Academic literature on the topic 'Numerical computation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical computation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Numerical computation"
Smolensky, Paul. "Symbolic functions from neural computation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, no. 1971 (July 28, 2012): 3543–69. http://dx.doi.org/10.1098/rsta.2011.0334.
Full textRuhe, Axel, M. G. Cox, and S. Hammarling. "Reliable Numerical Computation." Mathematics of Computation 59, no. 199 (July 1992): 298. http://dx.doi.org/10.2307/2152999.
Full textSofroniou, Mark, and Giulia Spaletta. "Precise numerical computation." Journal of Logic and Algebraic Programming 64, no. 1 (July 2005): 113–34. http://dx.doi.org/10.1016/j.jlap.2004.07.007.
Full textAlaa Ismail, Abdalla Mostafa Elmarhomy, Abd El-Aziz Morgan, and Ashraf Mostafa Hamed. "Numerical Modeling and Geometry Enhancement of a Reactive Silencer." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 106, no. 1 (June 19, 2023): 147–57. http://dx.doi.org/10.37934/arfmts.106.1.147157.
Full textXiao, Shuangshuang, Kemin Li, Xiaohua Ding, and Tong Liu. "Numerical Computation of Homogeneous Slope Stability." Computational Intelligence and Neuroscience 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/802835.
Full textGUCKENHEIMER, JOHN, KATHLEEN HOFFMAN, and WARREN WECKESSER. "NUMERICAL COMPUTATION OF CANARDS." International Journal of Bifurcation and Chaos 10, no. 12 (December 2000): 2669–87. http://dx.doi.org/10.1142/s0218127400001742.
Full textDas, JN. "A Least Squares Computational Method for the Scattering Amplitude." Australian Journal of Physics 41, no. 1 (1988): 47. http://dx.doi.org/10.1071/ph880047.
Full textSathyan, Sabin, Ugur Aydin, and Anouar Belahcen. "Acoustic Noise Computation of Electrical Motors Using the Boundary Element Method." Energies 13, no. 1 (January 3, 2020): 245. http://dx.doi.org/10.3390/en13010245.
Full textKim, Boram, Kwang Seok Yoon, and Hyung-Jun Kim. "GPU-Accelerated Laplace Equation Model Development Based on CUDA Fortran." Water 13, no. 23 (December 4, 2021): 3435. http://dx.doi.org/10.3390/w13233435.
Full textYue, Chun Guo, Xin Long Chang, You Hong Zhang, and Shu Jun Yang. "Numerical Calculation of a Missile's Aerodynamic Characteristic." Advanced Materials Research 186 (January 2011): 220–24. http://dx.doi.org/10.4028/www.scientific.net/amr.186.220.
Full textDissertations / Theses on the topic "Numerical computation"
Lesage, Pierre-Yves. "Numerical computation and software design." Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/11134.
Full textLesage, P.-Y. "Numerical computation and software design." Thesis, Cranfield University, 1999. http://dspace.lib.cranfield.ac.uk/handle/1826/11134.
Full textNassiri, Masoud. "Numerical computation of shallow recirculating flow." Thesis, McGill University, 1994. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68046.
Full textThe flow simulation is characterized by two basic dimensionless parameters: a turbulent Reynolds number, $Re sb{T},$ which defines the level of eddy viscosity, and a bed-friction number, S, which represents the effect of bed friction. The study shows that in the limit of shallow water depth, that is S $>$ 0.10, the mean flow is quite successfully predicted by all employed models. However, in the limit of deep water depth, S $<$ 0.10, both $ kappa- epsilon$ models under-predict the length of the recirculating region due to the high level of computed eddy viscosity. On the other hand, the study indicates that the constant viscosity model gives quite acceptable results for most engineering applications.
Advantageously using the constant viscosity model's simple concept, an attempt is made to define a criterion for numerical stability of the computational procedure. The stability of the algorithm is assessed by varying the flow Reynolds number, the bed-friction number as well as the mesh size. The Courant number, a dimensionless parameter, is then introduced and correlated with the $Re sb{T}$ and S, thus providing the means to determine the stability of the numerical calculations.
As most of the recirculating flows observed in natural waterways are dominated by the bed-friction effect, accurate simulation of the mean flow field is possible even with an incorrect model for the lateral exchange process.
Zerroukat, Mohamed. "Numerical computation of moving boundary phenomena." Thesis, University of Glasgow, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285256.
Full textRomero, i. Sànchez David. "Numerical computation of invariant objects with wavelets." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/395169.
Full textBohigas, Nadal Oriol. "Numerical computation and avoidance of manipulator singularities." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/117535.
Full textAquesta tesi desenvolupa solucions generals per dos problemes oberts de la cinemàtica de robots: el càlcul exhaustiu del conjunt singular d'un manipulador, i la síntesi de camins lliures de singularitats entre configuracions donades. Obtenir solucions adequades per aquests problemes és crucial, ja que les singularitats plantegen problemes al funcionament normal del robot i, per tant, haurien de ser completament identificades abans de la construcció d'un prototipus. La habilitat de computar tot el conjunt singular també proporciona informació rica sobre les capacitats globals de moviment d'un manipulador. Les projeccions cap a l'espai de tasques o d'articulacions delimiten les regions de treball en aquests espais, poden informar sobre les diferents maneres de muntar el manipulador, i remarquen les àrees on poden sorgir pèrdues de control o destresa, entre d'altres comportaments anòmals. Aquestes projeccions també proporcionen una imatge fidel dels moviments factibles del sistema, però no revelen tots els possibles moviments lliures de singularitats. Planificadors de moviment automàtics que permetin evitar les singularitats problemàtiques haurien de ser ideats per tal d'assistir les etapes de disseny i programació d'un manipulador. El paper clau que juguen les configuracions singulars ha estat àmpliament conegut durant anys, però els mètodes existents pel càlcul o evitació de singularitats encara es concentren en classes específiques de manipuladors. L'absència de mètodes capaços de tractar aquests problemes en una classe suficientment gran de manipuladors és problemàtica, ja que dificulta l'anàlisi de manipuladors més complexes o el desenvolupament de noves topologies de robots. Una raó principal d'aquesta absència ha estat la manca d'eines computacionals adequades a les matemàtiques subjacents que aquests problemes amaguen. No obstant, avenços recents en el camp de mètodes numèrics per la solució de sistemes polinòmics permeten ara enfrontar-se a aquests temes amb una intenció molt general en ment. El propòsit d'aquesta tesi és aprofitar aquest progrés i proposar mètodes robustos i generals pel càlcul i evitació de singularitats per manipuladors no redundants d'arquitectura arbitrària. En global, el treball busca contribuir a la comprensió general sobre com els moviments de sistemes multicos complexos es poden predir, planificar o controlar d'una manera eficient i segura
Lin, Hong-Chia. "Topics in Numerical Computation of Compressible Flow." Thesis, Cranfield University, 1990. http://dspace.lib.cranfield.ac.uk/handle/1826/4555.
Full textBetcke, Timo. "Numerical computation of eigenfunctions of planar regions." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.426381.
Full textProsser, Robert. "Numerical methods for the computation of combustion." Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340975.
Full textDougherty, Edward T. "Computation and Numerics in Neurostimulation." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/73350.
Full textPh. D.
Books on the topic "Numerical computation"
Ueberhuber, Christoph W. Numerical Computation 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59109-9.
Full textUeberhuber, Christoph W. Numerical Computation 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59118-1.
Full textG, Cox M., Hammarling S. J, and Wilkinson J. H, eds. Reliable numerical computation. Oxford: Clarendon Press, 1990.
Find full textGlassey, Robert. Numerical computation using C. Boston: Academic Press, 1993.
Find full textDriscoll, Tobin A., and Richard J. Braun. Fundamentals of Numerical Computation. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2017. http://dx.doi.org/10.1137/1.9781611975086.
Full textYang, Tianruo, ed. Parallel Numerical Computation with Applications. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5205-5.
Full textWinkler, Franz, and Ulrich Langer, eds. Symbolic and Numerical Scientific Computation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-45084-x.
Full textBertsekas, Dimitri P. Parallel and distributed computation: Numerical methods. Belmont, Mass: Athena Scientific, 1997.
Find full textN, Tsitsiklis John, ed. Parallel and distributed computation: Numerical methods. Englewood Cliffs, N.J: Prentice Hall, 1989.
Find full textNumerical computation in science and engineering. New York: Oxford University Press, 1998.
Find full textBook chapters on the topic "Numerical computation"
Touzani, Rachid, and Jacques Rappaz. "Numerical Methods." In Scientific Computation, 153–94. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-0202-8_7.
Full textHarris, John W., and Horst Stocker. "Numerical Computation (arithmetics and numerics)." In Handbook of Mathematics and Computational Science, 1–36. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-5317-4_1.
Full textHout, Sam A. "Numerical Methods—Computation." In Advanced Manufacturing Operations Technologies, 97–106. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003384199-16.
Full textUeberhuber, Christoph W. "Numerical Data and Numerical Operations." In Numerical Computation 1, 106–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59118-1_4.
Full textUeberhuber, Christoph W. "Numerical Integration." In Numerical Computation 2, 65–169. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59109-9_3.
Full textUeberhuber, Christoph W. "Numerical Algorithms." In Numerical Computation 1, 172–218. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59118-1_5.
Full textUeberhuber, Christoph W. "Numerical Programs." In Numerical Computation 1, 219–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59118-1_6.
Full textCohen, Gary C. "Numerical Dispersion and Anisotropy." In Scientific Computation, 101–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04823-8_7.
Full textEhold, Harald J., Wilfried N. Gansterer, Dieter F. Kvasnicka, and Christoph W. Ueberhuber. "HPF and Numerical Libraries." In Parallel Computation, 140–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49164-3_14.
Full textWang, Liang, and Jianxin Zhao. "Computation Graph." In Architecture of Advanced Numerical Analysis Systems, 149–89. Berkeley, CA: Apress, 2022. http://dx.doi.org/10.1007/978-1-4842-8853-5_6.
Full textConference papers on the topic "Numerical computation"
Zhi, Lihong. "Numerical optimization in hybrid symbolic-numeric computation." In ISSAC07: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1277500.1277507.
Full textŽunić, Dragiša, and Pierre Lescanne. "Classical computation with negation." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756169.
Full textNakakura, Kansaku, and Sunao Murashige. "Numerical Computation of the Mapping Degree using Computational Homology." In 12th GAMM - IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2006). IEEE, 2006. http://dx.doi.org/10.1109/scan.2006.32.
Full textDarulova, Eva, and Viktor Kuncak. "Trustworthy numerical computation in Scala." In the 2011 ACM international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2048066.2048094.
Full textBohigas, Oriol, Dimiter Zlatanov, Lluis Ros, Montserrat Manubens, and Josep M. Porta. "Numerical computation of manipulator singularities." In 2012 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2012. http://dx.doi.org/10.1109/icra.2012.6225083.
Full textJanovská, Drahoslava, Vladimír Janovský, and Kunio Tanabe. "Computation of Pseudospectra via a Continuation." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990916.
Full textLescanne, Pierre, Dragiša Žunić, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Classical Proofs’ Essence and Diagrammatic Computation." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636852.
Full textSinger, Saša, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Accurate Computation of Gaussian Quadrature for Tension Powers." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790194.
Full textAceto, Lidia, Alessandra Sestini, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "On the Numerical Computation of the LMM's Coefficients." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790217.
Full textKhoromskij, B. N., and A. Litvinenko. "Data Sparse Computation of the Karhunen‐Loève Expansion." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2990920.
Full textReports on the topic "Numerical computation"
Golub, Gene H. Computational Equipment for the Development of Numerical Algorithms Computation. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada226702.
Full textMenikoff, Ralph. Numerical computation of Pop plot. Office of Scientific and Technical Information (OSTI), March 2015. http://dx.doi.org/10.2172/1209280.
Full textMacCormack, R. W. Numerical Computation in MagnetoFluid Dynamics. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada427194.
Full textSchnabel, R. Concurrent Algorithms for Numerical Computation on Hypercube Computer. Fort Belvoir, VA: Defense Technical Information Center, February 1988. http://dx.doi.org/10.21236/ada195502.
Full textSkeel, R. D. Safety in numbers: The boundless errors of numerical computation. Office of Scientific and Technical Information (OSTI), June 1989. http://dx.doi.org/10.2172/6245350.
Full textHou, Thomas Y., and Philippe G. LeFloch. Numerical Methods for the Computation of Propagating Phase Boundaries. Fort Belvoir, VA: Defense Technical Information Center, January 1997. http://dx.doi.org/10.21236/ada340390.
Full textD'Ippolito, D. A., and J. R. Myra. Numerical Computation of Wave-Plasma Interactions in Multi-Dimensional Systems. Office of Scientific and Technical Information (OSTI), February 2005. http://dx.doi.org/10.2172/837006.
Full textChase, Ronald, H. B. Wallace, and Thomas Blalock. Numerical Computation of the Radar Cross Section of the ZSU-23-4. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada363007.
Full textFrench, Donald A. Numerical Analysis and Computation of Nonlinear Partial Differential Equations from Applied Mathematics. Fort Belvoir, VA: Defense Technical Information Center, November 1993. http://dx.doi.org/10.21236/ada275582.
Full textFrench, Donald A. Numerical Analysis and Computation of Nonlinear Partial Differential Equations from Applied Mathematics. Fort Belvoir, VA: Defense Technical Information Center, October 1990. http://dx.doi.org/10.21236/ada231188.
Full text