Academic literature on the topic 'Numeral modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Numeral modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Numeral modeling"
Agbeyangi, Abayomi Olusola, Safiriyu Eludiora, and Popoola O. A. "Web-Based Yorùbá Numeral Translation System." IAES International Journal of Artificial Intelligence (IJ-AI) 5, no. 4 (February 13, 2017): 127. http://dx.doi.org/10.11591/ijai.v5.i4.pp127-134.
Full textUpadhye, Gopal Dadarao, Uday V. Kulkarni, and Deepak T. Mane. "Improved Model Configuration Strategies for Kannada Handwritten Numeral Recognition." Image Analysis & Stereology 40, no. 3 (December 15, 2021): 181–91. http://dx.doi.org/10.5566/ias.2586.
Full textRen, Zhao Hui, Xiao Peng Li, J. S. Dai, and Bang Chun Wen. "Research on Fuzzy Information Modeling Process of Quality Function Deployment." Advanced Materials Research 44-46 (June 2008): 691–96. http://dx.doi.org/10.4028/www.scientific.net/amr.44-46.691.
Full textGOLDBERG, MAYER. "An adequate and efficient left-associated binary numeral system in the λ-calculus." Journal of Functional Programming 10, no. 6 (November 2000): 607–23. http://dx.doi.org/10.1017/s0956796800003804.
Full textZhang, Jian Hua, Dian Wei Gao, Ke Sun, and Xin Sheng Liu. "Parameterized Modeling and Analysis of Wind Turbine Blade Using VB and ANSYS." Advanced Materials Research 774-776 (September 2013): 248–51. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.248.
Full textMing-Zhou, Gao, Chen Xin-Yi, Han Rong, and Yao Jian-Yong. "A finite-time H-infinite adaptive fault-tolerant controller considering time delay for flutter suppression of airfoil flutter." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, no. 2 (August 8, 2019): 293–307. http://dx.doi.org/10.1177/0954410019867575.
Full textBai, Qing Shun, Ying Chun Liang, Kai Yang, Zhi Luo, and Xiao Yan Fang. "Modeling and Micro-Milling Experiments on Complex 3D Micro-Mould Parts." Key Engineering Materials 431-432 (March 2010): 413–16. http://dx.doi.org/10.4028/www.scientific.net/kem.431-432.413.
Full textShao, Xuejuan, Jinggang Zhang, and Xueliang Zhang. "Takagi-Sugeno Fuzzy Modeling and PSO-Based Robust LQR Anti-Swing Control for Overhead Crane." Mathematical Problems in Engineering 2019 (April 4, 2019): 1–14. http://dx.doi.org/10.1155/2019/4596782.
Full textZhang, W., T. Li, Y. Huang, Q. Zhang, J. Bian, and P. Han. "Estimation of uncertainties due to data scarcity in model upscaling: a case study of methane emissions from rice paddies in China." Geoscientific Model Development Discussions 7, no. 1 (January 10, 2014): 181–216. http://dx.doi.org/10.5194/gmdd-7-181-2014.
Full textGholamreza, Farzan, Yang Su, Ruoyao Li, Anupama Vijaya Nadaraja, Robert Gathercole, Ri Li, Patricia I. Dolez, et al. "Modeling and Prediction of Thermophysiological Comfort Properties of a Single Layer Fabric System Using Single Sector Sweating Torso." Materials 15, no. 16 (August 22, 2022): 5786. http://dx.doi.org/10.3390/ma15165786.
Full textDissertations / Theses on the topic "Numeral modeling"
Spinelli, Giovanni. "Electromagnetic characterization and modeling of CNT-based composites for industrial applications." Doctoral thesis, Universita degli studi di Salerno, 2012. http://hdl.handle.net/10556/343.
Full textIn several applications for the aeronautic, automative and electronic industries, there is an increasing demand of structural nanocomposites exhibiting remarkable thermal and mechanical properties and, at the same time, tailored and controlled electromagnetic (EM) performances. The interest and the scientific importance of the topic is justified by the fact that the conventional materials do not have the suitable properties to satisfy the specific requirements for modern applications. Instead, two or more distinct materials may be combined to form a material which possesses superior properties, with respect to those of individual components. Thus the individuation and preparation of advanced composites with best features respect to the traditional materials is currently required in several industrial sectors. Since CNTs can be exploited with varying structural and physical properties, geometry and functionality, that result in a different dispersion and adhesion with the polymer matrix, the possible range of composite material properties can be very large... [edited by author]
X n.s.
Лимаренко, О. М., and А. Д. Стаканов. "Комп'ютерне моделювання та чисельний аналіз ортопедичного пристрою для фіксації переломів кісток передпліччя." Thesis, Сумський державний університет, 2015. http://essuir.sumdu.edu.ua/handle/123456789/39796.
Full textZolfaghari, Reza. "Numerical Simulation of Reactive Transport Problems in Porous Media Using Global Implicit Approach." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-197853.
Full textDiese Arbeit konzentriert sich auf die numerische Berechnung reaktiver Transportprobleme in porösen Medien. Es werden prinzipielle Mechanismen von Fluidströmung und reaktive Stofftransport in porösen Medien untersucht. Um chemische Reaktionen und Stofftransport zu koppeln, wurden die Ansätze Global Implicit Approach (GIA) sowie Sequential Non-Iterative Approach (SNIA) in die Software OpenGeoSys (OGS6) implementiert. Das von Kräutle vorgeschlagene Reduzierungsschema wird in GIA verwendet, um die Anzahl der gekoppelten nichtlinearen Differentialgleichungen zu reduzieren. Das Reduzierungsschema verwendet Linearkombinationen von mobilen und immobile Spezies und trennt die reaktionsunabhngigen linearen Differentialgleichungen von den gekoppelten nichtlinearen Gleichungen (dh Verringerung der Anzahl der Primärvariablen des nicht-linearen Gleichungssystems). Um die Gleichgewichtsreaktionen der Mineralien zu berechnen, wurde ein chemischer Gleichungslaser auf Basis von ”semi-smooth Newton-Iterations” implementiert. Ergebnisse von drei Benchmarks wurden zur Code-Verifikation verwendet. Diese Ergebnisse zeigen, dass die Simulation homogener Equilibriumreaktionen mit GIA 6,7 mal schneller und bei kinetischen Reaktionen 24 mal schneller als SNIA sind. Bei Simulationen heterogener Equilibriumreaktionen ist SNIA 4,7 mal schneller als der GIA Ansatz
Lin, Yuan. "Numerical modeling of dielectrophoresis." Licentiate thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4014.
Full textVedin, Jörgen. "Numerical modeling of auroral processes." Doctoral thesis, Umeå University, Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.
Full textOne of the most conspicuous problems in space physics for the last decades has been to theoretically describe how the large parallel electric fields on auroral field lines can be generated. There is strong observational evidence of such electric fields, and stationary theory supports the need for electric fields accelerating electrons to the ionosphere where they generate auroras. However, dynamic models have not been able to reproduce these electric fields. This thesis sheds some light on this incompatibility and shows that the missing ingredient in previous dynamic models is a correct description of the electron temperature. As the electrons accelerate towards the ionosphere, their velocity along the magnetic field line will increase. In the converging magnetic field lines, the mirror force will convert much of the parallel velocity into perpendicular velocity. The result of the acceleration and mirroring will be a velocity distribution with a significantly higher temperature in the auroral acceleration region than above. The enhanced temperature corresponds to strong electron pressure gradients that balance the parallel electric fields. Thus, in regions with electron acceleration along converging magnetic field lines, the electron temperature increase is a fundamental process and must be included in any model that aims to describe the build up of parallel electric fields. The development of such a model has been hampered by the difficulty to describe the temperature variation. This thesis shows that a local equation of state cannot be used, but the electron temperature variations must be descibed as a nonlocal response to the state of the auroral flux tube. The nonlocal response can be accomplished by the particle-fluid model presented in this thesis. This new dynamic model is a combination of a fluid model and a Particle-In-Cell (PIC) model and results in large parallel electric fields consistent with in-situ observations.
Xie, Jinsong. "Numerical modeling of tsunami waves." Thesis, University of Ottawa (Canada), 2007. http://hdl.handle.net/10393/27936.
Full textPak, Ali. "Numerical modeling of hydraulic fracturing." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21618.pdf.
Full textVedin, Jörgen. "Numerical modeling of auroral processes /." Umeå : Dept. of Physics, Umeå Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1117.
Full textJohansson, Christer. "Numerical methods for waveguide modeling /." Stockholm : Numerical Analysis and Computing Science (NADA), Stockholm university, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-992.
Full textKim, Chu-p'yŏ. "Numerical modeling of MILD combustion." Aachen Shaker, 2008. http://d-nb.info/988365464/04.
Full textBooks on the topic "Numeral modeling"
Miidla, Peep. Numerical modelling. Rijeka, Croatia: InTech, 2012.
Find full text1929-, Chung T. J., ed. Numerical modeling in combustion. Washington, DC: Taylor & Francis, 1993.
Find full textA, Beckmann, ed. Numerical ocean circulation modeling. London: Imperial College Press, 1999.
Find full textPrice, James F. Ocean response to a hurricane, part II: Data tabulations and numerical modeling. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1991.
Find full textS, Oran Elaine, and Boris Jay P, eds. Numerical approaches to combustion modeling. Washington, DC: American Institute of Aeronautics and Astronautics, 1991.
Find full textHofstetter, Günter, and Günther Meschke, eds. Numerical Modeling of Concrete Cracking. Vienna: Springer Vienna, 2011. http://dx.doi.org/10.1007/978-3-7091-0897-0.
Full textChalikov, Dmitry V. Numerical Modeling of Sea Waves. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32916-1.
Full textLin, Pengzhi. Numerical modeling of water waves. London: Taylor & Francis, 2008.
Find full text1938-, Murty T. S., ed. Numerical modeling of ocean dynamics. Singapore: World Scientific, 1993.
Find full textHofstetter, Günter, and Günther Meschke. Numerical modeling of concrete cracking. Wien: Springer, 2011.
Find full textBook chapters on the topic "Numeral modeling"
Greenspan, Donald. "Numerical Methodology." In Particle Modeling, 7–21. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-1992-7_2.
Full textHelmig, Rainer. "Numerical modeling." In Multiphase Flow and Transport Processes in the Subsurface, 141–227. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60763-9_4.
Full textModaressi-Farahmand-Razavi, Arezou. "Numerical Modeling." In Multiscale Geomechanics, 243–332. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118601433.ch9.
Full textGornitz, Vivian, Nicholas C. Kraus, Nicholas C. Kraus, Ping Wang, Ping Wang, Gregory W. Stone, Richard Seymour, et al. "Numerical Modeling." In Encyclopedia of Coastal Science, 730–33. Dordrecht: Springer Netherlands, 2005. http://dx.doi.org/10.1007/1-4020-3880-1_232.
Full textLee, Kun Sang, and Tae Hong Kim. "Numerical Modeling." In Integrative Understanding of Shale Gas Reservoirs, 43–55. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29296-0_3.
Full textJohansson, Robert. "Statistical Modeling." In Numerical Python, 333–62. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-0553-2_14.
Full textJohansson, Robert. "Statistical Modeling." In Numerical Python, 471–511. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4246-9_14.
Full textUeberhuber, Christoph W. "Scientific Modeling." In Numerical Computation 1, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59118-1_1.
Full textGiovangigli, Vincent. "Numerical Simulations." In Multicomponent Flow Modeling, 301–15. Boston, MA: Birkhäuser Boston, 1999. http://dx.doi.org/10.1007/978-1-4612-1580-6_12.
Full textHaefner, James W. "Numerical Techniques." In Modeling Biological Systems, 118–32. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4615-4119-6_6.
Full textConference papers on the topic "Numeral modeling"
Ding, Shuo, and Youlin Yang. "Realization of Numeral Eddy Current Sensor Modeling." In 2012 5th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2012. http://dx.doi.org/10.1109/iscid.2012.137.
Full textWang, Yanjie, Xiabi Liu, and Yunde Jia. "Statistical Modeling and Learning for Recognition-Based Handwritten Numeral String Segmentation." In 2009 10th International Conference on Document Analysis and Recognition. IEEE, 2009. http://dx.doi.org/10.1109/icdar.2009.25.
Full textHamzayev, Khanlar, Ahmed Babaev, and Sevil Huseynzade. "Method of numeral modeling of elastic water drive mode of development of layer." In 2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI). IEEE, 2012. http://dx.doi.org/10.1109/icpci.2012.6486368.
Full textSavinelli, K. J., Greg Scontras, and Lisa Pearl. "Exactly two things to learn from modeling scope ambiguity resolution: Developmental continuity and numeral semantics." In Proceedings of the 8th Workshop on Cognitive Modeling and Computational Linguistics (CMCL 2018). Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/w18-0108.
Full textPetryshyn, M. "Modeling of the TIF processes in binary numeral systems based on the vector-branching diagrams." In 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE, 2017. http://dx.doi.org/10.1109/ukrcon.2017.8100416.
Full textKang, Sanghoon, Xueguan Song, Kyunghun Kim, and Youngchul Park. "Investigation on a Gas-Liquid Ejector Using Three-Dimensional CFD Modeling." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87385.
Full textTomiya, Mitsuyoshi. "Numerical approach to spectral properties of coupled quartic oscillators." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386841.
Full textSytova, S. "X-ray time-dependent diffraction: Theory and numerical experiments." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386883.
Full textBlacquière, Gerrit, and Edith van Veldhuizen. "Physical modeling versus numerical modeling." In SEG Technical Program Expanded Abstracts 2003. Society of Exploration Geophysicists, 2003. http://dx.doi.org/10.1190/1.1817878.
Full textMalta, Edgard Borges, Marcos Cueva, Kazuo Nishimoto, Rodolfo Golc¸alves, and Isai´as Masetti. "Numerical Moonpool Modeling." In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92456.
Full textReports on the topic "Numeral modeling"
McAlpin, Jennifer, and Jason Lavecchia. Brunswick Harbor numerical model. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40599.
Full textDelk, Tracey. Numerical Modeling of Slopewater Circulation. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada375720.
Full textTorres, Marissa, Michael-Angelo Lam, and Matt Malej. Practical guidance for numerical modeling in FUNWAVE-TVD. Engineer Research and Development Center (U.S.), October 2022. http://dx.doi.org/10.21079/11681/45641.
Full textPuleo, Jack, K. T. Holland, and D. Slinn. Numerical Modeling of Swash Zone Hydrodynamics. Fort Belvoir, VA: Defense Technical Information Center, June 2002. http://dx.doi.org/10.21236/ada403978.
Full textLeighton, Richard. Enhanced Numerical Modeling of Breaking Waves. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada455681.
Full textO'Brien, James J. Ocean Science Educator in Numerical Modeling. Fort Belvoir, VA: Defense Technical Information Center, June 1994. http://dx.doi.org/10.21236/ada281455.
Full textKerley, Gerald I. Numerical Modeling of Buried Mine Explosions. Fort Belvoir, VA: Defense Technical Information Center, March 2001. http://dx.doi.org/10.21236/ada392569.
Full textSingh, Surendra, and William P. Roach. Numerical Modeling of Antenna Near Field. Fort Belvoir, VA: Defense Technical Information Center, August 2007. http://dx.doi.org/10.21236/ada473446.
Full textKrzanowsky, R. M., R. K. Singhal, and N. H. Wade. Numerical modelling of material diggability. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304973.
Full textStrain, John. Numerical Modelling of Crystal Growth. Fort Belvoir, VA: Defense Technical Information Center, September 1992. http://dx.doi.org/10.21236/ada271206.
Full text