la largeur de fault gouge est d’une importance capitale pour calculer l’énergie dissipée pendant le séisme, le comportement frictionnel de la faille et les conditions de nucléation de la faille sous la forme d’un glissement sismique ou asismique.Dans cette thèse, approches différentes de régularisation ont été explorées pour l’estimation de la largeur de localisation de la zone de glissement principal de la faille pendant le glissement cosmique. Celles-ci comprennent l’application de la viscosité et des couplages multiphasiques dans le continuum classique de Cauchy, et l’introduction d’un continuum micromorphe de Cosserat du premier ordre. Tout d’abord, nous nous concentrons sur le rôle de la régularisation visqueuse dans le contexte des analyses dynamiques, en tant que méthode de régularisation de la localisation des déformations. Nous étudions le cas dynamique d’un continuum de Cauchy classique adoucissant à la déformation et durcissant à la vitesse de déformation. En appliquant l’analyse de stabilité de Lyapunov, nous montrons que l’introduction de la viscosité est incapable d’empêcher la localisation de la déformation sur un plan mathématique et la dépendance de du maillage des éléments finis.Nous effectuons des analyses non linéaires en utilisant le continuum de Cosserat dans le cas de grands déplacements par glissement sismique de fault gouge par rapport à sa largeur. Le continuum de Cosserat nous permet de rendre compte de l’énergie dissipée pendant un séisme et du rôle de la microstructure dans l’évolution de la friction de la faille. Nous nous concentrons sur l’influence de la vitesse de glissement sismique sur le mécanisme d’assidument frictionnel de la pressurisation thermique. Nous remarquons que l’influence des conditions aux limites dans la diffusion du fluide interstitiel à l’intérieur de fault gouge, conduit à une reprise du frottement après l’affaiblissement initial. De plus, un mode de localisation de déformation en mouvement est présent pendant le cisaillement de la couche, introduisant des oscillations dans la réponse du frottement. Ces oscillations augmentent le contenu spectral du séisme. L’introduction de la viscosité dans le mode ci-dessus, conduit à un comportement de "rate and state" sans l’introduction d’une variable interne. Nos conclusions sur le rôle de la pressurisation thermique pendant le cisaillement de fault gouge sont en accord qualitatif avec les nouveaux résultats expérimentaux disponibles. Enfin, sur la base des résultats numériques, nous étudions les hypothèses du modèle actuel de glissement sur un plan mathématique proposent à la littérature. Le rôle des conditions aux limites et du mode de localisation des déformations dans l’évolution du frottement de la faille pendant le glissement sismique. Le cas d’un domaine délimité et d’un mode de localisation de la déformation en mouvement est examiné dans le contexte d’un glissement sur un plan mathématique sous pressurisation thermique. Nos résultats étoffent le modèle original dans un contexte plus général
During coseismic slip, the energy released by the elastic unloading of the adjacent earth blocks can be separated in three main parts: The energy that is radiated to the earth’s surface (_ 5% of the whole energy budget), the fracture energy for the creation of new fault surfaces and finally, the energy dissipated inside a region of the fault, with finite thickness, which is called the fault gauge. This region accumulates the majority of the seismic slip. Estimating correctly the width of the fault gauge is of paramount importance in calculating the energy dissipated during the earthquake, the fault’s frictional response, and the conditions for nucleation of the fault in the form of seismic or aseismic slip.In this thesis different regularization approaches were explored for the estimation of the localization width of the fault’s principal slip zone during coseismic slip. These include the application of viscosity and multiphysical couplings in the classical Cauchy continuum, and the introduction of a first order micromorphic Cosserat continuum. First, we focus on the role of viscous regularization in the context of dynamical analyses, as a method for regularizing strain localization. We study the dynamic case for a strain softening strain-rate hardening classical Cauchy continuum, and by applying the Lyapunov stability analysis we show that introduction of viscosity is unable to prevent strain localization on a mathematical plane and mesh dependence.We perform fully non linear analyses using the Cosserat continuum under large seismic slip displacements of the fault gouge in comparison to its width. Cosserat continuum provides us with a proper account of the energy dissipated during an earthquake and the role of the microstructure in the evolution of the fault’s friction. We focus on the influence of the seismic slip velocity to the weakening mechanism of thermal pressurization. We notice that the influence of the boundary conditions in the diffusion of the pore fluid inside the fault gouge, leads to frictional strength regain after initial weakening. Furthermore, a traveling strain localization mode is present during shearing of the layer introducing oscillations in the frictional response. Such oscillations increase the spectral content of the earthquake. Introduction of viscosity in the above mode, leads to a rate and state behavior without the introduction of a specific internal state variable. Our conclusions about the role of thermal pressurization during shearing of the fault gouge, agree qualitatively with newly available experimental results.Finally, based on the numerical findings we investigate the assumptions of the current model of a slip on a mathematical plane, in particular the role of the boundary conditions and strain localization mode in the evolution of the fault’s friction during coseismic slip. The case of a bounded domain and a traveling strain localization mode are examined in the context of slip on a mathematical plane under thermal pressurization. Our results expand the original model in a more general context
APA, Harvard, Vancouver, ISO, and other styles
11

Zhou, Jun. "Numerical Modeling of Ductile Fracture." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1384774266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Huang, Chuanshi. "NUMERICAL MODELING OF HYDROGEN EMBRITTLEMENT." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1588597670254056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wood, Tamara Michelle. "Numerical modeling of estuarine geochemistry /." Full text open access at:, 1993. http://content.ohsu.edu/u?/etd,240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

McGrath, Thomas Peter. "Numerical modeling of multiphase explosions." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8825.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2008.
Thesis research directed by: Dept. of Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
15

Hadi, Jafari Pantea. "Numerical Modeling of Cyclone Gasification." Licentiate thesis, Luleå tekniska universitet, Energivetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-70753.

Full text
Abstract:
The current work aims to make a numerical model for an engineering design of anindustrial cyclone gasifier called as the Hortlax plant with capacity of providing 2.4 (MWth)of district heating as well as 1.3 (MW) of electricity. The model is needed to be able not onlyto predict the gasifier flow field with a suitable accuracy but also to investigate a largenumber of design alternatives with limited computer resources.The time-dependent single-phase flow field in a cyclone at first was simulated by usingseveral popular turbulence models including standard k-epsilon and SST models withcurvature correction, SSG-RSM and LES Smagorinsky models. The goal was to find the mostappropriate turbulence modeling as a foundation for the further works. Averaged andfluctuating parts of the simulated velocity component profiles from different turbulencemodels were compared with each other and the LDA measurements from literature.Comparison showed that the SSG-RSM can be the best alternative for the future simulations.An isothermal time-dependent Eulerian-Lagrangian particle modeling was implemented asthe second step for simulating particle-laden cold flow in the Hortlax gasifier. The impacts ofparticle-to-gas coupling on the pressure and velocity of the flow and particles motion insidethe gasifier were studied. The model could reasonably predict the particle tracking aspresented in the experimental results from the literature. High temperature of the gas flowinside the gasifier had quite important effects on the reduction of swirl and turbulenceintensity especially in the core region, pressure and particle behaviors. However, the presenceof solid particles did not influence the swirl intensity and turbulence significantly.The Hortlax gasifier was moreover experimentally studied in order to optimize thegasification plant efficiency, and understand the effect of operating. The air stoichiometricratio was varied to find the optimal condition for the plant. Moreover, the gasification processwas modeled using adiabatic thermodynamic equilibrium to see how far the process is fromequilibrium condition. Five different commercially available fuels were also studied usingequilibrium calculations. It was found that the gasifier is needed to work under the processtemperature of 1000 °C and stoichiometric ratio of 0.3, since at higher temperature the ash ismelted that is seriously avoided in the cyclone gasifier. Accordingly, the amount of undesiredmethane in the produced gas is quite high and the gasification efficiency is relatively lowaround 56%. Although the process does not reach equilibrium, it was seen thatthermodynamic equilibrium could compare the fuels performance almost close to theexperiments.
APA, Harvard, Vancouver, ISO, and other styles
16

De, Martino Giuseppe. "Multi-Value Numerical Modeling for Special Di erential Problems." Doctoral thesis, Universita degli studi di Salerno, 2015. http://hdl.handle.net/10556/1982.

Full text
Abstract:
2013 - 2014
The subject of this thesis is the analysis and development of new numerical methods for Ordinary Di erential Equations (ODEs). This studies are motivated by the fundamental role that ODEs play in applied mathematics and applied sciences in general. In particular, as is well known, ODEs are successfully used to describe phenomena evolving in time, but it is often very di cult or even impossible to nd a solution in closed form, since a general formula for the exact solution has never been found, apart from special cases. The most important cases in the applications are systems of ODEs, whose exact solution is even harder to nd; then the role played by numerical integrators for ODEs is fundamental to many applied scientists. It is probably impossible to count all the scienti c papers that made use of numerical integrators during the last century and this is enough to recognize the importance of them in the progress of modern science. Moreover, in modern research, models keep getting more complicated, in order to catch more and more peculiarities of the physical systems they describe, thus it is crucial to keep improving numerical integrator's e ciency and accuracy. The rst, simpler and most famous numerical integrator was introduced by Euler in 1768 and it is nowadays still used very often in many situations, especially in educational settings because of its immediacy, but also in the practical integration of simple and well-behaved systems of ODEs. Since that time, many mathematicians and applied scientists devoted their time to the research of new and more e cient methods (in terms of accuracy and computational cost). The development of numerical integrators followed both the scienti c interests and the technological progress of the ages during whom they were developed. In XIX century, when most of the calculations were executed by hand or at most with mechanical calculators, Adams and Bashfort introduced the rst linear multistep methods (1855) and the rst Runge- Kutta methods appeared (1895-1905) due to the early works of Carl Runge and Martin Kutta. Both multistep and Runge-Kutta methods generated an incredible amount of research and of great results, providing a great understanding of them and making them very reliable in the numerical integration of a large number of practical problems. It was only with the advent of the rst electronic computers that the computational cost started to be a less crucial problem and the research e orts started to move towards the development of problem-oriented methods. It is probably possible to say that the rst class of problems that needed an ad-hoc numerical treatment was that of sti problems. These problems require highly stable numerical integrators (see Section ??) or, in the worst cases, a reformulation of the problem itself. Crucial contributions to the theory of numerical integrators for ODEs were given in the XX century by J.C. Butcher, who developed a theory of order for Runge-Kutta methods based on rooted trees and introduced the family of General Linear Methods together with K. Burrage, that uni ed all the known families of methods for rst order ODEs under a single formulation. General Linear Methods are multistagemultivalue methods that combine the characteristics of Runge-Kutta and Linear Multistep integrators... [edited by Author]
XIII n.s.
APA, Harvard, Vancouver, ISO, and other styles
17

Villa, A. "Three dimensional geophysical modeling : from physics to numerical simulation." Doctoral thesis, Università degli Studi di Milano, 2010. http://hdl.handle.net/2434/148440.

Full text
Abstract:
The main objective of this thesis is to provide a comprehensive numerical tool for the three-dimensional simulation of sedimentary basins. We have used a volume averaging technique to obtain a couple of basin-scale mathematical models. We have used some innovative numerical techniques to deal with such models. A multi-fluid implicit tracking technique is developed and integrated with a Stokes solver that is robust with respect to the variations of the coefficients. The movement of the basin boundaries and the evolution of the faults are treated with an Ale and a Finite Volume scheme respectively. Also some mesh refinement methods are used to guarantee a sufficient accuracy. The numerical experiments show a good qualitative agreement with the measured geometry of the sedimentary layers. (Pubblicata - vedi http://hdl.handle.net/2434/148441)
APA, Harvard, Vancouver, ISO, and other styles
18

Peeker, Eerik. "Extended numerical modeling of fatigue behavior /." Lausanne : EPFL, 1997. http://library.epfl.ch/theses/?nr=1617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Kanzaki, Cabrera Takeichi. "Numerical modeling of anisotropic granular media." Doctoral thesis, Universitat de Girona, 2013. http://hdl.handle.net/10803/133834.

Full text
Abstract:
Granular materials are multi-particle systems involved in many industrial process and everyday life. The mechanical behavior of granular media such as sand, coffee beans, planetary rings and powders are current challenging tasks. In the last years, these systems have been widely examined experimentally, analytically and numerically, and they continue producing relevant and unexpected results. Despite the fact that granular media are often composed of grains with anisotropic shapes like rice, lentils or pills, most experimental and theoretical studies have concerned spherical particles. The aim of this thesis has been to examine numerically the behavior of granular media composted by spherical and non-spherical particles. Our numerical implementations have permitted the description of the macroscopic properties of mechanically stable granular assemblies, which have been experimentally examined in a framework of the projects "Estabilidad y dinámica de medios granulares anisótropos" (FIS2008- 06034-C02-02) University of Girona and "Interacciones entre partículas y emergencia de propiedades macroscópicas en medios granulares" (FIS2008-06034-C02-01) University of Navarra
Els materials granulars són sistemes de moltes partícules implicats en diversos processos industrials i en la nostra vida quotidiana. El comportament mecànic de conjunts granulars, com la sorra, grans de cafè, anells o pols planetàries, representa actualment un repte per a la ciència. En els últims anys aquests sistemes s’han estudiat àmpliament de forma experimental, analítica i numèrica. De totes maneres, avui dia es continuen obtenint resultats rellevants, i en moltes ocasions, inesperats. Malgrat el fet que els materials granulars sovint estan compostos per grans amb forma anisotròpica, com l’arròs, les llenties o les píndoles, la majoria dels estudis experimentals i teòrics se centren en partícules esfèriques. L’objectiu d’aquesta tesi ha estat analitzar numèricament el comportament dels mitjans granulars compostos per partícules esfèriques i no esfèriques. Els mètodes numèrics implementats han permès la descripció de les propietats macroscòpiques de piles i columnes granulars, que s’han estudiat experimentalment en el marc dels projectes "Estabilidad y dinámica de medios granulares anisótropos" (FIS2008-06034-C02- 02) de la Universitat de Girona i "Interacciones entre partículas y emergencia de propiedades macroscópicas en medios granulares" (FIS2008-06034-C02- 01) de la Universitat de Navarra
APA, Harvard, Vancouver, ISO, and other styles
20

Christy, Clifford T. "Numerical modeling of a propagating crack." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA272604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ozkaya, Melike. "Numerical Modeling Of Kizildere Geothermal Field." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12609142/index.pdf.

Full text
Abstract:
This research is dedicated to make a foreseeing of the future state of the Kizildere Geothermal Field in order to suggest acceptable solutions to the current problems. The non-isothermal mechanism of the geothermal field is simulated for the pressure and temperature variables. For this purpose, a finite element model (696 four-nodal elements with 750 nodes) of the field is formulated by considering the geological conditions and the present wells already drilled in the area. Then the model is calibrated to the field for the natural state by using appropriate physical properties, boundary and initial conditions. Comparison of the simulated and the observed pressures and temperatures has emphasized a very successful calibration study. After the calibration, response of the field to the production and injection for the period of 1984-2006 has been simulated by applying a history matching study. History matching runs have yielded very good correlations between the observed and the computed values of the pressure and temperature variables. The calibrated and history matched model has been applied to the field to simulate the future performance of the field for different production and injection scenarios. In the first scenario the field is simulated for the next 10-year production period keeping the on-going production conditions. Then, the influence of the production of two new wells has been investigated in two different scenarios. In the forth scenario, the effect of injection from one of the production wells has been simulated.
APA, Harvard, Vancouver, ISO, and other styles
22

Polat, Can. "Numerical Modeling Of Balcova Geothermal Field." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12611526/index.pdf.

Full text
Abstract:
The aim of this study is to construct a numerical reservoir model for Balç
ova geothermal field, which is located in the izmir bay area of the Aegean coast. A commercial numerical simulation program, TOUGH2 was utilized with a graphical interface, PETRASIM to model the Balç
ova geothermal field. Natural state modeling of the field was carried out based on the conceptual model of the field, then history matching of production &ndash
injection practices of the field was established for the period of 1996 &ndash
2008. The final stage of modeling was the future performance prediction of the field by using three different Scenarios. In Scenario-1, production and injection rates in year 2008 were repeated for 20 years. In Scenario-2, production and injection rates in year 2008 were repeated for the first 3 years, then they were increased at every 3 years. In Scenario-3, a new well (BT-1) that is assumed to be drilled to 1000 m depth is added for injecting some portion of water that was injected through BD-8 well. In that scenario, similar to Scenario-2, production and injection rates in year 2008 were repeated during the first 3 years, and then the rates of these wells (except the new well) were increased every three years. Analysis of the results indicated that in Scenario-2, compared to Scenario-1, both the temperatures of deep wells located at the eastern portion of the field (BD-6, BD-2, BD-14, BD-9, BD-11, BD-12) and the temperatures of deep wells located at the western portion (BD-4, BD-15, BD-7, BD-5) decreased more. In Scenario-3, compared to Scenario-1, the deep wells located at the eastern side experienced less temperature drops while the deep wells located at the western side experienced higher temperature drops. Such temperature differences were not encountered in shallow wells. No significant changes in bottom hole pressures of deep wells occurred in all three scenarios. On the other hand, shallow wells, especially B-10 and B-5, responded to Scenario-2 and Scenario-3 as decrease in bottom hole pressures.
APA, Harvard, Vancouver, ISO, and other styles
23

Gunay, Emre. "Numerical Modeling Of Edremit Geothermal Field." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614890/index.pdf.

Full text
Abstract:
The purpose of this study is to examine the geothermal potential, sustainability, and reinjection possibility of Edremit geothermal field. In order to investigate this, a numerical model consisting of a hot and cold water aquifer system is established. A two dimensional cross sectional model is set to simulate this geothermal system. Different pressure and temperature values are applied to the nodes at the boundaries to perform a steady state calibration which minimizes the computed results and observed values obtained from the near well logs. After the calibration, three alternative scenarios are proposed and the response of the pressure and temperature to these conditions is evaluated. At first the water is pumped from the wells of Yagci, Derman, Entur and ED-3 seperately at a mass rate of 5 kg/s and energy rate of 4.182 x 105 J/s. Then, in scenario 2 the water is pumped at the same rate from all the wells mentioned in the first scenario together. For the third scenario another well is opened to the geothermal system and 80% of the pumped water (temperature being 200C) is injected to the system from the wells while all the wells mentioned are working. The results of these scenarios are utilized to evaluate the reservoir in terms of its response to different production and reinjection conditions. Interpretation of the reservoir response in view of the pressure and temperature declines emphasize that such a simulation study can be applied to assess potential and sustainability of the geothermal systems.
APA, Harvard, Vancouver, ISO, and other styles
24

Guo, Qingchao. "Numerical modeling of suspended sediment transport." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0019/NQ54671.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pike, Joshua Dennis. "Numerical modeling of soil-geosynthetic interaction." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5290.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2007.
Title from document title page. Document formatted into pages; contains xii, 94 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 93-94).
APA, Harvard, Vancouver, ISO, and other styles
26

Lee, Wayne Y. "Numerical modeling of blast-induced liquefaction /." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1431.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Abed, Ayman A. "Numerical modeling of expansive soil behavior /." Stuttgart : IGS, 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016534652&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ståhl, Martin. "Numerical modeling to complement wood tests." Thesis, Uppsala universitet, Tillämpad mekanik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-207269.

Full text
Abstract:
Pressure tests on wood have been conducted to determine its properties. The resultswere not as expected, and it is therefore difficult to obtain the parameters of thewood. This project examines how a specific defect in the wood sample affects theresult.The pressure test is simulated with numerical modeling. In the numerical model thecube’s top side is non-parallel with the bottom side, it is in other words somewhattilted.The results from the model agreed with the findings from some pressure tests. Withthose we can easily calculate the wood's properties. For other pressure tests, otherfactors might need to be examined before we can draw any conclusions.
Tryckprover på trä har utförts för att ta reda dess egenskaper. Resultaten blev intevad som förväntades, och det blir därför svårt att få fram träets egenskaper. Dettaprojekt undersöker hur en viss defekt i träprovet påverkar resultatet.Tryckprovet simuleras med numerisk modellering. I modellen är kubens toppsida inteparallell med bottensidan, den är med andra ord något sned.Resultatet från modellen stämde med resultat från vissa tryckprover. Då kan man fåfram träets egenskaper. För andra tryckprover kan andra faktorer behöva undersökasinnan man kan dra några slutsatser.
APA, Harvard, Vancouver, ISO, and other styles
29

Padhi, Gouri S. "Numerical failure modeling of composite structures." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

ROCHINHA, FERNANDO ALVES. "MODELING AND NUMERICAL SIMULATION OF RODS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1990. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=20299@1.

Full text
Abstract:
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
É apresentado um modelo não-linear para estruturas unidimensionais em equilíbrio, onde não são feitas restrições de caráter geométrico. Este modelo é capaz de descrever movimentos que envolvam flexão, torção, cilhamento e extensão. As configurações de referência e deformada têm sua geometria descrita através da posição espacial de uma curva e da orientação de uma base ortonormal associada a cada ponto dessa curva. O uso dos ângulos de Euler na descrição das rotações, o que pode implicar em instabilidades numéricas, é evitado através do uso de uma nova parametrização para o problema. O problema de equilíbrio que envolve o comportamento não-linear de uma estrutura unidimensional é formulado de diferentes maneiras. São apresentados dois métodos numéricos para a solução desse problema. Um deles é baseado numa decomposição via lagrangeano aumentado e outro é um método de Newton não convencional. São discutidos detalhes acerca da implementação computacional desses métodos. A validade das formulações é atestada através de alguns exemplos numéricos. Em particular. São analisadas algumas aplicações relacionadas com operações de cabos umbilicais em prospecção petrolífera, que envolvem carregamentos estáticos complicados como aqueles ocasionados por flutuadores e pela atração gravitacional.
It is presented a model of the static geometrically non-linear behavior of an elastic rod which considers flexion, torsion, shear and tension. The geometry of the body, in the reference and deformed configurations, is described given the position of the centerline and the geometry of a rigid frame attached to each point of the line. A particular parametrization that avoids the difficulties associated with the use of Euler angles is employed simplifying the numerical treatment. The equilibrium problem for a nonlinear rod is formulated in several different ways and two numerical methods for solution of these problems are presented. One is based on augmented Lagrangian splitting and the second is a non-standard Newton’s method. Details pertaining to the implementation of that method are discussed. A number of numerical simulations have been documented to demonstrate the robustness of the formulations. In particular, some applications in connection with Off shore pipe lines operations, which involves complicated static loading conditions that includes floaters and gravitational forces, are analysed.
APA, Harvard, Vancouver, ISO, and other styles
31

Zahedi, Sara. "Numerical Modeling of Fluid Interface Phenomena." Licentiate thesis, Stockholm : Skolan för datavetenskap och kommunikation, Kungliga Tekniska högskolan, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10507.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Liu, Alfred D. "Numerical modeling of granular magnetic materials /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9989763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Chin-Cheng. "Numerical modeling of microscale plasma actuators." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0024818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yang, Ming. "Numerical Modeling of Aluminum Sampling Process." Thesis, KTH, Materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241102.

Full text
Abstract:
Castings of aluminum alloys are widely used in the automotive and aerospace industries since they play a significant role in improving the performance and fuel efficiency. In aluminum industries, sampling is the most common method to evaluate the inclusion levels which is a key indicator for the quality of the aluminum alloys. Since how the filling process and solidification process will influence the inclusion characteristics during the sampling procedure is of great importance, the objectives of this work is to create a the two-phase flow model to simulate the filling process and solidification process, as well as calculate the particles movement in the whole sampling procedure. Computational Fluid Dynamics (CFD) modeling was used and this work was performed in the software ANSYS FLUENT. A numerical two dimensional (2D) axisymmetric model was built to simulate the sampling procedure with the assumption that the filling could be done along the main axis automatically. First, the initial solidification during the filling was taken into account without particle injection. The realizable k − ε turbulence model was used to model the effects of the turbulence. Several simulations with different inlet filling rate, different initial filling temperature and different inlet diameter was calculated to see the influence on the solidification behavior. Then, the whole sampling system was modeled with particle injection. The Discrete Phase Model (DPM) was used to simulate the particle motion in the melt and the focus was on the influence of the initial solidification on the inclusion distributions. Finally, the optimal sampling position inside the aluminum sampler mold was calculated.
Gjutningar av aluminiumlegeringar används ofta inom bil-, och flygindustrin eftersom de spelar en viktig roll för att förbättra prestanda och bränsleeffektivitet. Inom aluminiumindustrin är provtagning den vanligaste metoden att utvärdera mängden inneslutningar i smältan, vilket är en nyckelindikator för kvaliteten på aluminiumlegeringarna. Eftersom både fyllnads- och stelningsprocessen kommer att påverka inneslutningskarakteristiken är provtagningsproceduren av stor betydelse. Syftet med detta arbete är att skapa en två-fasflödesmodell för att simulera fyllnings-, och stelningsprocessen, samt att beräkna partikelrörelserna under provtagningsförfarandet. Computational Fluid Dynamics (CFD) modellering användes och arbetet har utfördes med mjukvaran ANSYS FLUENT. En numerisk tvådimensionell (2D) axisymmetrisk modell byggdes för att simulera provtagningsproceduren med antagandet att påfyllningen kan göras automatiskt längs huvudaxeln. Till att börja med betraktades det första stelnandet under fyllningen utan partikelinjektion. En antagen k - ε turbulensmodell användes för att modellera effekten av turbulens. Flera simuleringar med olika inloppshastighet, påfyllningstemperatur och inloppsdiametrar beräknades för att se påverkan på stelningsbeteendet. Därefter modellerades hela provtagningsmodellen med partikelinjektion. En Diskret Fasmodell (DPM) användes för att simulera partikelrörelsen i smältan och fokus var inverkan av det initiala stelnandet på inneslutningsfördelningen. Slutligen beräknades den optimala provtagningspositionen inuti aluminiumprovformen.
APA, Harvard, Vancouver, ISO, and other styles
35

Lee, Wayne Yeung. "Numerical Modeling of Blast-Induced Liquefaction." BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/524.

Full text
Abstract:
A research study has been conducted to simulate liquefaction in saturated sandy soil induced by nearby controlled blasts. The purpose of the study is to help quantify soil characteristics under multiple and consecutive high-magnitude shock environments similar to those produced by large earthquakes. The simulation procedure involved the modeling of a three-dimensional half-space soil region with pre-defined, embedded, and strategically located explosive charges to be detonated at specific time intervals. LS-DYNA, a commercially available finite element hydrocode, was the solver used to simulate the event. A new geo-material model developed under the direction of the U.S. Federal Highway Administration was applied to evaluate the liquefaction potential of saturated sandy soil subjected to sequential blast environments. Additional procedural enhancements were integrated into the analysis process to represent volumetric effects of the saturated soil's transition from solid to liquid during the liquefaction process. Explosive charge detonation and pressure development characteristics were modeled using proven and accepted modeling techniques. As explosive charges were detonated in a pre-defined order, development of pore water pressure, volumetric (compressive) strains, shear strains, and particle accelerations were carefully computed and monitored using custom developed MathCad and C/C++ routines. Results of the study were compared against blast-test data gathered at the Fraser River Delta region of Vancouver, British Columbia in May of 2005 to validate and verify the modeling procedure's ability to simulate and predict blast-induced liquefaction events. Reasonable correlations between predicted and measured data were observed from the study.
APA, Harvard, Vancouver, ISO, and other styles
36

Jade, (B) Sridevi. "Numerical Modeling Of Jointed Rock Mass." Thesis, Indian Institute of Science, 2000. https://etd.iisc.ac.in/handle/2005/257.

Full text
Abstract:
The behavior of jointed rock mass is very complex and is influenced by many factors such as location of joints, joint frequency, joint orientation and joint strength. A thorough review of literature on different aspects of jointed rock mass indicate that the discontinuities or planes of weakness present in rock mass significantly influence its behavior. Numerous experimental tests were conducted to study the behavior of natural as well as artificial joints in rocks. Laboratory tests are time consuming and give results applicable to specific joint fabric and confining pressure. Numerical methods are the best alternative to laboratory tests to study the behavior of jointed rock mass. With the advent of computers numerical methods of analysis have become very popular, as they are highly flexible and can represent all complex geometries and material behavior. The accuracy of a numerical model depends upon the how well constitutive relations for the jointed rock mass are defined in the analysis. Empirical relationships for describing the mechanical behavior of discontinuities obtained from scaling the laboratory data is crucial unresolved problem, which will affect the quality of results obtained. One more important aspect in the numerical model is strength criteria used for jointed rock mass. The applicability of existing strength criteria to a particular jointed rock has to be carefully examined before they are used. Equivalent continuum approach simplifies the modeling of jointed rock mass as the joints are not modeled separately. Instead in equivalent continuum approach the jointed rock mass is represented by an equivalent continuum whose properties are defined by a combination of intact rock properties and joint properties. The accuracy of this kind of modeling depends upon the relationships used to define the jointed rock mass properties as a function of intact rock properties and joint properties. In the present study, an effort has been made (i) to establish empirical relations to define the properties of jointed rock mass as a function of intact rock properties and joint factor (ii) to develop a numerical model based on equivalent continuum approach using the empirical relations derived above, for easy and efficient modeling of jointed rock mass (iii) comparison of existing strength criteria for jointed rock masses using the equivalent continuum model developed above (iv) Modeling of joints explicitly and comparing these results with the equivalent continuum model results. Empirical relationships expressing the uniaxial compressive strength and elastic modulus of jointed rock as a function of corresponding intact rock properties and joint factor have been derived based on the statistical analysis of large amount of experimental data of uniaxial and triaxial tests collected from the literature. The effect of joints in the jointed rock is taken in to account by the joint factor. A comparative study of the empirical relationships arrived by the above analysis has been made to choose the best relation for the numerical analysis. Empirical relationships thus arrived for jointed rock mass are used in the equivalent continuum approach to represent the jointed rock properties as a combination of intact rock properties and joint factor. Equivalent continuum model developed is thoroughly tested, validated and applied for single, multiple and block jointed rocks. The equivalent continuum model developed has been applied for analysis of the power cavern for Shiobara power station. Different strength criteria available for jointed rock namely Mohr-Coulomb, Hoek and Drown, Yudhbir et al. and Rarnamurthy are incorporated in the equivalent continuum model to evaluate their applicability for jointed rock masses. Ramarnurthy's strength criterion gives the best values of failure stress for almost all the test cases and hence used in the equivalent continuum model. Alternatively, the joints in jointed rock mass are represented explicitly using interface element in the nonlinear finite element analysis. The explicit finite element model has been tested and validated using the experimental stress strain curves and failure stress values. Comparison of results obtained using equivalent continuum analysis and explicit modeling of joints has been given in the form of stress strain curves and failure stress plots for jointed rock masses along with the experimental results. Some of the major conclusions from the present study are as follows. Statistical relationships arrived to express the properties of the jointed rock as a function of intact rock and joint factor give a fair estimate of jointed rock in the absence of experimental data. Equivalent continuum model developed using statistical relations arrived above simplifies the numerical modeling of jointed rock to a large extent and also gives a fair estimate of jointed rock behavior with minimum input data. From the equivalent continuum analysis of Shiobara power cavern, it can be concluded that this approach is very advantageous for modeling highly discontinuous systems provided the joint factor is estimated properly so that it represents the real fabric of the joints present in the system. Comparison of different strength criteria shows that Ramamurthy's strength criterion is the best for jointed rocks. When the rock mass has one or two major joints it is advantageous to model it explicitly so that the behavior of the joint can be studied in detail. Explicit representation of the joints in the finite element analysis gives a lair estimate of the zones most susceptible to failure in a jointed rock. From comparison of experimental values, equivalent continuum model results and the explicit joint model results, it can be concluded that results obtained using equivalent continuum model are nearest to the experimental results in almost all the cases.
APA, Harvard, Vancouver, ISO, and other styles
37

Jade, (B) Sridevi. "Numerical Modeling Of Jointed Rock Mass." Thesis, Indian Institute of Science, 2000. http://hdl.handle.net/2005/257.

Full text
Abstract:
The behavior of jointed rock mass is very complex and is influenced by many factors such as location of joints, joint frequency, joint orientation and joint strength. A thorough review of literature on different aspects of jointed rock mass indicate that the discontinuities or planes of weakness present in rock mass significantly influence its behavior. Numerous experimental tests were conducted to study the behavior of natural as well as artificial joints in rocks. Laboratory tests are time consuming and give results applicable to specific joint fabric and confining pressure. Numerical methods are the best alternative to laboratory tests to study the behavior of jointed rock mass. With the advent of computers numerical methods of analysis have become very popular, as they are highly flexible and can represent all complex geometries and material behavior. The accuracy of a numerical model depends upon the how well constitutive relations for the jointed rock mass are defined in the analysis. Empirical relationships for describing the mechanical behavior of discontinuities obtained from scaling the laboratory data is crucial unresolved problem, which will affect the quality of results obtained. One more important aspect in the numerical model is strength criteria used for jointed rock mass. The applicability of existing strength criteria to a particular jointed rock has to be carefully examined before they are used. Equivalent continuum approach simplifies the modeling of jointed rock mass as the joints are not modeled separately. Instead in equivalent continuum approach the jointed rock mass is represented by an equivalent continuum whose properties are defined by a combination of intact rock properties and joint properties. The accuracy of this kind of modeling depends upon the relationships used to define the jointed rock mass properties as a function of intact rock properties and joint properties. In the present study, an effort has been made (i) to establish empirical relations to define the properties of jointed rock mass as a function of intact rock properties and joint factor (ii) to develop a numerical model based on equivalent continuum approach using the empirical relations derived above, for easy and efficient modeling of jointed rock mass (iii) comparison of existing strength criteria for jointed rock masses using the equivalent continuum model developed above (iv) Modeling of joints explicitly and comparing these results with the equivalent continuum model results. Empirical relationships expressing the uniaxial compressive strength and elastic modulus of jointed rock as a function of corresponding intact rock properties and joint factor have been derived based on the statistical analysis of large amount of experimental data of uniaxial and triaxial tests collected from the literature. The effect of joints in the jointed rock is taken in to account by the joint factor. A comparative study of the empirical relationships arrived by the above analysis has been made to choose the best relation for the numerical analysis. Empirical relationships thus arrived for jointed rock mass are used in the equivalent continuum approach to represent the jointed rock properties as a combination of intact rock properties and joint factor. Equivalent continuum model developed is thoroughly tested, validated and applied for single, multiple and block jointed rocks. The equivalent continuum model developed has been applied for analysis of the power cavern for Shiobara power station. Different strength criteria available for jointed rock namely Mohr-Coulomb, Hoek and Drown, Yudhbir et al. and Rarnamurthy are incorporated in the equivalent continuum model to evaluate their applicability for jointed rock masses. Ramarnurthy's strength criterion gives the best values of failure stress for almost all the test cases and hence used in the equivalent continuum model. Alternatively, the joints in jointed rock mass are represented explicitly using interface element in the nonlinear finite element analysis. The explicit finite element model has been tested and validated using the experimental stress strain curves and failure stress values. Comparison of results obtained using equivalent continuum analysis and explicit modeling of joints has been given in the form of stress strain curves and failure stress plots for jointed rock masses along with the experimental results. Some of the major conclusions from the present study are as follows. Statistical relationships arrived to express the properties of the jointed rock as a function of intact rock and joint factor give a fair estimate of jointed rock in the absence of experimental data. Equivalent continuum model developed using statistical relations arrived above simplifies the numerical modeling of jointed rock to a large extent and also gives a fair estimate of jointed rock behavior with minimum input data. From the equivalent continuum analysis of Shiobara power cavern, it can be concluded that this approach is very advantageous for modeling highly discontinuous systems provided the joint factor is estimated properly so that it represents the real fabric of the joints present in the system. Comparison of different strength criteria shows that Ramamurthy's strength criterion is the best for jointed rocks. When the rock mass has one or two major joints it is advantageous to model it explicitly so that the behavior of the joint can be studied in detail. Explicit representation of the joints in the finite element analysis gives a lair estimate of the zones most susceptible to failure in a jointed rock. From comparison of experimental values, equivalent continuum model results and the explicit joint model results, it can be concluded that results obtained using equivalent continuum model are nearest to the experimental results in almost all the cases.
APA, Harvard, Vancouver, ISO, and other styles
38

Abolghasem, Amir M. "Numerical modeling of post-seismic displacement fields." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=964204894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Li, Hui. "Numerical modeling of South China Sea circulation /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?AMCE%202005%20LI.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Foster, Christopher C. "Numerical modeling of opto-electronic integrated circuits." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA292096.

Full text
Abstract:
Thesis (M.S. in Electrical Engineering and M.S. in Applied Physics and Electrical Engineer) Naval Postgraduate School, December 1994.
Thesis advisor(s): Phillip E. Pace, A. W. Cooper. "December 1994." Bibliography: p. 95-99. Also available online.
APA, Harvard, Vancouver, ISO, and other styles
41

Livescu, Silviu. "Mathematical and numerical modeling of coating flows." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 3.48 Mb., 279 p, 2006. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3221057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Löfgren, Torbjörn. "Numerical modeling of electron beam-plasma interactions." Doctoral thesis, KTH, Alfvén Laboratory, 1999. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-2878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Latychev, Konstantin. "Numerical modeling of oceanic crustal hydrothermal systems." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq53837.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tifenbach, Bradley Dale. "Numerical methods for modeling energy spot prices." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq64984.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Killian, Tyler Norton Rao S. M. "Numerical modeling of very thin dielectric materials." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Electrical_and_Computer_Engineering/Thesis/Killian_Tyler_16.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

AZEREDO, GIVANILDO ALVES DE. "NUMERICAL MODELING OF FRACTURES WITH INTERFACE ELEMENTS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1997. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=1922@1.

Full text
Abstract:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Este trabalho consiste no desenvolvimento de um modelo numérico para simular o fraturamento em estruturas de concreto. Como ferramentas principais são utilizados o Método dos Elementos Finitos (MEF) e alguns conceitos da Mecânica da fratura aplicada ao concreto. A principal palavra-chave que caracteriza este trabalho é o -elemento de interface-. Este elemento finito permite modelar descontinuidades na malha de elementos finitos entre as arestas dos elementos. Neste trabalho, estes elementos são utilizados para representar fissuras em estruturas de concreto. A modelagem destas fissuras é suportada por um conceito de fissura discreta, o qual está acoplado a um modelo constitutivo elástico com amolecimento, específico para a fissura ou para o elemento de interface.Neste trabalho, as análises não-lineares abrangeram sistemas estruturais com modo de fraturamento I.
This work consists in the development of a numerical model in order to simulate the fracture process in concrete structures. This model is supported by concepts of the Finite Element Method and the Fracture Mechanics applied to concrete. The main keyword which characterizes this work is interface element. This finite element permits the modelling of discontinuities in the finite element mesh among the edges of the elements. In this work, these elements are used to represent cracks in concrete structures. The cracks modelling is supported by the discrete crack concept, which is associated to a constitutive model called elastic-softening, specific for the crack or for the interface element. In this work, the nonlinear analyses were limited to structural systems under fracture mode I.This work consists in the development of a numerical model in order to simulate the fracture process in concrete structures. This model is supported by concepts of the Finite Element Method and the Fracture Mechanics applied to concrete. The main keyword which characterizes this work is interface element. This finite element permits the modelling of discontinuities in the finite element mesh among the edges of the elements. In this work, these elements are used to represent cracks in concrete structures. The cracks modelling is supported by the discrete crack concept, which is associated to a constitutive model called elastic-softening, specific for the crack or for the interface element. In this work, the nonlinear analyses were limited to structural systems under fracture mode I.This work consists in the development of a numerical model in order to simulate the fracture process in concrete structures. This model is supported by concepts of the Finite Element Method and the Fracture Mechanics applied to concrete. The main keyword which characterizes this work is interface element. This finite element permits the modelling of discontinuities in the finite element mesh among the edges of the elements. In this work, these elements are used to represent cracks in concrete structures. The cracks modelling is supported by the discrete crack concept, which is associated to a constitutive model called elastic-softening, specific for the crack or for the interface element. In this work, the nonlinear analyses were limited to structural systems under fracture mode I.
Este trabajo consiste en el desarrollo de un modelo numérico para simular fracturas en extructuras de concreto. Se utilizan como herramientas principales el Método de los elementos Finitos (MEF) y algunos conceptos de la Mecánica de la fractura aplicada al concreto. La principal palabra clave que caracteriza este trabajo es el -elemento de interfaz-. Este elemento finito permite modelar discontinuidades en la malla de elementos finitos entre las aristas de los elementos. En este trabajo, los elementos son utilizados para representar fisuras en extructuras de concreto. El modelo de estas fisuras se soporta por un concepto de fisura discreta, que está acoplado a un modelo constitutivo elástico, específico para la fisura o para el elemento de interfaz. En este trabajo, los análisis no lineales consideran sistemas extructurales con modo de fractura I.
APA, Harvard, Vancouver, ISO, and other styles
47

Sheen, David Mark. "Numerical modeling of microstrip circuits and antennas." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13880.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1991.
Includes bibliographical references (p. 231-238).
by David Mark Sheen.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
48

Arogundade, Simisola M. "Numerical modeling of ambient noise seismic interferometry." Thesis, Michigan Technological University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10125274.

Full text
Abstract:

CO2 sequestration involves storing CO2 in a deep geological formation and may help to mitigate the increasing emission of carbon. To monitor the migration of injected fluid in the reservoir, seismic observations may be used to observe changes in reflection character. Conventional methods to image the subsurface, using active seismic measurements, with man-made sources, have been applied at a few test sites, and the use of passive measurements, with natural sources, has been considered as a probable cost-efficient method to monitor CO2 migration and leakage. This numerical modeling study examines the use of seismic interferometry to retrieve weak seismic reflections from background noise, a form of passive monitoring.

The factors that influence the quality of the retrieved reflections from interferometry include geophone interval, geophone depth, and effect of shallow noise sources, assuming we seek reflections from deep noise sources, representing either teleseismic events or local events as expected in a field of active injection. Using model data, geophone interval had no significant effect on the reflection quality, but buried geophones produce ghost reflections, suggesting that shallow geophones might be optimal. Shallow noise sources produce a destructive effect on the reflections from deeper noise sources and damage the resulting image.

APA, Harvard, Vancouver, ISO, and other styles
49

Linnik, K. S., and D. O. Marchenko. "Numerical modeling of reciprocating fluid power seals." Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/13364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lee, Hwa Ok. "Numerical Modeling of Electromagnetic Well-Logging Sensors." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274981676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography