Academic literature on the topic 'Numerical modeling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical modeling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Numerical modeling"

1

Makokha, Mary, Akira Kobayashi, and Shigeyasu Aoyama. "Numerical Modeling of Seawater Intrusion Management Measures." Journal of Rainwater Catchment Systems 14, no. 1 (2008): 17–24. http://dx.doi.org/10.7132/jrcsa.kj00004978338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

O. B. Silva, Augusto, Newton O. P. Júnior, and João A. V. Requena. "Numerical Modeling of a Composite Hollow Vierendeel-Truss." International Journal of Engineering and Technology 7, no. 3 (June 2015): 176–82. http://dx.doi.org/10.7763/ijet.2015.v7.788.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

ADETU, Alina-Elena, Cătălin ADETU, and Vasile NĂSTĂSESCU. "NUMERICAL MODELING OF ACOUSTIC WAVE PROPAGATION IN UNLIMITED SPACE." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 21, no. 1 (October 8, 2019): 80–87. http://dx.doi.org/10.19062/2247-3173.2019.21.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ITO, Yusuke, Toru KIZAKI, Naohiko SUGITA, and Mamoru MITSUISHI. "1206 Numerical Modeling of Picosecond Laser Drilling of Glass." Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2015.8 (2015): _1206–1_—_1206–5_. http://dx.doi.org/10.1299/jsmelem.2015.8._1206-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Troyani, N., L. E. Montano, and O. M. Ayala. "Numerical modeling of thermal evolution in hot metal coiling." Revista de Metalurgia 41, Extra (December 17, 2005): 488–92. http://dx.doi.org/10.3989/revmetalm.2005.v41.iextra.1082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Miano, Giovanni, Guglielmo Rubinacci, and Antonello Tamburrino. "Numerical modeling for plasmonics." International Journal of Applied Electromagnetics and Mechanics 35, no. 2 (February 9, 2011): 79–91. http://dx.doi.org/10.3233/jae-2011-1331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

TOKUDA, Daisuke. "Numerical Modeling and Science." JOURNAL OF JAPAN SOCIETY OF HYDROLOGY AND WATER RESOURCES 32, no. 4 (July 5, 2019): 204. http://dx.doi.org/10.3178/jjshwr.32.204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Isbăşoiu, Eliza Consuela. "Numerical Modeling and Simulation." Advanced Science Letters 19, no. 1 (January 1, 2013): 166–69. http://dx.doi.org/10.1166/asl.2013.4663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Carper, Kenneth L. "Numerical Modeling: Special Issue." Journal of Performance of Constructed Facilities 27, no. 1 (February 2013): 1. http://dx.doi.org/10.1061/(asce)cf.1943-5509.0000414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Favreau, P., A. Mangeney, A. Lucas, G. Crosta, and F. Bouchut. "Numerical modeling of landquakes." Geophysical Research Letters 37, no. 15 (August 2010): n/a. http://dx.doi.org/10.1029/2010gl043512.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Numerical modeling"

1

Lin, Yuan. "Numerical modeling of dielectrophoresis." Licentiate thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Vedin, Jörgen. "Numerical modeling of auroral processes." Doctoral thesis, Umeå University, Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.

Full text
Abstract:

One of the most conspicuous problems in space physics for the last decades has been to theoretically describe how the large parallel electric fields on auroral field lines can be generated. There is strong observational evidence of such electric fields, and stationary theory supports the need for electric fields accelerating electrons to the ionosphere where they generate auroras. However, dynamic models have not been able to reproduce these electric fields. This thesis sheds some light on this incompatibility and shows that the missing ingredient in previous dynamic models is a correct description of the electron temperature. As the electrons accelerate towards the ionosphere, their velocity along the magnetic field line will increase. In the converging magnetic field lines, the mirror force will convert much of the parallel velocity into perpendicular velocity. The result of the acceleration and mirroring will be a velocity distribution with a significantly higher temperature in the auroral acceleration region than above. The enhanced temperature corresponds to strong electron pressure gradients that balance the parallel electric fields. Thus, in regions with electron acceleration along converging magnetic field lines, the electron temperature increase is a fundamental process and must be included in any model that aims to describe the build up of parallel electric fields. The development of such a model has been hampered by the difficulty to describe the temperature variation. This thesis shows that a local equation of state cannot be used, but the electron temperature variations must be descibed as a nonlocal response to the state of the auroral flux tube. The nonlocal response can be accomplished by the particle-fluid model presented in this thesis. This new dynamic model is a combination of a fluid model and a Particle-In-Cell (PIC) model and results in large parallel electric fields consistent with in-situ observations.

