Academic literature on the topic 'Numerical analysis methods'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numerical analysis methods.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Numerical analysis methods"

1

I., E., James L. Buchanan, and Peter R. Turner. "Numerical Methods and Analysis." Mathematics of Computation 60, no. 202 (April 1993): 848. http://dx.doi.org/10.2307/2153126.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Daegene. "Data Analysis in an Entanglement Network Using Numerical Methods." NeuroQuantology 20, no. 2 (April 1, 2022): 158–64. http://dx.doi.org/10.14704/nq.2022.20.2.nq22084.

Full text
Abstract:
While the foundation of quantum theory has been debated, its pragmatism has made it enormously productive. Establishing secret keys over long distances has been realized in the real world. Once considered only a hype, quantum computers have also been implemented in laboratories and are performing computations that are superior to their classical counterparts. In this paper, building on previous work, three 2-level entangled states are studied. In particular, the extensive range of states that yield the near-optimal result when entanglement swapping is applied at joints is numerically examined. This result is useful in establishing long-distance maximally entangled states, which are often preferred to short, non-maximal ones when used in applications. The precise nature of physical reality has been debated ever since the birth of quantum theory about a century ago. In this paper, reality is described not only in its physical aspects, but also as it pertains to consciousness. This physical reality in the context of mind is discussed using various examples, including entanglement and the Chinese room argument.
APA, Harvard, Vancouver, ISO, and other styles
3

Bunse-Gerstner, Angelika, Ralph Byers, and Volker Mehrmann. "Numerical Methods for Simultaneous Diagonalization." SIAM Journal on Matrix Analysis and Applications 14, no. 4 (October 1993): 927–49. http://dx.doi.org/10.1137/0614062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rice, J. R., and H. Saunders. "Numerical Methods, Software and Analysis." Journal of Vibration and Acoustics 108, no. 2 (April 1, 1986): 232–33. http://dx.doi.org/10.1115/1.3269330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Glowinski, Roland. "Nonlinear methods in numerical analysis." Computer Methods in Applied Mechanics and Engineering 66, no. 3 (February 1988): 369. http://dx.doi.org/10.1016/0045-7825(88)90008-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jacobsen, Lisa, Annie Cuyt, and Luc Wuytack. "Nonlinear Methods in Numerical Analysis." Mathematics of Computation 51, no. 183 (July 1988): 380. http://dx.doi.org/10.2307/2008603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Braess, D., and R. Verfürth. "Multigrid Methods for Nonconforming Finite Element Methods." SIAM Journal on Numerical Analysis 27, no. 4 (August 1990): 979–86. http://dx.doi.org/10.1137/0727056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Natterer, Frank. "Numerical methods in tomography." Acta Numerica 8 (January 1999): 107–41. http://dx.doi.org/10.1017/s0962492900002907.

Full text
Abstract:
In this article we review the image reconstruction algorithms used in tomography. We restrict ourselves to the standard problems in the reconstruction of function from line or plane integrals as they occur in X-ray tomography, nuclear medicine, magnetic resonance imaging, and electron microscopy. Nonstandard situations, such as incomplete data, unknown orientations, local tomography, and discrete tomography are not dealt with. Nor do we treat nonlinear tomographic techniques such as impedance, ultrasound, and near-infrared imaging.
APA, Harvard, Vancouver, ISO, and other styles
9

Park, Jongho. "Additive Schwarz Methods for Convex Optimization as Gradient Methods." SIAM Journal on Numerical Analysis 58, no. 3 (January 2020): 1495–530. http://dx.doi.org/10.1137/19m1300583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pao, C. V. "Numerical Methods for Semilinear Parabolic Equations." SIAM Journal on Numerical Analysis 24, no. 1 (February 1987): 24–35. http://dx.doi.org/10.1137/0724003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Numerical analysis methods"

1

Ashi, Hala. "Numerical methods for stiff systems." Thesis, University of Nottingham, 2008. http://eprints.nottingham.ac.uk/10663/.

Full text
Abstract:
Some real-world applications involve situations where different physical phenomena acting on very different time scales occur simultaneously. The partial differential equations (PDEs) governing such situations are categorized as "stiff" PDEs. Stiffness is a challenging property of differential equations (DEs) that prevents conventional explicit numerical integrators from handling a problem efficiently. For such cases, stability (rather than accuracy) requirements dictate the choice of time step size to be very small. Considerable effort in coping with stiffness has gone into developing time-discretization methods to overcome many of the constraints of the conventional methods. Recently, there has been a renewed interest in exponential integrators that have emerged as a viable alternative for dealing effectively with stiffness of DEs. Our attention has been focused on the explicit Exponential Time Differencing (ETD) integrators that are designed to solve stiff semi-linear problems. Semi-linear PDEs can be split into a linear part, which contains the stiffest part of the dynamics of the problem, and a nonlinear part, which varies more slowly than the linear part. The ETD methods solve the linear part exactly, and then explicitly approximate the remaining part by polynomial approximations. The first aspect of this project involves an analytical examination of the methods' stability properties in order to present the advantage of these methods in overcoming the stability constraints. Furthermore, we discuss the numerical difficulties in approximating the ETD coefficients, which are functions of the linear term of the PDE. We address ourselves to describing various algorithms for approximating the coefficients, analyze their performance and their computational cost, and weigh their advantages for an efficient implementation of the ETD methods. The second aspect is to perform a variety of numerical experiments to evaluate the usefulness of the ETD methods, compared to other competing stiff integrators, for integrating real application problems. The problems considered include the Kuramoto-Sivashinsky equation, the nonlinear Schrödinger equation and the nonlinear Thin Film equation, all in one space dimension. The main properties tested are accuracy, start-up overhead cost and overall computation cost, since these parameters play key roles in the overall efficiency of the methods.
APA, Harvard, Vancouver, ISO, and other styles
2

Harb, Ammar. "Discrete Stability of DPG Methods." PDXScholar, 2016. http://pdxscholar.library.pdx.edu/open_access_etds/2916.

Full text
Abstract:
This dissertation presents a duality theorem of the Aubin-Nitsche type for discontinuous Petrov Galerkin (DPG) methods. This explains the numerically observed higher convergence rates in weaker norms. Considering the specific example of the mild-weak (or primal) DPG method for the Laplace equation, two further results are obtained. First, for triangular meshes, the DPG method continues to be solvable even when the test space degree is reduced, provided it is odd. Second, a non-conforming method of analysis is developed to explain the numerically observed convergence rates for a test space of reduced degree. Finally, for rectangular meshes, the test space is reduced, yet the convergence is recovered regardless of parity.
APA, Harvard, Vancouver, ISO, and other styles
3

Fu, Qi. "Numerical methods for pricing callable bonds." Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2493162.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zahedi, Sara. "Numerical Methods for Fluid Interface Problems." Doctoral thesis, KTH, Numerisk analys, NA, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-33111.

Full text
Abstract:
This thesis concerns numerical techniques for two phase flowsimulations; the two phases are immiscible and incompressible fluids. Strategies for accurate simulations are suggested. In particular, accurate approximations of the weakly discontinuousvelocity field, the discontinuous pressure, and the surface tension force and a new model for simulations of contact line dynamics are proposed. In two phase flow problems discontinuities arise in the pressure and the gradient of the velocity field due to surface tension forces and differences in the fluids' viscosity. In this thesis, a new finite element method which allows for discontinuities along an interface that can be arbitrarily located with respect to the mesh is presented. Using standard linear finite elements, the method is for an elliptic PDE proven to have optimal convergence order and a system matrix with condition number bounded independently of the position of the interface.The new finite element method is extended to the incompressible Stokes equations for two fluid systemsand enables accurate approximations of the weakly discontinuous velocity field and the discontinuous pressure. An alternative way to handle discontinuities is regularization. In this thesis, consistent regularizations of Dirac delta functions with support on interfaces are proposed. These regularized delta functions make it easy to approximate surface tension forces in level set methods. A new model for simulating contact line dynamics is also proposed. Capillary dominated flows are considered and it is assumed that contact line movement is driven by the deviation of the contact angle from its static value. This idea is used together with the conservative level set method. The need for fluid slip at the boundary is eliminated by providing a diffusive mechanism for contact line movement. Numerical experiments in two space dimensions show that the method is able to qualitatively correctly capture contact line dynamics.
QC 20110503
APA, Harvard, Vancouver, ISO, and other styles
5

Frankcombe, Terry James. "Numerical methods in reaction rate theory /." [St. Lucia, Qld.], 2002. http://adt.library.uq.edu.au/public/adt-QU20021128.175205/index.html.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hamed, Maien Mohamed Osman. "On meshless methods : a novel interpolatory method and a GPU-accelerated implementation." Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1018227.

Full text
Abstract:
Meshless methods have been developed to avoid the numerical burden imposed by meshing in the Finite Element Method. Such methods are especially attrac- tive in problems that require repeated updates to the mesh, such as problems with discontinuities or large geometrical deformations. Although meshing is not required for solving problems with meshless methods, the use of meshless methods gives rise to different challenges. One of the main challenges associated with meshless methods is imposition of essential boundary conditions. If exact interpolants are used as shape functions in a meshless method, imposing essen- tial boundary conditions can be done in the same way as the Finite Element Method. Another attractive feature of meshless methods is that their use involves compu- tations that are largely independent from one another. This makes them suitable for implementation to run on highly parallel computing systems. Highly par- allel computing has become widely available with the introduction of software development tools that enable developing general-purpose programs that run on Graphics Processing Units. In the current work, the Moving Regularized Interpolation method has been de- veloped, which is a novel method of constructing meshless shape functions that achieve exact interpolation. The method is demonstrated in data interpolation and in partial differential equations. In addition, an implementation of the Element-Free Galerkin method has been written to run on a Graphics Processing Unit. The implementation is described and its performance is compared to that of a similar implementation that does not make use of the Graphics Processing Unit.
APA, Harvard, Vancouver, ISO, and other styles
7

Honková, Michaela. "Numerical Methods of Image Analysis in Astrometry." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-375536.

Full text
Abstract:
Velmi přesná následná astrometrie je nezbytným předpokladem sledování blízkozemních objektů, které mohou představovat riziko srážky se Zemí. Tato práce přináší ucelený přehled přesné astrometrie, obsahuje potřebnou matematickou teorii, postup předzpracování snímků v astronomii, a nastiňuje použití filtrů. Navrhuje nové metody pro vyrovnání pozadí snímků před provedením astrometrického měření pro případ, kdy nejsou dostupné kalibrační snímky. Tyto metody jsou založeny na vytvoření syntetického flatfieldu pomocí aplikování filtru na snímek a následné užití tohoto flatfieldu pro odstranění pozadí snímku. Metody byly otestovány na vzorových snímcích a vzápětí použity k získání astrometrických pozic prvního mezihvězdného objektu 1I/2017 U1 ('Oumuamua).
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Zan. "Numerial development of an improved element-free Galerkin method for engineering analysis /." access full-text access abstract and table of contents, 2009. http://libweb.cityu.edu.hk/cgi-bin/ezdb/thesis.pl?phd-bc-b23750613f.pdf.

Full text
Abstract:
Thesis (Ph.D.)--City University of Hong Kong, 2009.
"Submitted to the Department of Building and Construction in partial fulfillment of the requirements for the degree of Doctor of Philosophy." Includes bibliographical references (leaves [170]-184)
APA, Harvard, Vancouver, ISO, and other styles
9

Piqueras, García Miguel Ángel. "Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and Computing." Doctoral thesis, Universitat Politècnica de València, 2018. http://hdl.handle.net/10251/107948.

Full text
Abstract:
Multitud de problemas en ciencia e ingeniería se plantean como ecuaciones en derivadas parciales (EDPs). Si la frontera del recinto donde esas ecuaciones han de satisfacerse se desconoce a priori, se habla de "Problemas de frontera libre", propios de sistemas estacionarios no dependientes del tiempo, o bien de "Problemas de frontera móvil", asociados a problemas de evolución temporal, donde la frontera cambia con el tiempo. La solución a dichos problemas viene dada por la expresión de la(s) variable(s) dependiente(s) de la(s) EDP(s) junto con la función que determina la posición de la frontera. Dado que este tipo de problemas carece en la mayoría de los casos de solución analítica conocida, se hace preciso recurrir a métodos numéricos que permitan obtener una solución lo suficientemente aproximada, y que además mantenga propiedades cualitativas de la solución del modelo continuo de EDP(s). En este trabajo se ha abordado el estudio numérico de algunos problemas de frontera móvil provenientes de diversas disciplinas. La metodología aplicada consta de dos pasos sucesivos: aplicación de la transformación de Landau o "Front-fixing transformation" al modelo en EDP(s) con el fin de mantener inmóvil la frontera del dominio, y posterior discretización a través de un esquema en diferencias finitas. De ahí se obtienen esquemas numéricos que se implementan por medio de la herramienta MATLAB. Mediante un exhaustivo análisis numérico, se estudian propiedades del esquema y de la solución numérica (positividad, estabilidad, consistencia, monotonía, etc.). En el primer capítulo de este trabajo se revisa el estado del arte del campo objeto de estudio, se justifica la necesidad de disponer de métodos numéricos adaptados a este tipo de problemas y se describe brevemente la metodología empleada en nuestro enfoque. El Capítulo 2 se dedica a un problema perteneciente a la Biología Matemática y que consiste en determinar la evolución de la población de una especie invasora que se propaga en un hábitat. Este modelo consiste en una ecuación de difusión-reacción unida a una condición tipo Stefan. Los resultados del análisis numérico confirman la existencia de una dicotomía propagación-extinción en la evolución a largo plazo de la densidad de población de la especie invasora. En particular, se ha podido precisar el valor del coeficiente de la condición de Stefan que separa el comportamiento de propagación del de extinción. Los Capítulos 3 y 4 se centran en un problema de Química del Hormigón con interés en Ingeniería Civil: el proceso de carbonatación del hormigón, fenómeno evolutivo que lleva consigo la degradación progresiva de la estructura afectada y finalmente su ruina, si no se toman medidas preventivas. En el Capítulo 3 se considera un sistema de dos EDPs de tipo parabólico con dos incógnitas. Para su resolución, hay que considerar además las condiciones iniciales, las de contorno y las de tipo Stefan en la frontera. Los resultados numéricos confirman la tendencia de la ley de evolución de la frontera móvil hacia una función del tipo "raíz cuadrada del tiempo". En el Capítulo 4 se considera un modelo más general que el anterior, en el que intervienen seis especies químicas que se encuentran tanto en la zona carbonatada como en la no carbonatada. En el Capítulo 5 se aborda un problema de transmisión de calor que aparece en diversos procesos industriales; en este caso, en el enfriamiento durante la colada de metal fundido, donde la fase sólida avanza y la líquida se va extinguiendo. La frontera móvil (frente de solidificación) separa ambas fases, siendo su posición en cada instante la variable a determinar, junto con las temperaturas en cada fase. Después de la adecuada transformación y discretización, se implementa un esquema en diferencias finitas, subdividiendo el proceso en tres estadios temporales, a fin de tratar las singularidades asociadas a posicione
Many problems in science and engineering are formulated as partial differential equations (PDEs). If the boundary of the domain where these equations are to be solved is not known a priori, we face "Free-boundary problems", which are characteristic of non-time dependent stationary systems; besides, we have "Moving-boundary problems" in temporal evolution processes, where the border changes over time. The solution to these problems is given by the expression of the dependent variable(s) of PDE(s), together with the function that determines the position of the boundary. Since the analytical solution of this type of problems is lacked in most cases, it is necessary to resort to numerical methods that allow an accurate enough solution to be obtained, and which also maintain the qualitative properties of the solution(s) of the continuous model. This work approaches the numerical study of some moving-boundary problems that arise in different disciplines. The applied methodology consists of two successive steps: firstly, the so-called Landau transformation, or "Front-fixing transformation", which is used in the PDE(s) model to maintain the boundary of the domain immobile; later, we proceed to its discretization with a finite difference scheme. Different numerical schemes are obtained and implemented through the MATLAB computational tool. Properties of the scheme and the numerical solution (positivity, stability, consistency, monotonicity, etc.) are studied by an exhaustive numerical analysis. The first chapter of this work reports the state of the art of the field under study, justifies the need to adapt numerical methods to this type of problem, and briefly describes the methodology used in our approach. Chapter 2 presents a problem in Mathematical Biology that consists in determining over time the evolution of an invasive species population that spreads in a habitat. This problem is modelled by a diffusion-reaction equation linked to a Stefan-type condition. The results of the numerical analysis confirm the existence of a spreading-vanishing dichotomy in the long-term evolution of the population density of the invasive species. In particular, it is possible to determine the value of the coefficient of the Stefan condition that separates the propagation behaviour from extinction. Chapters 3 and 4 focus on a problem of Concrete Chemistry with an interest in Civil Engineering: the carbonation of concrete, an evolutionary phenomenon that leads to the progressive degradation of the affected structure and its eventual ruin if preventive measures are not taken. Chapter 3 considers a system of two parabolic type PDEs with two unknowns. For its resolution, the initial and boundary conditions have to be considered together with the Stefan conditions on the carbonation front. The numerical analysis results agree with those obtained in a previous theoretical study. The dynamics of the concentrations and the moving boundary confirm the long-term behaviour of the evolution law for the moving boundary as a "square root of time". Chapter 4 considers a more general model than the previous one, which includes six chemical species, defined in both the carbonated and non-carbonated zones, whose concentrations have to be found. Chapter 5 addresses a heat transfer problem that appears in various industrial processes; in this case, the solidification of metals in casting processes, where the solid phase advances and liquid reduces until it is depleted. The moving boundary (the solidification front) separates both phases. Its position in each instant is the variable to be determined together with the temperature profiles in both phases. After suitable transformation, discretization is carried out to obtain a finite difference scheme to be implemented. The process was subdivided into three temporal stages to deal with the singularities associated with the moving boundary position in the initialisation and depletion stages.
Multitud de problemes en ciència i enginyeria es plantegen com a equacions en derivades parcials (EDPs). Si la frontera del recinte on eixes equacions han de satisfer-se es desconeix a priori, es parla de "Problemas de frontera lliure", propis de sistemes estacionaris no dependents del temps, o bé de "Problemas de frontera mòbil", associats a problemes d'evolució temporal, on la frontera canvia amb el temps. Atés que este tipus de problemes manca en la majoria dels casos de solució analítica coneguda, es fa precís recórrer a mètodes numèrics que permeten obtindre una solució prou aproximada a l'exacta, i que a més mantinga propietats qualitatives de la solució del model continu d'EDP(s). En aquest treball s'ha abordat l'estudi numèric d'alguns problemes de frontera mòbil provinents de diverses disciplines. La metodologia aplicada consta de dos passos successius: en primer lloc, s'aplica l'anomenada transformació de Landau o "Front-fixing transformation" al model en EDP(s) a fi de mantindre immòbil la frontera del domini; posteriorment, es procedix a la seva discretització a través d'un esquema en diferències finites. D'ací s'obtenen esquemes numèrics que s'implementen per mitjà de la ferramenta informàtica MATLAB. Per mitjà d'una exhaustiva anàlisi numèrica, s'estudien propietats de l'esquema i de la solució numèrica (positivitat, estabilitat, consistència, monotonia, etc.). En el primer capítol d'aquest treball es revisa l'estat de l'art del camp objecte d'estudi, es justifica la necessitat de disposar de mètodes numèrics adaptats a aquest tipus de problemes i es descriu breument la metodologia emprada en el nostre enfocament. El Capítol 2 es dedica a un problema pertanyent a la Biologia Matemàtica i que consistix a determinar l'evolució en el temps de la distribució de la població d'una espècie invasora que es propaga en un hàbitat. Este model consistix en una equació de difusió-reacció unida a una condició tipus Stefan, que relaciona les funcions solució i frontera mòbil a determinar. Els resultats de l'anàlisi numèrica confirmen l'existència d'una dicotomia propagació-extinció en l'evolució a llarg termini de la densitat de població de l'espècie invasora. En particular, s'ha pogut precisar el valor del coeficient de la condició de Stefan que separa el comportament de propagació del d'extinció. Els Capítols 3 i 4 se centren en un problema de Química del Formigó amb interés en Enginyeria Civil: el procés de carbonatació del formigó, fenomen evolutiu que comporta la degradació progressiva de l'estructura afectada i finalment la seua ruïna, si no es prenen mesures preventives. En el Capítol 3 es considera un sistema de dos EDPs de tipus parabòlic amb dos incògnites. Per a la seua resolució, cal considerar a més, les condicions inicials, les de contorn i les de tipus Stefan en la frontera. Els resultats de l'anàlisi numèrica s'ajusten als obtinguts en un estudi teòric previ. S'han dut a terme experiments numèrics, comprovant la tendència de la llei d'evolució de la frontera mòbil cap a una funció del tipus "arrel quadrada del temps". En el Capítol 4 es considera un model més general, en el que intervenen sis espècies químiques les concentracions de les quals cal trobar, i que es troben tant en la zona carbonatada com en la no carbonatada. En el Capítol 5 s'aborda un problema de transmissió de calor que apareix en diversos processos industrials; en aquest cas, en el refredament durant la bugada de metall fos, on la fase sòlida avança i la líquida es va extingint. La frontera mòbil (front de solidificació) separa ambdues fases, sent la seua posició en cada instant la variable a determinar, junt amb les temperatures en cada una de les dos fases. Després de l'adequada transformació i discretització, s'implementa un esquema en diferències finites, subdividint el procés en tres estadis temporals, per tal de tractar les singularitats asso
Piqueras García, MÁ. (2018). Numerical Methods for Multidisciplinary Free Boundary Problems: Numerical Analysis and Computing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107948
TESIS
APA, Harvard, Vancouver, ISO, and other styles
10

Bayliss, Martin. "The numerical modelling of elastomers." Thesis, Cranfield University, 2003. http://hdl.handle.net/1826/87.

Full text
Abstract:
This thesis reports onreview and research work carried out on the numerical analysis of elastomers. The two numerical techniques investigated for this purpose are the finite and boundary element methods. The finite element method is studied so that existing theory is used to develop a finite element code both to review the finite element method as applied to the stress analysis of elastomers and to provide a comparison of results and numerical approach with the boundary element method. The research work supported on in this thesis covers the application of the boundary element method to the stress analysis of elastomers. To this end a simplified regularization approach is discussed for the removal of strong and hypersingularities generated in the system on non-linear boundary integral equations. The necessary programming details for the implementation of the boundary element method are discussed based on the code developed for this research. Both the finite and boundary element codes developed for this research use the Mooney-Rivlin material model as the strain energy based constitutive stress strain function. For validation purposes four test cases are investigated. These are the uni-axial patch test, pressurized thick wall cylinder, centrifugal loading of a rotating disk and the J-Integral evaluation for a centrally cracked plate. For the patch test and pressurized cylinder, both plane stress and strain have been investigated. For the centrifugal loading and centrally cracked plate test cases only plane stress has been investigated. For each test case the equivalent results for an equivalent FEM program mesh have been presented. The test results included in this thesis prove that the FE and BE derivations detailed in this work are correct. Specifically the simplified domain integral singular and hyper-singular regularization approach was shown to lead to accurate results for the test cases detailed. Various algorithm findings specific to the BEM implementation of the theory are also discussed.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Numerical analysis methods"

1

Iyengar, S. R. K. Numerical methods. New Delhi: New Age International (P) Ltd., Publishers, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Colloquium on Numerical Methods (4th 1986 Miskolc, Hungary). Numerical methods. Amsterdam: North-Holland, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Donald, Greenspan, and Rózsa P, eds. Numerical methods. Amsterdam: North-Holland Pub. Co., 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Donald, Greenspan, Rózsa P, and Bolyai János Matematikai Társalat, eds. Numerical methods. Amsterdam: North-Holland Pub. Co., 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Volkov, E. A. Numerical methods. Moscow: Mir Publishers, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Volkov, E. A. Numerical methods. [Moscow]: Mir Publishers Moscow, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Volkov, E. A. Numerical methods. New York: Hemisphere Pub. Corp., 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Faires, J. Douglas. Numerical methods. Boston: PWS-Kent Pub. Co., 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Faires, J. Douglas. Numerical methods. 3rd ed. Pacific Grove, CA: Thomson/Brooks/Cole, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dukkipati, Rao V. Numerical methods. New Delhi: New Age International Ltd., 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Numerical analysis methods"

1

Potter, Merle C. "Numerical Methods." In Engineering Analysis, 348–405. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91683-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jacques, Ian, and Colin Judd. "Methods of approximation theory." In Numerical Analysis, 129–89. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-017-5471-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jacques, Ian, and Colin Judd. "Methods of approximation theory." In Numerical Analysis, 129–89. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3157-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Courant, Richard, and Fritz John. "Numerical Methods." In Introduction to Calculus and Analysis, 481–509. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58604-0_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Courant, Richard, and Fritz John. "Numerical Methods." In Introduction to Calculus and Analysis, 481–509. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4613-8955-2_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Taylor, Alexander John. "Numerical Methods." In Analysis of Quantised Vortex Tangle, 45–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48556-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anderson, David F., and Thomas G. Kurtz. "Numerical methods." In Stochastic Analysis of Biochemical Systems, 55–68. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16895-1_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Feireisl, Eduard, Mária Lukáčová-Medviďová, Hana Mizerová, and Bangwei She. "Numerical Methods." In Numerical Analysis of Compressible Fluid Flows, 253–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73788-7_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stewart, William J. "Numerical Analysis Methods." In Performance Evaluation: Origins and Directions, 355–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-46506-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Plonka, Gerlind, Daniel Potts, Gabriele Steidl, and Manfred Tasche. "Multidimensional Fourier Methods." In Numerical Fourier Analysis, 159–230. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04306-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Numerical analysis methods"

1

Goy, Matthias, Paul Böttner, Daniel Heinig, and Pedro de Dios. "All-numerical optimization of deformable mirrors." In Adaptive Optics: Methods, Analysis and Applications, OTh1F.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/aopt.2024.oth1f.2.

Full text
Abstract:
The growing market of space-borne telescopes requires adaptive optical correctors to compensate for system aberrations. This work will provide a method for an all-numerical approach of optimizing deformable mirrors for this application.
APA, Harvard, Vancouver, ISO, and other styles
2

Kettmann, Markus A., and Martin Arnold. "Heterogeneous multiscale methods for penalty methods in multibody dynamics." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756269.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yesilel, H., F. O. Edis, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Ship Airwake Analysis by CFD Methods." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boikanyo, Oganeditse A., Gheorghe Moroşanu, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Proximal Point Methods Revisited." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3636878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vanden Berghe, G., M. Van Daele, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Tuned Methods for Fourth Order Boundary Problems." In Numerical Analysis and Applied Mathematics. AIP, 2007. http://dx.doi.org/10.1063/1.2790161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kneller, Gerald R., and Konrad Hinsen. "Analysis of low-frequency motions in proteins by computer simulation and neutron scattering." In Neutrons and numerical methods. AIP, 1999. http://dx.doi.org/10.1063/1.59484.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cheng, Li, Liu He, Lv Pin, and Ning Yu. "Numerical Simulation of Atmospheric Tomography with Plenoptic Camera." In Adaptive Optics: Analysis, Methods & Systems. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/aoms.2018.oth3e.6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gürlebeck, K., and Wolfgang Spröβig. "Complex and Hypercomplex Methods in Applications." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Botta, Vanessa Avansini, and Messias Meneguette. "Concerning the Stability of BDF Methods." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2008. American Institute of Physics, 2008. http://dx.doi.org/10.1063/1.2991010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kansa, Edward J., Alexender I. Fedoseyev, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Meshfree Methods: Applications and Theory." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637939.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Numerical analysis methods"

1

Rozovskii, Boris, and Alexander Tartakovsky. Nonlinear Filtering: Analysis and Numerical Methods. Fort Belvoir, VA: Defense Technical Information Center, November 2001. http://dx.doi.org/10.21236/ada399200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Flanagan, R. D., M. A. Tenbus, and R. M. Bennett. Numerical methods for analysis of clay tile infills. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10186487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Clayton, John D., Peter W. Chung, Michael A. Greenfield, and WIlliam D. Nothwang. Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada459751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Page, William, Brian Fisk, and William Zimmerman. Development of Numerical Simulation Methods for Analysis of Laser Guided Arc Discharge. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada483004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zou, Ling, and Rui Hu. Investigation of Numerical Methods for Performance Improvement of MOOSE-based System Analysis Codes. Office of Scientific and Technical Information (OSTI), August 2024. http://dx.doi.org/10.2172/2438601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eisenberg, Michael. Descriptive Simulation: Combining Symbolic and Numerical Methods in the Analysis of Chemical Reaction Mechanisms. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada214678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Citerley, Richard L., and Narendra S. Khot. Numerical Methods for Imperfection Sensitivity Analysis of Stiffened Cylindrical Shells. Volume 1. Development and Applications. Fort Belvoir, VA: Defense Technical Information Center, September 1986. http://dx.doi.org/10.21236/ada179686.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chan, Tony F. Numerical Methods for Solving Large Sparse Eigenvalue Problems and for the Analysis of Bifurcation Phenomena. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada244273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chan, Tony F. Numerical Methods for Solving Large Sparse Eigenvalue Problems and for the Analysis of Bifurcation Phenomena. Fort Belvoir, VA: Defense Technical Information Center, October 1991. http://dx.doi.org/10.21236/ada246470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ihlenburg, Frank, and Ivo Babuska. Dispersion Analysis and Error Estimation of Galerkin Finite Element Methods for the Numerical Computation of Waves. Fort Belvoir, VA: Defense Technical Information Center, July 1994. http://dx.doi.org/10.21236/ada290296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography