Academic literature on the topic 'Nucleosynthesis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nucleosynthesis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nucleosynthesis"

1

Sprouse, Trevor M., Kelsey A. Lund, Jonah M. Miller, Gail C. McLaughlin, and Matthew R. Mumpower. "Emergent Nucleosynthesis from a 1.2 s Long Simulation of a Black Hole Accretion Disk." Astrophysical Journal 962, no. 1 (February 1, 2024): 79. http://dx.doi.org/10.3847/1538-4357/ad1819.

Full text
Abstract:
Abstract We simulate a black hole accretion disk system with full-transport general relativistic neutrino radiation magnetohydrodynamics for 1.2 s. This system is likely to form after the merger of two compact objects and is thought to be a robust site of r-process nucleosynthesis. We consider the case of a black hole accretion disk arising from the merger of two neutron stars. Our simulation time coincides with the nucleosynthesis timescale of the r-process (∼1 s). Because these simulations are time-consuming, it is common practice to run for a “short” duration of approximately 0.1–0.3 s. We analyze the nucleosynthetic outflow from this system and compare the results of stopping at 0.12 and 1.2 s. We find that the addition of mass ejected in the longer simulation as well as more favorable thermodynamic conditions from emergent viscous ejecta greatly impacts the nucleosynthetic outcome. We quantify the error in nucleosynthetic outcomes between short and long cuts.
APA, Harvard, Vancouver, ISO, and other styles
2

Yao, Xingqun, Motohiko Kusakabe, Toshitaka Kajino, Silvio Cherubini, Seiya Hayakawa, and Hidetoshi Yamaguchi. "Supernova Nucleosynthesis, Radioactive Nuclear Reactions and Neutrino-Mass Hierarchy." EPJ Web of Conferences 260 (2022): 01007. http://dx.doi.org/10.1051/epjconf/202226001007.

Full text
Abstract:
The ν-process nucleosynthesis in core-collapse supernovae is a sensitive probe of unknown neutrino mass hierarchy through the MSW effect. We carefully studied the uncertainties of almost one hundred ν-induced and nuclear reactions associated with the nucleosynthesis and found that the ν-16O and 11C(α,p)14N reactions among them have the biggest effect on the final 7Li/11B isotopic abundance ratio. The neutrino mass hierarchy is constrained in our nucleosynthetic method with measured 7Li/11B value in SiC-X presolar grains. The inverted hierarchy is statistically more favored at the 2-σ C.L. [1].
APA, Harvard, Vancouver, ISO, and other styles
3

Ji, Alexander P., Sanjana Curtis, Nicholas Storm, Vedant Chandra, Kevin C. Schlaufman, Keivan G. Stassun, Alexander Heger, et al. "Spectacular Nucleosynthesis from Early Massive Stars." Astrophysical Journal Letters 961, no. 2 (January 31, 2024): L41. http://dx.doi.org/10.3847/2041-8213/ad19c4.

Full text
Abstract:
Abstract Stars that formed with an initial mass of over 50 M ⊙ are very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50 M ⊙, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys.
APA, Harvard, Vancouver, ISO, and other styles
4

Ryan, Sean G. "Big Bang Nucleosynthesis, Population III, and Stellar Genetics in the Galactic Halo." Publications of the Astronomical Society of Australia 19, no. 2 (2002): 238–45. http://dx.doi.org/10.1071/as01067.

Full text
Abstract:
AbstractThe diverse isotopic and elemental signatures produced in different nucleosynthetic sites are passed on to successive generations of stars. By tracing these chemical signatures back through the stellar populations of the Galaxy, it is possible to unravel its nucleosynthetic history and even to study stars which are now extinct. This review considers recent applications of ‘stellar genetics’ to examine the earliest episodes of nucleosynthesis in the universe, in Population iii stars and the Big Bang.
APA, Harvard, Vancouver, ISO, and other styles
5

Mathews, G. J. "Nucleosynthesis and After: Supernovae and Nucleosynthesis." Science 274, no. 5291 (November 22, 1996): 1320b—1321b. http://dx.doi.org/10.1126/science.274.5291.1320b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

KAJINO, TOSHITAKA, TAKAHIRO SASAQUI, TAKASHI YOSHIDA, and WAKO AOKI. "NEUTRINO OSCILLATION IN SUPERNOVA AND GRB NUCLEOSYNTHESIS." Modern Physics Letters A 23, no. 17n20 (June 28, 2008): 1409–18. http://dx.doi.org/10.1142/s0217732308027783.

Full text
Abstract:
Neutrinos play the critical roles in nucleosyntheses of light-to-heavy mass elements in core-collapse supernovae (SNe). The light element synthesis is affected strongly by neutrino oscillations (MSW effect) through the ν-process in outer layers of supernova explosions. Specifically the 7 Li and 11 B yields increase by factors of 1.9 and 1.3 respectively in the case of large mixing angle solution, normal mass hierarchy, and sin 2 2θ13 = 2 × 10−3 compared to those without the oscillations. In the case of inverted mass hierarchy or nonadiabatic 13-mixing resonance, the increment of their yields is much smaller. We thus propose that precise constraint on mass hierarchy and sin 2 2θ13 is given by future observations of Li / B ratio or Li abundance in stars and presolar grains which are made from supernova ejecta. Gamma ray burst (GRB) nucleosynthesis in contrast is not affected strongly by thermal neutrinos from the central core which culminates in black hole (BH), although the effect of neutrinos from proto-neutron star prior to black hole formation is still unknown. We calculate GRB nucleosynthesis by turning off the thermal neutrinos and find that the abundance pattern is totally different from ordinary SN nucleosynthesis which satisfies the universality to the solar abundance pattern.
APA, Harvard, Vancouver, ISO, and other styles
7

Nie, Nicole X., Da Wang, Zachary A. Torrano, Richard W. Carlson, Conel M. O’D. Alexander, and Anat Shahar. "Meteorites have inherited nucleosynthetic anomalies of potassium-40 produced in supernovae." Science 379, no. 6630 (January 27, 2023): 372–76. http://dx.doi.org/10.1126/science.abn1783.

Full text
Abstract:
Meteorites record processes that occurred before and during the formation of the Solar System in the form of nucleosynthetic anomalies: isotopic compositions that differ from the Solar System patterns. Nucleosynthetic anomalies are rarely seen in volatile elements such as potassium at bulk meteorite scale. We measured potassium isotope ratios in 32 meteorites and identified nucleosynthetic anomalies in the isotope potassium-40. The anomalies are larger and more variable in carbonaceous chondrite (CC) meteorites than in noncarbonaceous (NC) meteorites, indicating that CCs inherited more material produced in supernova nucleosynthesis. The potassium-40 anomaly of Earth is close to that of the NCs, implying that Earth’s potassium was mostly delivered by NCs.
APA, Harvard, Vancouver, ISO, and other styles
8

Truran, James W. "The Oldest Stars as Tracers of Heavy Element Formation at Early Epochs." Symposium - International Astronomical Union 204 (2001): 333–34. http://dx.doi.org/10.1017/s0074180900226247.

Full text
Abstract:
Elemental abundance patterns in very metal-poor halo field stars and globular cluster stars play a crucial role both in guiding theoretical models of nucleosynthesis and in providing constraints upon the early star formation and concomitant nucleosynthesis history of our Galaxy. The abundance patterns characterizing the oldest and most metal deficient stars ([Fe/H] ≤ −3) are entirely consistent with their being products of metal-poor massive stars of lifetimes τ ≤ 108years. This includes both the elevated abundances of thealpha-elements (O, Mg, Si, S, Ca, and Ti) relative to iron-peak elements and the dominance of r-process elements over s-process elements. The nucleosynthetic contributions of lower mass AGB stars of longer lifetimes (τ ≈ 109years) begin to appear at metallicities [Fe/H] ≈ −2.5, while clear evidence for iron-peak nuclei produced in supernovae Ia (τ ≥ 1-2x109years?) does not appear until metallicities approaching [Fe/H] ~ −1. Similar trends are also suggested by abundances determined for gas clouds at high redshifts. We review the manner in which a knowledge of the abundances of the stellar and gas components of early populations, as a function of [Fe/H], time, and/or redshift, can be used to set constraints on their star formation and nucleosynthesis histories.
APA, Harvard, Vancouver, ISO, and other styles
9

Coc, A. "Primordial Nucleosynthesis." Acta Physica Polonica B 44, no. 3 (2013): 521. http://dx.doi.org/10.5506/aphyspolb.44.521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Coc, Alain. "Primordial Nucleosynthesis." Journal of Physics: Conference Series 420 (March 25, 2013): 012136. http://dx.doi.org/10.1088/1742-6596/420/1/012136.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nucleosynthesis"

1

Izzard, R. G. "Nucleosynthesis in binary stars." Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.604980.

Full text
Abstract:
Galactic chemical evolution models require stellar nucleosynthesis yields as input data. Stellar evolution models are used to calculate such yields but do not take into account the fact that many stars are in binaries. The computing time required to explore the binary star parameter space is usually considered to be prohibitively large. Therefore binaries, except for type Ia supernovae and novae which are included in an ad hoc way, are ignored in most galactic chemical evolution models. In this dissertation synthetic nucleosynthesis models are developed which approximate full stellar evolution models. Cunning methods are employed to model shell burning in low- and intermediate-mass stars while high-mass stars have their surface abundances fitted to their mass. Explosive yields are fitted to published results. The synthetic nucleosynthesis model, with the addition of algorithms to deal with mass transfer in binaries, is coupled to a rapid binary star evolution code. The use of a synthetic model speeds up the calculation of stellar yields by a factor of about 107 and extends the analysis to binary stars. Single- and binary-star yields are calculated for a range of initial mass and separation distributions. A change in the primary or single-star mass distribution is most significant. Changing the secondary mass or separation distribution has a smaller effect. Consideration is then given to variation of the input physics to determine which free parameters are important for the calculation of yields from single and binary stars. It is found that certain parameters are important for some isotopes. Future prospects are then briefly discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Leonard, Richard Edward. "Variations in Primordial Nucleosynthesis /." The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487932351056492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Smith, Christel Johanna. "Primordial nucleosynthesis and neutrino physics." Diss., [La Jolla] : University of California, San Diego, 2009. http://wwwlib.umi.com/cr/ucsd/fullcit?p3354965.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2009.
Title from first page of PDF file (viewed June 16, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Joseph, Craig L. "Q-nucleosynthesis : implications for stellar evolution /." The Ohio State University, 1985. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487260531956577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moreno, Guzmán Fermín. "Accretion onto Neutron Stars: Hydrodynamics and Nucleosynthesis." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/6594.

Full text
Abstract:
In the middle of the 70s, some authors suggested that accretion of hydrogen and helium rich material by a neutron star in a binary system, where the companion star would have low mass, could explain thermonuclear bursts observed by the first satellites launched to the space in order to analyze the Xray band of the electromagnetic spectrum. This phenomenon, known as type I X-ray bursts (XRB), is a thermonuclear runaway produced by the themonuclear fusion of the accreted material in degenerated conditions. This kind of explosion from stellar source is the most frequent in our galaxy (and the third, after supernovae and classical novae, in terms of total output energy), because his short recurrence period. Due to the extreme gravitational field of a neutron star it is known that produced nucleosynthesis is not ejected to the interstellar medium but forming part of the neutron star crust.
In this work we have tried, first, to study the effects of nuclear uncertainties, related to nuclear reaction rates, in the nucleosynthesis produced during a X-ray burst, and second, to simulate physical properties and associated nucleosynthesis to this kind of events, through hydrodynamical models.
In order to analyze the impact of uncertainties of the nuclear reaction rates in the nucleosynthesis, and due to the prohibitive calculation time with an hydrodinamical code, we have used a post-processing code which we have coupled, for a given set of 10 temperatures and densities profiles, an extensive nuclear reactions network formed by 606 isotopes and 3551 nuclear reactions, whose reaction rates have been modified using to alternative methods. In the first one, every rate has been individually modified, multiplying it by 0.1 and 10, calculating the final nucleosynthesis. This way, it is possible to evaluate the impact in final nucleosynthesis individual variations in the nuclear reaction rates. Also we have analyzed the effects in final nucleosynthesis by modifying the energy associated to each reaction (Q-value). In the second method, nuclear reaction rates have been modified simultaneously, multiplying each one by a random factor which follow a log-normal distribution with a probability of 95.5% of being in the interval [0.1,10]. In order to analyzed this method from an statistically point of view, the nucelosynthesis has been calculated up to 10,000 times, with a Monte Carlo code specifically built to this Thesis, for different set of random numbers. Obtained results with both methods are coincidents and show that for a network formed by 3,500 reactions approximately, only about 60 reactions have an impact in final yields greater than a factor of 2.Finally, we have used an hydrodynamical code, one-dimensional (spherically symmetric), Lagrangian and multi-shell, to which we have coupled a nuclear reactions network formed by 324 isotopes and 1392 reactions with the aim of reproduce physical parameters and nucleosynthesis produced during X-ray bursts. To do that, we have applied this code to different models, analyzing the effect of spatial resolution in the accreted shell, the metallicity of the transferred material as well as the mass of the neutron star, in the final result. For each model, we have simulated different bursts, with energies, luminosities and recurrence times coincidents with observations and, together with the nucleosynthesis, similar to the results obtained by other authors.
A mediados de los años 70, varios autores sugirieron que la acreción de material rico en hidrógeno y helio por parte de una estrella de neutrones, integrante de un sistema binario donde la masa de la estrella compañera fuese pequeña, podría explicar las erupciones termonucleares observadas por los primeros satélites lanzados al espacio para analizar la banda X del espectro electromagnético. Dicho fenómeno, conocido como erupciones de rayos X de tipo I (en inglés, type I X-ray bursts, XRB), consiste en el alud termonuclear producido por la fusión termonuclear del material acretado, en condiciones degeneradas. Este tipo de explosión termonuclear de origen estelar es el más frecuente en nuestra galaxia (y el tercero, tras las supernovas y las novas clásicas, en términos de energía total liberada), debido a su corto periodo de recurrencia. Como consecuencia del extremo campo gravitatorio de una estrella de neutrones, se cree que la nucleosíntesis producida durante este tipo de eventos no es expulsada al medio interestelar, pasando a formar parte de la corteza de la estrella.
En este trabajo hemos intentado, por un lado, estudiar los efectos de las incertidumbres de origen nuclear, asociadas a los ritmos de las reacciones nucleares, en la nucleosíntesis producida durante un X-ray burst; y por otro lado, simular las propiedades físicas y la nucleosíntesis asociada a este tipo de eventos, mediante modelos hidrodinámicos.
Para estudiar el impacto de las incertidumbres de los ritmos de las reacciones nucleares en la nucleosíntesis, y debido a que el tiempo de cálculo con un código hidrodinámico resultaría prohibitivo, hemos utilizado un código de post-procesado al que se ha acoplado, para un conjunto determinado de 10 perfiles de temperatura y densidad, una extensa red de reacciones nucleares, formada por 606 isótopos y 3551 reacciones nucleares, cuyos ritmos de reacción han sido modificados utilizando dos métodos alternativos. En el primero, cada ritmo ha sido modificado individualmente, multiplicándolo por 0.1 y 10, calculándose la nucleosíntesis final. De esta manera, puede evaluarse el impacto que tienen en las abundancias finales las variaciones individuales de los ritmos de las reacciones nucleares.
Así mismo, también se ha analizado el efecto que produce en las abundancias finales el hecho de modificar la energía asociada a cada reacción (Q-value). En el segundo método, los ritmos nucleares se han modificado simultáneamente, multiplicando cada uno de ellos por un factor aleatorio según una distribución log-normal, y cuya probabilidad de encontrarse en el intervalo [0.1,10] es del 95,5%. Para poder hacer una estimación estadística de este último método, se ha calculado la nucleosíntesis hasta 10.000 veces, con un código Monte Carlo específicamente construido para esta Tesis, para diferentes conjuntos de números aleatorios. Los resultados obtenidos con ambos métodos son coincidentes y demuestran que, para una red formada por unas 3500 reacciones nucleares, sólo unas 60 reacciones tienen un impacto en las abundancias finales mayor que un factor 2.
Por último, hemos utilizado un código hidrodinámico, unidimensional (en simetría esférica), Lagrangiano y multicapa, al que se ha acoplado una red de reacciones nucleares formada por 324 isótopos y 1392 reacciones nucleares, con el objetivo de reproducir los parámetros físicos y la nucleosíntesis producida en los X-ray bursts. Para ello, hemos aplicado este código a diferentes modelos, analizando el efecto de la resolución espacial de la capa acretada, la metalicidad del material transferido, así como la masa de la estrella de neutrones, en el resultado final. Para cada modelo, hemos simulado diferentes erupciones, con energías, luminosidades, y periodos de recurrencia, coincidentes con las observaciones y, junto con la nucleosíntesis, similares a los resultados obtenidos por otros autores.
APA, Harvard, Vancouver, ISO, and other styles
6

Alvelid, Jonatan. "r-Process Simulation and Heavy-Element Nucleosynthesis." Thesis, KTH, Fysik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-150101.

Full text
Abstract:
r-process, short for rapid neutron capture process, is a nucleosynthesis process taking place on short time scales. Rapid neutron captures produce less and less stable neutron-rich nuclei which in turn beta minus decays when the probability for beta decay is higher than the probability for neutron captures, upon which more neutrons are captured and the process repeats itself, creating r-process paths. Very neutron-rich heavy elements are the product of this process taking place at explosive astrophysical sites with high neutron flux. Simulations of r-processes are important for finding out the exact sites, something that is yet not known. To get more accurate simulation results leading to a better understanding of r-processes, the initial parameter dependence of the simulations is important to understand. This report discusses the dependence on three important initial parameters; temperature, density and electron fraction. Furthermore, the dependence on nuclear masses is covered, which is important since no exact model for nuclear masses exists for the neutron-rich nuclei involved. Finally, different stopping criteria are simulated, representing different physical environments in which r-processes may occur. Results from the simulations, carried out using r-Java 2.0, show that r-process simulations are sensitive to all parameters discussed; further research can tell to which extent. A better understanding of the dependence on the parameters will hopefully extend our knowledge of r-processes and where in the universe they occur.
r-process, rapid neutron capture process, är en snabb nukleosyntesprocess. Snabba neutroninfångningar producerar allt mer instabila neutronrika atomkärnor som slutligen betaminussönderfaller när sannolikheten för betasönderfall blir högre än sannolikheten för en ny neutroninfångning. Därefeter fångas fler neutroner och processen upprepar sig själv i r-processkedjor. Väldigt neutronrika tunga ämnen bildas under denna process som kräver explosiva astrofysikaliska platser med höga neutronflux. Då det ännu är okänt exakt var dessa platser är så hjälper r-processsimulationer att förstå detta. För att förbättra simuleringsresultaten och därmed förståelsen av r-processer så är det viktigt att förstå hur initiala parametrar påverkar simuleringarna. Temperatur, densitet och förhållandet mellan fria elektroner och nukleoner är tre parametrar som denna rapport behandlar. Påverkan av kärrnmassor diskuteras också, vilket är viktigt då ingen exakt modell för kärnmassor existerar. Slutligen behandlas även olika stoppkriterium vilket representerar olika fysikaliska miljöer där r-processer eventuellt förekommer. Resultat från simuleringar, gjorda i r-Java 2.0, visar på att r-processimuleringar är känsliga för alla parametrar som har behandlats men där vidare forskning får visa till vilken grad. En bättre förståelse för hur simuleringarna påverkas av parametrar kommer förhoppningsvis öka förståelsen för r-processer och var i universum de förekommer.
APA, Harvard, Vancouver, ISO, and other styles
7

Karlsson, Daniel. "Nuclear density functional theory calculations for the r-process nucleosynthesis : Nuclear density functional theory calculations for the r-process nucleosynthesis." Thesis, KTH, Fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-250775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Erni, Peter. "Early nucleosynthesis studies with quasar absorption line spectroscopy." [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=983739854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kifonidis, Konstantinos. "Nucleosynthesis and hydrodynamic instabilities in core collapse supernovae." [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962128457.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lau, Ho Bun. "Evolution and nucleosynthesis of zero-metallicity AGB stars." Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612023.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nucleosynthesis"

1

Adamenko, Stanislav, Franco Selleri, and Alwyn van der Merwe, eds. Controlled Nucleosynthesis. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5874-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hashimoto, Masa-aki, Riou Nakamura, E. P. Berni Ann Thushari, and Kenzo Arai. Big-Bang Nucleosynthesis. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2935-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

J, Norton Andrew, ed. Stellar evolution and nucleosynthesis. Cambridge: Cambridge University Press, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

A, Olive Keith, Fermi National Accelerator Laboratory, and United States. National Aeronautics and Space Administration., eds. Big-bang nucleosynthesis revisited. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Audouze, Jean. Nucleosynthesis and chemical evolution. Sauverny-Versoix, Switzerland: Geneva Observatory, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Olive Keith, Fermi National Accelerator Laboratory, and United States. National Aeronautics and Space Administration., eds. Big-bang nucleosynthesis revisited. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1940-, Arnett W. David, and Truran James W, eds. Nucleosynthesis: Challenges and new developments. Chicago: University of Chicago Press, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bandyopadhyay, Debades, and Kamales Kar. Supernovae, Neutron Star Physics and Nucleosynthesis. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95171-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sato, K., and J. Audouze, eds. Primordial Nucleosynthesis and Evolution of Early Universe. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3410-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

N, Schramm David, Truran James W, Fermi National Accelerator Laboratory, and United States. National Aeronautics and Space Administration., eds. On relative supernova rates and nucleosynthesis roles. [Batavia, Ill.]: Fermi National Accelerator Laboratory, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nucleosynthesis"

1

Goswami, Jitendra Nath. "Nucleosynthesis." In Encyclopedia of Earth Sciences Series, 1–6. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39193-9_343-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Goswami, Jitendra Nath. "Nucleosynthesis." In Encyclopedia of Earth Sciences Series, 1014–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-39312-4_343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Diehl, Roland. "Nucleosynthesis." In The Universe in Gamma Rays, 233–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04593-0_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Olive, K. A. "Primordial Nucleosynthesis." In Theoretical and Observational Cosmology, 261–304. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4455-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prantzos, Nikos. "Nucleosynthesis, Neutrino." In Encyclopedia of Astrobiology, 1150. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Prantzos, Nikos, and Sylvia Ekström. "Stellar Nucleosynthesis." In Encyclopedia of Astrobiology, 1584–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reeves, Hubert. "Primordial Nucleosynthesis." In Galaxy Evolution: Connecting the Distant Universe with the Local Fossil Record, 17–21. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4213-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Prantzos, Nikos. "Nucleosynthesis, Neutrino." In Encyclopedia of Astrobiology, 1725. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prantzos, Nikos, and Sylvia Ekström. "Nucleosynthesis, Stellar." In Encyclopedia of Astrobiology, 1725–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Prantzos, Nikos. "Nucleosynthesis, Explosive." In Encyclopedia of Astrobiology, 1724–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_558.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nucleosynthesis"

1

Meyer, Bradley S. "Supernova nucleosynthesis." In ASTROPHYSICAL IMPLICATIONS OF THE LABORATORY STUDY OF PRESOLAR MATERIALS. ASCE, 1997. http://dx.doi.org/10.1063/1.53311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Coc, Alain. "Primordial Nucleosynthesis." In Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016). Journal of the Physical Society of Japan, 2017. http://dx.doi.org/10.7566/jpscp.14.010102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hashimoto, M., S. Nagataki, K. Sato, and S. Yamada. "Supernova nucleosynthesis." In TOURS SYMPOSIUM ON NUCLEAR PHYSICS III. ASCE, 1998. http://dx.doi.org/10.1063/1.55171.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kajino, Toshitaka. "Nucleosynthesis and Neutrinos." In INTERNATIONAL SYMPOSIUM ON NEW FACES OF ATOMIC NUCLEI. AIP, 2011. http://dx.doi.org/10.1063/1.3584074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

NOMOTO, K., K. MAEDA, T. NAKAMURA, K. IWAMOTO, P. A. MAZZALI, I. J. DANZIGER, and F. PATAT. "NUCLEOSYNTHESIS IN HYPERNOVAE." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812791276_0023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

José, Jordi. "Nucleosynthesis in Novae." In Proceedings of the 14th International Symposium on Nuclei in the Cosmos (NIC2016). Journal of the Physical Society of Japan, 2017. http://dx.doi.org/10.7566/jpscp.14.010501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Coc, Alain. "Big-bang nucleosynthesis." In International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.028.0011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Coc, Alain, and Elisabeth Vangioni. "Big bang nucleosynthesis." In XIII Nuclei in the Cosmos. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.204.0022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Meyer, Bradley, and Ethan E. Kilgore. "Nucleosynthesis, reaction networks." In XIII Nuclei in the Cosmos. Trieste, Italy: Sissa Medialab, 2015. http://dx.doi.org/10.22323/1.204.0187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chieffi, Alessandro, and Marco Limongi. "Understanding Cosmic Nucleosynthesis." In The Extreme sky: Sampling the Universe above 10 keV. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.096.0058.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nucleosynthesis"

1

Lippuner, Jonas. Nucleosynthesis outreach slides. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1407868.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fryer, Christopher Lee, Stefano Gandolfi, Przemyslaw R. Wozniak, Joseph Allen Carlson, Aaron Joseph Couture, Joshua C. Dolence, Wesley Paul Even, et al. Nucleosynthesis Probes of Cosmic Explosions. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1603951.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Knox, L., and A. Kosowsky. Primordial nucleosynthesis in conformal Weyl gravity. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10194676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Haxton, W. C. Neutrino nucleosynthesis in supernovae: Shell model predictions. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5022225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kolb, E. W., M. S. Turner, and T. P. Walker. Effect of interacting particles on primordial nucleosynthesis. Office of Scientific and Technical Information (OSTI), May 1986. http://dx.doi.org/10.2172/5525132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hart, M. Boson Fermion Nuclei Stellar Nucleosynthesis: Monograph #7. Office of Scientific and Technical Information (OSTI), March 2021. http://dx.doi.org/10.2172/1773253.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Burke, Jason T., Steven A. Sheets, Nicholas D. Scielzo, Lee A. Bernstein, Rob Hoffman, and Eric B. Norman. Helium Burning in Steady State and Explosive Nucleosynthesis. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/1124908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fuller, George. Neutrinos and Nucleosynthesis in Hot and Dense Matter. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1234657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Holtmann, Erich Nielsen. Big-bang nucleosynthesis with high-energy photon injection. Office of Scientific and Technical Information (OSTI), May 1999. http://dx.doi.org/10.2172/753050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kasen, Daniel. Final Technical Report - Modeling Astrophysical Explosions and Nucleosynthesis. Office of Scientific and Technical Information (OSTI), August 2022. http://dx.doi.org/10.2172/1880189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography