To see the other types of publications on this topic, follow the link: Numbers.

Journal articles on the topic 'Numbers'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Numbers.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Montémont, Véronique. "Roubaud’s number on numbers." Journal of Romance Studies 7, no. 3 (December 2007): 111–21. http://dx.doi.org/10.3828/jrs.7.3.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Carbó-Dorca, Ramon. "Mersenne Numbers, Recursive Generation of Natural Numbers, and Counting the Number of Prime Numbers." Applied Mathematics 13, no. 06 (2022): 538–43. http://dx.doi.org/10.4236/am.2022.136034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sudhakaraiah, A., A. Madhankumar, Pagidi Obulesu, and A. Lakshmi Sowjanya. "73 Is the Only Largest Prime Power Number and Composite Power Numbers." International Journal of Science and Research (IJSR) 12, no. 11 (November 5, 2023): 1318–23. http://dx.doi.org/10.21275/sr231118184617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Steele, G. Ander. "Carmichael numbers in number rings." Journal of Number Theory 128, no. 4 (April 2008): 910–17. http://dx.doi.org/10.1016/j.jnt.2007.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hofweber, T. "Number Determiners, Numbers, and Arithmetic." Philosophical Review 114, no. 2 (April 1, 2005): 179–225. http://dx.doi.org/10.1215/00318108-114-2-179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

., Jyoti. "Rational Numbers." Journal of Advances and Scholarly Researches in Allied Education 15, no. 5 (July 1, 2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boast, Carl A., and Paul R. Sanberg. "Locomotor behavior: numbers, numbers, numbers!" Pharmacology Biochemistry and Behavior 27, no. 3 (July 1987): 543. http://dx.doi.org/10.1016/0091-3057(87)90364-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KÖKEN, Fikri, and Emre KANKAL. "Altered Numbers of Fibonacci Number Squared." Journal of New Theory, no. 45 (December 31, 2023): 73–82. http://dx.doi.org/10.53570/jnt.1368751.

Full text
Abstract:
We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a specific value $\{a\}$ from the square of the $n^{th}$ Fibonacci numbers $G^{(2)}_{F(n)}(a)$ and $H^{(2)}_{F(n)}(a)$. These numbers are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like formulas. Moreover, we explore greatest common divisor (GCD) sequences of r-successive terms of altered Fibonacci numbers represented by $\left\{G^{(2)}_{F(n), r}(a)\right\}$ and $\left\{H^{(2)}_{F(n), r}(a)\right\}$ such that $r\in\{1,2,3\}$ and $a\in\{1,4\}$. The sequences are based on the GCD properties of consecutive terms of the Fibonacci numbers and structured as periodic or Fibonacci sequences.
APA, Harvard, Vancouver, ISO, and other styles
9

Jędrzejak, Tomasz. "Congruent numbers over real number fields." Colloquium Mathematicum 128, no. 2 (2012): 179–86. http://dx.doi.org/10.4064/cm128-2-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fu, Ruiqin, Hai Yang, and Jing Wu. "The Perfect Numbers of Pell Number." Journal of Physics: Conference Series 1237 (June 2019): 022041. http://dx.doi.org/10.1088/1742-6596/1237/2/022041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Day, Sophie, Celia Lury, and Nina Wakeford. "Number ecologies: numbers and numbering practices." Distinktion: Journal of Social Theory 15, no. 2 (May 4, 2014): 123–54. http://dx.doi.org/10.1080/1600910x.2014.923011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

AKTAŞ, KEVSER, and M. RAM MURTY. "On the number of special numbers." Proceedings - Mathematical Sciences 127, no. 3 (January 31, 2017): 423–30. http://dx.doi.org/10.1007/s12044-016-0326-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Felka, Katharina. "Number words and reference to numbers." Philosophical Studies 168, no. 1 (April 3, 2013): 261–82. http://dx.doi.org/10.1007/s11098-013-0129-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

De Koninck, Jean-Marie, and Florian Luca. "Counting the number of economical numbers." Publicationes Mathematicae Debrecen 68, no. 1-2 (January 1, 2006): 97–113. http://dx.doi.org/10.5486/pmd.2006.3171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fellows, Michael R., Serge Gaspers, and Frances A. Rosamond. "Parameterizing by the Number of Numbers." Theory of Computing Systems 50, no. 4 (October 29, 2011): 675–93. http://dx.doi.org/10.1007/s00224-011-9367-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Goddard, Cliff. "The conceptual semantics of numbers and counting." Functions of Language 16, no. 2 (October 22, 2009): 193–224. http://dx.doi.org/10.1075/fol.16.2.02god.

Full text
Abstract:
This study explores the conceptual semantics of numbers and counting, using the natural semantic metalanguage (NSM) technique of semantic analysis (Wierzbicka 1996; Goddard & Wierzbicka (eds.) 2002). It first argues that the concept of a number in one of its senses (number1, roughly, “number word”) and the meanings of low number words, such as one, two, and three, can be explicated directly in terms of semantic primes, without reference to any counting procedures or practices. It then argues, however, that the larger numbers, and the productivity of the number sequence, depend on the concept and practice of counting, in the intransitive sense of the verb. Both the intransitive and transitive senses of counting are explicated, and the semantic relationship between them is clarified. Finally, the study moves to the semantics of abstract numbers (number2), roughly, numbers as represented by numerals, e.g. 5, 15, 27, 36, as opposed to number words. Though some reference is made to cross-linguistic data and cultural variation, the treatment is focused primarily on English.
APA, Harvard, Vancouver, ISO, and other styles
17

Froman, Robin D. "Numbers, numbers everywhere?" Research in Nursing & Health 27, no. 3 (2004): 145–47. http://dx.doi.org/10.1002/nur.20020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Thompson, K., J. G. Hodgson, J. P. Grime, I. H. Rorison, S. R. Band, and R. E. Spencer. "Ellenberg numbers revisited." Phytocoenologia 23, no. 1-4 (December 15, 1993): 277–89. http://dx.doi.org/10.1127/phyto/23/1993/277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Bhutani, Kiran R., and Alexander B. Levin. "Graceful numbers." International Journal of Mathematics and Mathematical Sciences 29, no. 8 (2002): 495–99. http://dx.doi.org/10.1155/s0161171202007615.

Full text
Abstract:
We construct a labeled graphD(n)that reflects the structure of divisors of a given natural numbern. We define the concept of graceful numbers in terms of this associated graph and find the general form of such a number. As a consequence, we determine which graceful numbers are perfect.
APA, Harvard, Vancouver, ISO, and other styles
20

Adédji, Kouèssi Norbert, Japhet Odjoumani, and Alain Togbé. "Padovan and Perrin numbers as products of two generalized Lucas numbers." Archivum Mathematicum, no. 4 (2023): 315–37. http://dx.doi.org/10.5817/am2023-4-315.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ndiaye, Mady. "Origin of Sexy Prime Numbers, Origin of Cousin Prime Numbers, Equations from Supposedly Prime Numbers, Origin of the Mersenne Number, Origin of the Fermat Number." Advances in Pure Mathematics 14, no. 05 (2024): 321–32. http://dx.doi.org/10.4236/apm.2024.145018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kazda, Alexandr, and Petr Kùrka. "Representing real numbers in Möbius number systems." Actes des rencontres du CIRM 1, no. 1 (2009): 35–39. http://dx.doi.org/10.5802/acirm.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Smil, Vaclav. "Unemployment: Pick a number [Numbers Don't Lie]." IEEE Spectrum 54, no. 5 (May 2017): 24. http://dx.doi.org/10.1109/mspec.2017.7906894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Frougny, Christiane, and Karel Klouda. "Rational base number systems forp-adic numbers." RAIRO - Theoretical Informatics and Applications 46, no. 1 (August 22, 2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Webb, William A. "The N-Number Game for Real Numbers." European Journal of Combinatorics 8, no. 4 (October 1987): 457–60. http://dx.doi.org/10.1016/s0195-6698(87)80053-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Daileda, Ryan C., Raju Krishnamoorthy, and Anton Malyshev. "Maximal class numbers of CM number fields." Journal of Number Theory 130, no. 4 (April 2010): 936–43. http://dx.doi.org/10.1016/j.jnt.2009.09.013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kovács, B. "Representation of complex numbers in number systems." Acta Mathematica Hungarica 58, no. 1-2 (March 1991): 113–20. http://dx.doi.org/10.1007/bf01903553.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jen-Shiun Chiang and Mi Lu. "Floating-point numbers in residue number systems." Computers & Mathematics with Applications 22, no. 10 (1991): 127–40. http://dx.doi.org/10.1016/0898-1221(91)90200-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Chang, Ku-Young, and Soun-Hi Kwon. "Class numbers of imaginary abelian number fields." Proceedings of the American Mathematical Society 128, no. 9 (April 27, 2000): 2517–28. http://dx.doi.org/10.1090/s0002-9939-00-05555-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Figotin, A., A. Gordon, J. Quinn, N. Stavrakas, and S. Molchanov. "Occupancy Numbers in Testing Random Number Generators." SIAM Journal on Applied Mathematics 62, no. 6 (January 2002): 1980–2011. http://dx.doi.org/10.1137/s0036139900366869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Bertin, Marie José, and Toufik Zaïmi. "Complex Pisot numbers in algebraic number fields." Comptes Rendus Mathematique 353, no. 11 (November 2015): 965–67. http://dx.doi.org/10.1016/j.crma.2015.09.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

De Koninck, J. M., N. Doyon, and I. Kátai. "Counting the number of twin Niven numbers." Ramanujan Journal 17, no. 1 (July 12, 2008): 89–105. http://dx.doi.org/10.1007/s11139-008-9127-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Caglayan, Günhan. "Covering a Triangular Number with Pentagonal Numbers." Mathematical Intelligencer 42, no. 1 (December 16, 2019): 55. http://dx.doi.org/10.1007/s00283-019-09953-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Chang, Ku-Young, and Soun-Hi Kwon. "The imaginary abelian number fields with class numbers equal to their genus class numbers." Journal de Théorie des Nombres de Bordeaux 12, no. 2 (2000): 349–65. http://dx.doi.org/10.5802/jtnb.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

DeGeorges, Kathie M. "Numbers, I Need Numbers!" AWHONN Lifelines 3, no. 2 (April 1999): 49–50. http://dx.doi.org/10.1111/j.1552-6356.1999.tb01082.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lee, Mercia. "Numbers, numbers all around." Practical Pre-School 2007, no. 75 (April 2007): 5–6. http://dx.doi.org/10.12968/prps.2007.1.75.38593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Locher, Helmut. "On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree." Acta Arithmetica 89, no. 2 (1999): 97–122. http://dx.doi.org/10.4064/aa-89-2-97-122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Azarija, Jernej, and Riste Škrekovski. "Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees." Mathematica Bohemica 138, no. 2 (2013): 121–31. http://dx.doi.org/10.21136/mb.2013.143285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pokorna, Pavla, and Dick Tibboel. "Numbers, Numbers: Great, Great…But?!*." Pediatric Critical Care Medicine 21, no. 9 (September 2020): 844–45. http://dx.doi.org/10.1097/pcc.0000000000002371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hernon, Peter. "Numbers and “Damn” GPO Numbers." Government Information Quarterly 16, no. 1 (January 1999): 1–4. http://dx.doi.org/10.1016/s0740-624x(99)80012-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kulyabov, D. S., A. V. Korolkova, and M. N. Gevorkyan. "Hyperbolic numbers as Einstein numbers." Journal of Physics: Conference Series 1557 (May 2020): 012027. http://dx.doi.org/10.1088/1742-6596/1557/1/012027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Çelik, Songül, İnan Durukan, and Engin Özkan. "New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers." Chaos, Solitons & Fractals 150 (September 2021): 111173. http://dx.doi.org/10.1016/j.chaos.2021.111173.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Trespalacios, Jesús, and Barbara Chamberline. "Pearl diver: Identifying numbers on a number line." Teaching Children Mathematics 18, no. 7 (March 2012): 446–47. http://dx.doi.org/10.5951/teacchilmath.18.7.0446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Geroldinger, A. "Factorization of natural numbers in algebraic number fields." Acta Arithmetica 57, no. 4 (1991): 365–73. http://dx.doi.org/10.4064/aa-57-4-365-373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Hong-Quan. "The number of squarefull numbers in an interval." Acta Arithmetica 64, no. 2 (1993): 129–49. http://dx.doi.org/10.4064/aa-64-2-129-149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Chen, Kwang-Wu. "Median Bernoulli Numbers and Ramanujan’s Harmonic Number Expansion." Mathematics 10, no. 12 (June 12, 2022): 2033. http://dx.doi.org/10.3390/math10122033.

Full text
Abstract:
Ramanujan-type harmonic number expansion was given by many authors. Some of the most well-known are: Hn∼γ+logn−∑k=1∞Bkk·nk, where Bk is the Bernoulli numbers. In this paper, we rewrite Ramanujan’s harmonic number expansion into a similar form of Euler’s asymptotic expansion as n approaches infinity: Hn∼γ+c0(h)log(q+h)−∑k=1∞ck(h)k·(q+h)k, where q=n(n+1) is the nth pronic number, twice the nth triangular number, γ is the Euler–Mascheroni constant, and ck(x)=∑j=0kkjcjxk−j, with ck is the negative of the median Bernoulli numbers. Then, 2cn=∑k=0nnkBn+k, where Bn is the Bernoulli number. By using the result obtained, we present two general Ramanujan’s asymptotic expansions for the nth harmonic number. For example, Hn∼γ+12log(q+13)−1180(q+13)2∑j=0∞bj(r)(q+13)j1/r as n approaches infinity, where bj(r) can be determined.
APA, Harvard, Vancouver, ISO, and other styles
47

Backelin, Jörgen. "On the number of semigroups of natural numbers." MATHEMATICA SCANDINAVICA 66 (June 1, 1990): 197. http://dx.doi.org/10.7146/math.scand.a-12304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Korhonen, Risto. "Approximation of real numbers with rational number sequences." Proceedings of the American Mathematical Society 137, no. 01 (August 14, 2008): 107–13. http://dx.doi.org/10.1090/s0002-9939-08-09479-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Louboutin, Stéphane. "Computation of class numbers of quadratic number fields." Mathematics of Computation 71, no. 240 (November 21, 2001): 1735–44. http://dx.doi.org/10.1090/s0025-5718-01-01367-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shah Ali, H. A. "92.02 The number of S.P numbers is finite." Mathematical Gazette 92, no. 523 (March 2008): 64–65. http://dx.doi.org/10.1017/s0025557200182543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography