Academic literature on the topic 'Numerical analysis methods'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical analysis methods.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Numerical analysis methods"
I., E., James L. Buchanan, and Peter R. Turner. "Numerical Methods and Analysis." Mathematics of Computation 60, no. 202 (April 1993): 848. http://dx.doi.org/10.2307/2153126.
Full textSong, Daegene. "Data Analysis in an Entanglement Network Using Numerical Methods." NeuroQuantology 20, no. 2 (April 1, 2022): 158–64. http://dx.doi.org/10.14704/nq.2022.20.2.nq22084.
Full textBunse-Gerstner, Angelika, Ralph Byers, and Volker Mehrmann. "Numerical Methods for Simultaneous Diagonalization." SIAM Journal on Matrix Analysis and Applications 14, no. 4 (October 1993): 927–49. http://dx.doi.org/10.1137/0614062.
Full textRice, J. R., and H. Saunders. "Numerical Methods, Software and Analysis." Journal of Vibration and Acoustics 108, no. 2 (April 1, 1986): 232–33. http://dx.doi.org/10.1115/1.3269330.
Full textGlowinski, Roland. "Nonlinear methods in numerical analysis." Computer Methods in Applied Mechanics and Engineering 66, no. 3 (February 1988): 369. http://dx.doi.org/10.1016/0045-7825(88)90008-4.
Full textJacobsen, Lisa, Annie Cuyt, and Luc Wuytack. "Nonlinear Methods in Numerical Analysis." Mathematics of Computation 51, no. 183 (July 1988): 380. http://dx.doi.org/10.2307/2008603.
Full textBraess, D., and R. Verfürth. "Multigrid Methods for Nonconforming Finite Element Methods." SIAM Journal on Numerical Analysis 27, no. 4 (August 1990): 979–86. http://dx.doi.org/10.1137/0727056.
Full textNatterer, Frank. "Numerical methods in tomography." Acta Numerica 8 (January 1999): 107–41. http://dx.doi.org/10.1017/s0962492900002907.
Full textPark, Jongho. "Additive Schwarz Methods for Convex Optimization as Gradient Methods." SIAM Journal on Numerical Analysis 58, no. 3 (January 2020): 1495–530. http://dx.doi.org/10.1137/19m1300583.
Full textPao, C. V. "Numerical Methods for Semilinear Parabolic Equations." SIAM Journal on Numerical Analysis 24, no. 1 (February 1987): 24–35. http://dx.doi.org/10.1137/0724003.
Full textDissertations / Theses on the topic "Numerical analysis methods"
Ashi, Hala. "Numerical methods for stiff systems." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/10663/.
Full textHarb, Ammar. "Discrete Stability of DPG Methods." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/2916.
Full textFu, Qi. "Numerical methods for pricing callable bonds." Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2493162.
Full textZahedi, Sara. "Numerical Methods for Fluid Interface Problems." Doctoral thesis, KTH, Numerisk analys, NA, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33111.
Full textQC 20110503
Frankcombe, Terry James. "Numerical methods in reaction rate theory /." [St. Lucia, Qld.], 2002. http://adt.library.uq.edu.au/public/adt-QU20021128.175205/index.html.
Full textHamed, Maien Mohamed Osman. "On meshless methods : a novel interpolatory method and a GPU-accelerated implementation." Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1018227.
Full textHonková, Michaela. "Numerical Methods of Image Analysis in Astrometry." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-375536.
Full textZhang, Zan. "Numerial development of an improved element-free Galerkin method for engineering analysis /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-bc-b23750613f.pdf.
Full text"Submitted to the Department of Building and Construction in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [170]-184)
Piqueras, García Miguel Ángel. "Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and Computing." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107948.
Full textMany problems in science and engineering are formulated as partial differential equations (PDEs). If the boundary of the domain where these equations are to be solved is not known a priori, we face "Free-boundary problems", which are characteristic of non-time dependent stationary systems; besides, we have "Moving-boundary problems" in temporal evolution processes, where the border changes over time. The solution to these problems is given by the expression of the dependent variable(s) of PDE(s), together with the function that determines the position of the boundary. Since the analytical solution of this type of problems is lacked in most cases, it is necessary to resort to numerical methods that allow an accurate enough solution to be obtained, and which also maintain the qualitative properties of the solution(s) of the continuous model. This work approaches the numerical study of some moving-boundary problems that arise in different disciplines. The applied methodology consists of two successive steps: firstly, the so-called Landau transformation, or "Front-fixing transformation", which is used in the PDE(s) model to maintain the boundary of the domain immobile; later, we proceed to its discretization with a finite difference scheme. Different numerical schemes are obtained and implemented through the MATLAB computational tool. Properties of the scheme and the numerical solution (positivity, stability, consistency, monotonicity, etc.) are studied by an exhaustive numerical analysis. The first chapter of this work reports the state of the art of the field under study, justifies the need to adapt numerical methods to this type of problem, and briefly describes the methodology used in our approach. Chapter 2 presents a problem in Mathematical Biology that consists in determining over time the evolution of an invasive species population that spreads in a habitat. This problem is modelled by a diffusion-reaction equation linked to a Stefan-type condition. The results of the numerical analysis confirm the existence of a spreading-vanishing dichotomy in the long-term evolution of the population density of the invasive species. In particular, it is possible to determine the value of the coefficient of the Stefan condition that separates the propagation behaviour from extinction. Chapters 3 and 4 focus on a problem of Concrete Chemistry with an interest in Civil Engineering: the carbonation of concrete, an evolutionary phenomenon that leads to the progressive degradation of the affected structure and its eventual ruin if preventive measures are not taken. Chapter 3 considers a system of two parabolic type PDEs with two unknowns. For its resolution, the initial and boundary conditions have to be considered together with the Stefan conditions on the carbonation front. The numerical analysis results agree with those obtained in a previous theoretical study. The dynamics of the concentrations and the moving boundary confirm the long-term behaviour of the evolution law for the moving boundary as a "square root of time". Chapter 4 considers a more general model than the previous one, which includes six chemical species, defined in both the carbonated and non-carbonated zones, whose concentrations have to be found. Chapter 5 addresses a heat transfer problem that appears in various industrial processes; in this case, the solidification of metals in casting processes, where the solid phase advances and liquid reduces until it is depleted. The moving boundary (the solidification front) separates both phases. Its position in each instant is the variable to be determined together with the temperature profiles in both phases. After suitable transformation, discretization is carried out to obtain a finite difference scheme to be implemented. The process was subdivided into three temporal stages to deal with the singularities associated with the moving boundary position in the initialisation and depletion stages.
Multitud de problemes en ciència i enginyeria es plantegen com a equacions en derivades parcials (EDPs). Si la frontera del recinte on eixes equacions han de satisfer-se es desconeix a priori, es parla de "Problemas de frontera lliure", propis de sistemes estacionaris no dependents del temps, o bé de "Problemas de frontera mòbil", associats a problemes d'evolució temporal, on la frontera canvia amb el temps. Atés que este tipus de problemes manca en la majoria dels casos de solució analítica coneguda, es fa precís recórrer a mètodes numèrics que permeten obtindre una solució prou aproximada a l'exacta, i que a més mantinga propietats qualitatives de la solució del model continu d'EDP(s). En aquest treball s'ha abordat l'estudi numèric d'alguns problemes de frontera mòbil provinents de diverses disciplines. La metodologia aplicada consta de dos passos successius: en primer lloc, s'aplica l'anomenada transformació de Landau o "Front-fixing transformation" al model en EDP(s) a fi de mantindre immòbil la frontera del domini; posteriorment, es procedix a la seva discretització a través d'un esquema en diferències finites. D'ací s'obtenen esquemes numèrics que s'implementen per mitjà de la ferramenta informàtica MATLAB. Per mitjà d'una exhaustiva anàlisi numèrica, s'estudien propietats de l'esquema i de la solució numèrica (positivitat, estabilitat, consistència, monotonia, etc.). En el primer capítol d'aquest treball es revisa l'estat de l'art del camp objecte d'estudi, es justifica la necessitat de disposar de mètodes numèrics adaptats a aquest tipus de problemes i es descriu breument la metodologia emprada en el nostre enfocament. El Capítol 2 es dedica a un problema pertanyent a la Biologia Matemàtica i que consistix a determinar l'evolució en el temps de la distribució de la població d'una espècie invasora que es propaga en un hàbitat. Este model consistix en una equació de difusió-reacció unida a una condició tipus Stefan, que relaciona les funcions solució i frontera mòbil a determinar. Els resultats de l'anàlisi numèrica confirmen l'existència d'una dicotomia propagació-extinció en l'evolució a llarg termini de la densitat de població de l'espècie invasora. En particular, s'ha pogut precisar el valor del coeficient de la condició de Stefan que separa el comportament de propagació del d'extinció. Els Capítols 3 i 4 se centren en un problema de Química del Formigó amb interés en Enginyeria Civil: el procés de carbonatació del formigó, fenomen evolutiu que comporta la degradació progressiva de l'estructura afectada i finalment la seua ruïna, si no es prenen mesures preventives. En el Capítol 3 es considera un sistema de dos EDPs de tipus parabòlic amb dos incògnites. Per a la seua resolució, cal considerar a més, les condicions inicials, les de contorn i les de tipus Stefan en la frontera. Els resultats de l'anàlisi numèrica s'ajusten als obtinguts en un estudi teòric previ. S'han dut a terme experiments numèrics, comprovant la tendència de la llei d'evolució de la frontera mòbil cap a una funció del tipus "arrel quadrada del temps". En el Capítol 4 es considera un model més general, en el que intervenen sis espècies químiques les concentracions de les quals cal trobar, i que es troben tant en la zona carbonatada com en la no carbonatada. En el Capítol 5 s'aborda un problema de transmissió de calor que apareix en diversos processos industrials; en aquest cas, en el refredament durant la bugada de metall fos, on la fase sòlida avança i la líquida es va extingint. La frontera mòbil (front de solidificació) separa ambdues fases, sent la seua posició en cada instant la variable a determinar, junt amb les temperatures en cada una de les dos fases. Després de l'adequada transformació i discretització, s'implementa un esquema en diferències finites, subdividint el procés en tres estadis temporals, per tal de tractar les singularitats asso
Piqueras García, MÁ. (2018). Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and Computing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107948
TESIS
Bayliss, Martin. "The numerical modelling of elastomers." Thesis, Cranfield University, 2003. http://hdl.handle.net/1826/87.
Full textBooks on the topic "Numerical analysis methods"
Iyengar, S. R. K. Numerical methods. New Delhi: New Age International (P) Ltd., Publishers, 2009.
Find full textColloquium on Numerical Methods (4th 1986 Miskolc, Hungary). Numerical methods. Amsterdam: North-Holland, 1988.
Find full textDonald, Greenspan, and Rózsa P, eds. Numerical methods. Amsterdam: North-Holland Pub. Co., 1991.
Find full textDonald, Greenspan, Rózsa P, and Bolyai János Matematikai Társalat, eds. Numerical methods. Amsterdam: North-Holland Pub. Co., 1988.
Find full textFaires, J. Douglas. Numerical methods. 3rd ed. Pacific Grove, CA: Thomson/Brooks/Cole, 2003.
Find full textBook chapters on the topic "Numerical analysis methods"
Potter, Merle C. "Numerical Methods." In Engineering Analysis, 348–405. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91683-5_8.
Full textJacques, Ian, and Colin Judd. "Methods of approximation theory." In Numerical Analysis, 129–89. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-5471-2_5.
Full textJacques, Ian, and Colin Judd. "Methods of approximation theory." In Numerical Analysis, 129–89. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3157-2_5.
Full textCourant, Richard, and Fritz John. "Numerical Methods." In Introduction to Calculus and Analysis, 481–509. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58604-0_6.
Full textCourant, Richard, and Fritz John. "Numerical Methods." In Introduction to Calculus and Analysis, 481–509. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8955-2_6.
Full textTaylor, Alexander John. "Numerical Methods." In Analysis of Quantised Vortex Tangle, 45–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48556-0_2.
Full textAnderson, David F., and Thomas G. Kurtz. "Numerical methods." In Stochastic Analysis of Biochemical Systems, 55–68. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16895-1_5.
Full textFeireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Numerical Methods." In Numerical Analysis of Compressible Fluid Flows, 253–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_8.
Full textStewart, William J. "Numerical Analysis Methods." In Performance Evaluation: Origins and Directions, 355–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-46506-5_15.
Full textPlonka, Gerlind, Daniel Potts, Gabriele Steidl, and Manfred Tasche. "Multidimensional Fourier Methods." In Numerical Fourier Analysis, 159–230. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04306-3_4.
Full textConference papers on the topic "Numerical analysis methods"
Goy, Matthias, Paul Böttner, Daniel Heinig, and Pedro de Dios. "All-numerical optimization of deformable mirrors." In Adaptive Optics: Methods, Analysis and Applications, OTh1F.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/aopt.2024.oth1f.2.
Full textKettmann, Markus A., and Martin Arnold. "Heterogeneous multiscale methods for penalty methods in multibody dynamics." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756269.
Full textYesilel, H., F. O. Edis, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Ship Airwake Analysis by CFD Methods." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790239.
Full textBoikanyo, Oganeditse A., Gheorghe Moroşanu, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Proximal Point Methods Revisited." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636878.
Full textVanden Berghe, G., M. Van Daele, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Tuned Methods for Fourth Order Boundary Problems." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790161.
Full textKneller, Gerald R., and Konrad Hinsen. "Analysis of low-frequency motions in proteins by computer simulation and neutron scattering." In Neutrons and numerical methods. AIP, 1999. http://dx.doi.org/10.1063/1.59484.
Full textCheng, Li, Liu He, Lv Pin, and Ning Yu. "Numerical Simulation of Atmospheric Tomography with Plenoptic Camera." In Adaptive Optics: Analysis, Methods & Systems. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/aoms.2018.oth3e.6.
Full textGürlebeck, K., and Wolfgang Spröβig. "Complex and Hypercomplex Methods in Applications." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991004.
Full textBotta, Vanessa Avansini, and Messias Meneguette. "Concerning the Stability of BDF Methods." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991010.
Full textKansa, Edward J., Alexender I. Fedoseyev, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Meshfree Methods: Applications and Theory." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637939.
Full textReports on the topic "Numerical analysis methods"
Rozovskii, Boris, and Alexander Tartakovsky. Nonlinear Filtering: Analysis and Numerical Methods. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada399200.
Full textFlanagan, R. D., M. A. Tenbus, and R. M. Bennett. Numerical methods for analysis of clay tile infills. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10186487.
Full textClayton, John D., Peter W. Chung, Michael A. Greenfield, and WIlliam D. Nothwang. Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada459751.
Full textPage, William, Brian Fisk, and William Zimmerman. Development of Numerical Simulation Methods for Analysis of Laser Guided Arc Discharge. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada483004.
Full textZou, Ling, and Rui Hu. Investigation of Numerical Methods for Performance Improvement of MOOSE-based System Analysis Codes. Office of Scientific and Technical Information (OSTI), August 2024. http://dx.doi.org/10.2172/2438601.
Full textEisenberg, Michael. Descriptive Simulation: Combining Symbolic and Numerical Methods in the Analysis of Chemical Reaction Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada214678.
Full textCiterley, Richard L., and Narendra S. Khot. Numerical Methods for Imperfection Sensitivity Analysis of Stiffened Cylindrical Shells. Volume 1. Development and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada179686.
Full textChan, Tony F. Numerical Methods for Solving Large Sparse Eigenvalue Problems and for the Analysis of Bifurcation Phenomena. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada244273.
Full textChan, Tony F. Numerical Methods for Solving Large Sparse Eigenvalue Problems and for the Analysis of Bifurcation Phenomena. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada246470.
Full textIhlenburg, Frank, and Ivo Babuska. Dispersion Analysis and Error Estimation of Galerkin Finite Element Methods for the Numerical Computation of Waves. Fort Belvoir, VA: Defense Technical Information Center, July 1994. http://dx.doi.org/10.21236/ada290296.
Full text