APA, Harvard, Vancouver, ISO, and other styles
3

Xie, Jinsong. "Numerical modeling of tsunami waves." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27936.

Full text
Abstract:
This thesis provides a synthetic understanding and an extensive analysis on megathrust earthquake generated tsunamis, with emphasis on the application of numerical modeling. In the present thesis, the tsunami characteristics are first depicted as a special hydrodynamic phenomenon. Further, a detailed literature review on the recent developments in tsunami numerical modeling techniques and on their applications is presented. A common approach in modeling the generation, propagation and inundation of tsunamis is discussed and used in the thesis. Based on the assumption of a vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake, and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. A general analysis of the Indian Ocean Tsunami of December 26th, 2004 is provided; and tsunami generation and propagation is conducted for this tsunami, as well as for tsunamis occurring in the Arabian Sea and Northwest Pacific Ocean, near the coast of the Vancouver Island. The analyses are based on geological and seismological parameters collected by the author. In this paper the author uses the collected bathymetry and earthquake information, plus tide gauge records and field survey results, and focuses on the theoretical assumptions, validation and limitation of the existing numerical models. Numerical simulations are performed using MIRONE, a tsunami modelling software developed based on the nonlinear shallow water theory. Through numerical modeling of three tsunami scenarios, e.g. December 26, 2004 Indian Ocean Tsunami, November 28, 1945 Arabian Sea Tsunami and the potential Cascadia Tsunami, a vivid overview of the tsunami features is provided as discussed. Generally, the results fairly agree with the observed data. The GEOWARE software is used to compute the tsunami travel time necessary to calibrate the results from MIRONE, using different numerical techniques. Several sensitivity analyses are conducted so that one can understand how oceanic topography affects tsunami wave propagation, determine how smoothing the topography affects the simulated tsunami travel time, and interpret the tsunami wave-height patterns as seen in the model simulations. The model can predict reasonably the tsunami behaviour, and are thus useful for tsunami warning system (tsunami mitigation and preparedness); and coastal population and industry can prepare for such possible catastrophic events.
APA, Harvard, Vancouver, ISO, and other styles
4

Pak, Ali. "Numerical modeling of hydraulic fracturing." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21618.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vedin, Jörgen. "Numerical modeling of auroral processes /." Umeå : Dept. of Physics, Umeå Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johansson, Christer. "Numerical methods for waveguide modeling /." Stockholm : Numerical Analysis and Computing Science (NADA), Stockholm university, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-992.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Chu-p'yŏ. "Numerical modeling of MILD combustion." Aachen Shaker, 2008. http://d-nb.info/988365464/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

DePaoli, Laura L. (Laura Lynn) 1975. "Numerical modeling of wetland hydrodynamics." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/80587.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nigam, Mats S. (Mats Sandje) 1970. "Numerical modeling of suspension flows." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Stathas, Alexandros. "Numerical modeling of earthquake faults." Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0053.

Full text
Abstract:
Lors d’un glissement sismique, l’énergie libérée par la décharge élastique des blocs de terre adjacente peut être séparée en trois parties principales : L’énergie qui est rayonnée à la surface de la terre (_ 5% du budget énergétique total), l’énergie de fracture pour la création de nouvelles surfaces de faille et enfin, l’énergie dissipée à l’intérieur d’une région de la faille, d’épaisseur finie, que l’on appelle le “fault gouge ". Cette région accumule la majorité du glissement sismique. Estimer correctement la largeur de fault gouge est d’une importance capitale pour calculer l’énergie dissipée pendant le séisme, le comportement frictionnel de la faille et les conditions de nucléation de la faille sous la forme d’un glissement sismique ou asismique.Dans cette thèse, approches différentes de régularisation ont été explorées pour l’estimation de la largeur de localisation de la zone de glissement principal de la faille pendant le glissement cosmique. Celles-ci comprennent l’application de la viscosité et des couplages multiphasiques dans le continuum classique de Cauchy, et l’introduction d’un continuum micromorphe de Cosserat du premier ordre. Tout d’abord, nous nous concentrons sur le rôle de la régularisation visqueuse dans le contexte des analyses dynamiques, en tant que méthode de régularisation de la localisation des déformations. Nous étudions le cas dynamique d’un continuum de Cauchy classique adoucissant à la déformation et durcissant à la vitesse de déformation. En appliquant l’analyse de stabilité de Lyapunov, nous montrons que l’introduction de la viscosité est incapable d’empêcher la localisation de la déformation sur un plan mathématique et la dépendance de du maillage des éléments finis.Nous effectuons des analyses non linéaires en utilisant le continuum de Cosserat dans le cas de grands déplacements par glissement sismique de fault gouge par rapport à sa largeur. Le continuum de Cosserat nous permet de rendre compte de l’énergie dissipée pendant un séisme et du rôle de la microstructure dans l’évolution de la friction de la faille. Nous nous concentrons sur l’influence de la vitesse de glissement sismique sur le mécanisme d’assidument frictionnel de la pressurisation thermique. Nous remarquons que l’influence des conditions aux limites dans la diffusion du fluide interstitiel à l’intérieur de fault gouge, conduit à une reprise du frottement après l’affaiblissement initial. De plus, un mode de localisation de déformation en mouvement est présent pendant le cisaillement de la couche, introduisant des oscillations dans la réponse du frottement. Ces oscillations augmentent le contenu spectral du séisme. L’introduction de la viscosité dans le mode ci-dessus, conduit à un comportement de "rate and state" sans l’introduction d’une variable interne. Nos conclusions sur le rôle de la pressurisation thermique pendant le cisaillement de fault gouge sont en accord qualitatif avec les nouveaux résultats expérimentaux disponibles. Enfin, sur la base des résultats numériques, nous étudions les hypothèses du modèle actuel de glissement sur un plan mathématique proposent à la littérature. Le rôle des conditions aux limites et du mode de localisation des déformations dans l’évolution du frottement de la faille pendant le glissement sismique. Le cas d’un domaine délimité et d’un mode de localisation de la déformation en mouvement est examiné dans le contexte d’un glissement sur un plan mathématique sous pressurisation thermique. Nos résultats étoffent le modèle original dans un contexte plus général
During coseismic slip, the energy released by the elastic unloading of the adjacent earth blocks can be separated in three main parts: The energy that is radiated to the earth’s surface (_ 5% of the whole energy budget), the fracture energy for the creation of new fault surfaces and finally, the energy dissipated inside a region of the fault, with finite thickness, which is called the fault gauge. This region accumulates the majority of the seismic slip. Estimating correctly the width of the fault gauge is of paramount importance in calculating the energy dissipated during the earthquake, the fault’s frictional response, and the conditions for nucleation of the fault in the form of seismic or aseismic slip.In this thesis different regularization approaches were explored for the estimation of the localization width of the fault’s principal slip zone during coseismic slip. These include the application of viscosity and multiphysical couplings in the classical Cauchy continuum, and the introduction of a first order micromorphic Cosserat continuum. First, we focus on the role of viscous regularization in the context of dynamical analyses, as a method for regularizing strain localization. We study the dynamic case for a strain softening strain-rate hardening classical Cauchy continuum, and by applying the Lyapunov stability analysis we show that introduction of viscosity is unable to prevent strain localization on a mathematical plane and mesh dependence.We perform fully non linear analyses using the Cosserat continuum under large seismic slip displacements of the fault gouge in comparison to its width. Cosserat continuum provides us with a proper account of the energy dissipated during an earthquake and the role of the microstructure in the evolution of the fault’s friction. We focus on the influence of the seismic slip velocity to the weakening mechanism of thermal pressurization. We notice that the influence of the boundary conditions in the diffusion of the pore fluid inside the fault gouge, leads to frictional strength regain after initial weakening. Furthermore, a traveling strain localization mode is present during shearing of the layer introducing oscillations in the frictional response. Such oscillations increase the spectral content of the earthquake. Introduction of viscosity in the above mode, leads to a rate and state behavior without the introduction of a specific internal state variable. Our conclusions about the role of thermal pressurization during shearing of the fault gouge, agree qualitatively with newly available experimental results.Finally, based on the numerical findings we investigate the assumptions of the current model of a slip on a mathematical plane, in particular the role of the boundary conditions and strain localization mode in the evolution of the fault’s friction during coseismic slip. The case of a bounded domain and a traveling strain localization mode are examined in the context of slip on a mathematical plane under thermal pressurization. Our results expand the original model in a more general context
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Numerical modeling"

1

A, Beckmann, ed. Numerical ocean circulation modeling. London: Imperial College Press, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

1929-, Chung T. J., ed. Numerical modeling in combustion. Washington, DC: Taylor & Francis, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

S, Oran Elaine, and Boris Jay P, eds. Numerical approaches to combustion modeling. Washington, DC: American Institute of Aeronautics and Astronautics, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hofstetter, Günter, and Günther Meschke, eds. Numerical Modeling of Concrete Cracking. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0897-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chalikov, Dmitry V. Numerical Modeling of Sea Waves. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32916-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mader, Charles L. Numerical modeling of water waves. Berkeley: University of California Press, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Numerical modeling of water waves. 2nd ed. Boca Raton, Fla: CRC Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mader, Charles L. Numerical modeling of water waves. 2nd ed. Boca Raton, FL: CRC Press, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lin, Pengzhi. Numerical modeling of water waves. London: Taylor & Francis, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1938-, Murty T. S., ed. Numerical modeling of ocean dynamics. Singapore: World Scientific, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Numerical modeling"

1

Helmig, Rainer. "Numerical modeling." In Multiphase Flow and Transport Processes in the Subsurface, 141–227. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60763-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Modaressi-Farahmand-Razavi, Arezou. "Numerical Modeling." In Multiscale Geomechanics, 243–332. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118601433.ch9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gornitz, Vivian, Nicholas C. Kraus, Nicholas C. Kraus, Ping Wang, Ping Wang, Gregory W. Stone, Richard Seymour, et al. "Numerical Modeling." In Encyclopedia of Coastal Science, 730–33. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3880-1_232.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Kun Sang, and Tae Hong Kim. "Numerical Modeling." In Integrative Understanding of Shale Gas Reservoirs, 43–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29296-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greenspan, Donald. "Numerical Methodology." In Particle Modeling, 7–21. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-1992-7_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johansson, Robert. "Statistical Modeling." In Numerical Python, 333–62. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-0553-2_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Johansson, Robert. "Statistical Modeling." In Numerical Python, 471–511. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4246-9_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Giovangigli, Vincent. "Numerical Simulations." In Multicomponent Flow Modeling, 301–15. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1580-6_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Haefner, James W. "Numerical Techniques." In Modeling Biological Systems, 118–32. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-4119-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ueberhuber, Christoph W. "Scientific Modeling." In Numerical Computation 1, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59118-1_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Numerical modeling"

1

Blacquière, Gerrit, and Edith van Veldhuizen. "Physical modeling versus numerical modeling." In SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2003. http://dx.doi.org/10.1190/1.1817878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Malta, Edgard Borges, Marcos Cueva, Kazuo Nishimoto, Rodolfo Golc¸alves, and Isai´as Masetti. "Numerical Moonpool Modeling." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92456.

Full text
Abstract:
The use of moonpools in offshore technology are normally related to the hull opening in drilling units with the objective to protect drilling equipment from environmental forces, and its design aims the minimum motion of the water inside the moonpool, avoiding water impacts when lowering an equipment. Several studies have been carried out to predict the water dynamics inside the moonpool. At most, analytical tools have been used with experimental results, to obtain a good evaluation of viscous effects. Another line of development uses the moonpools as a device to reduce motions of ships or oil platforms. In his context, the use of moonpools in monocolumn type platforms was studied during the development of the concept, through the partnership between PETROBRAS and University of Sa˜o Paulo–USP. An alternative that became viable in the last years is the use of numerical methods to evaluate potencial parameters, being only necessary simple experiments to obtains viscous data to complete the model. This work, that is a continuation of articles about the issue written before, intends to consolidate the calculation method of moonpool to monocolumn units.
APA, Harvard, Vancouver, ISO, and other styles
3

BOWMAN, JERRY, and RICHARD SWEETEN. "Numerical heat-pipe modeling." In 24th Thermophysics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-1705.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

"Numerical Modeling in Electronics." In 10th International Conference on Mathematical Methods in Electromagnetic Theory, 2004. IEEE, 2004. http://dx.doi.org/10.1109/mmet.2004.1397050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Szyszka, Barbara, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Mathematical Modeling of Secondary Timber Processing." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tomiya, Mitsuyoshi. "Numerical approach to spectral properties of coupled quartic oscillators." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sytova, S. "X-ray time-dependent diffraction: Theory and numerical experiments." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386883.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Szyszka, Barbara, and Klaudyna Rozmiarek. "Mathematical Modeling of Primary Wood Processing." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990980.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gupta, Tushar, Kajal Dubey, Gaurav Panwar, and Sneha Singh. "Numerical Modeling of Retrofitted Structures." In 2020 International Conference on Intelligent Engineering and Management (ICIEM). IEEE, 2020. http://dx.doi.org/10.1109/iciem48762.2020.9160328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vallecchi, Andrea, Matteo Albani, and Filippo Capolino. "Numerical modeling of nanostructured metamaterials." In 2012 6th European Conference on Antennas and Propagation (EuCAP). IEEE, 2012. http://dx.doi.org/10.1109/eucap.2012.6206515.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Numerical modeling"

1

Delk, Tracey. Numerical Modeling of Slopewater Circulation. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada375720.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Puleo, Jack, K. T. Holland, and D. Slinn. Numerical Modeling of Swash Zone Hydrodynamics. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada403978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Leighton, Richard. Enhanced Numerical Modeling of Breaking Waves. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada455681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

O'Brien, James J. Ocean Science Educator in Numerical Modeling. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada281455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kerley, Gerald I. Numerical Modeling of Buried Mine Explosions. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada392569.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Surendra, and William P. Roach. Numerical Modeling of Antenna Near Field. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada473446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Torres, Marissa, Michael-Angelo Lam, and Matt Malej. Practical guidance for numerical modeling in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), October 2022. http://dx.doi.org/10.21079/11681/45641.

Full text
Abstract:
This technical note describes the physical and numerical considerations for developing an idealized numerical wave-structure interaction modeling study using the fully nonlinear, phase-resolving Boussinesq-type wave model, FUNWAVE-TVD (Shi et al. 2012). The focus of the study is on the range of validity of input wave characteristics and the appropriate numerical domain properties when inserting partially submerged, impermeable (i.e., fully reflective) coastal structures in the domain. These structures include typical designs for breakwaters, groins, jetties, dikes, and levees. In addition to presenting general numerical modeling best practices for FUNWAVE-TVD, the influence of nonlinear wave-wave interactions on regular wave propagation in the numerical domain is discussed. The scope of coastal structures considered in this document is restricted to a single partially submerged, impermeable breakwater, but the setup and the results can be extended to other similar structures without a loss of generality. The intended audience for these materials is novice to intermediate users of the FUNWAVE-TVD wave model, specifically those seeking to implement coastal structures in a numerical domain or to investigate basic wave-structure interaction responses in a surrogate model prior to considering a full-fledged 3-D Navier-Stokes Computational Fluid Dynamics (CFD) model. From this document, users will gain a fundamental understanding of practical modeling guidelines that will flatten the learning curve of the model and enhance the final product of a wave modeling study. Providing coastal planners and engineers with ease of model access and usability guidance will facilitate rapid screening of design alternatives for efficient and effective decision-making under environmental uncertainty.
APA, Harvard, Vancouver, ISO, and other styles
8

Chow, W. W., and G. R. Hadley. Numerical modeling of vertical cavity semiconductor lasers. Office of Scientific and Technical Information (OSTI), August 1996. http://dx.doi.org/10.2172/378906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wise, Randall A., and S. J. Smith. Numerical Modeling of Storm-Induced Beach Erosion,. Fort Belvoir, VA: Defense Technical Information Center, March 1996. http://dx.doi.org/10.21236/ada308848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cushman-Roisin, Benoit, and Christopher E. Naimie. Comprehensive Numerical Modeling of the Adriatic Sea. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada628757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography