Dissertations / Theses on the topic 'NP-complexity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 45 dissertations / theses for your research on the topic 'NP-complexity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Sempolinski, Peter. "Automatic Solutions of Logic Puzzles." Thesis, Boston College, 2009. http://hdl.handle.net/2345/690.
Full textThe use of computer programs to automatically solve logic puzzles is examined in this work. A typical example of this type of logic puzzle is one in which there are five people, with five different occupations and five different color houses. The task is to use various clues to determine which occupation and which color belongs to each person. The clues to this type of puzzle often are statements such as, ''John is not the barber,'' or ''Joe lives in the blue house.'' These puzzles range widely in complexity with varying numbers of objects to identify and varying numbers of characteristics that need to be identified for each object. With respect to the theoretical aspects of solving these puzzles automatically, this work proves that the problem of determining, given a logic puzzle, whether or not that logic puzzle has a solution is NP-Complete. This implies, provided that P is not equal to NP, that, for large inputs, automated solvers for these puzzles will not be efficient in all cases. Having proved this, this work proceeds to seek methods that will work for solving these puzzles efficiently in most cases. To that end, each logic puzzle can be encoded as an instance of boolean satisfiability. Two possible encodings are proposed that both translate logic puzzles into boolean formulas in Conjunctive Normal Form. Using a selection of test puzzles, a group of boolean satisfiability solvers is used to solve these puzzles in both encodings. In most cases, these simple solvers are successful in producing solutions efficiently
Thesis (BS) — Boston College, 2009
Submitted to: Boston College. College of Arts and Sciences
Discipline: College Honors Program
Discipline: Computer Science
Simone, James Nicholas. "NP user interface modeling." Diss., Online access via UMI:, 2009.
Find full textRingh, Emil. "Low complexity algorithms for faster-than-Nyquistsign : Using coding to avoid an NP-hard problem." Thesis, KTH, Optimeringslära och systemteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136936.
Full textDetta examensarbete handlar om vad som händer då kommunikationskanaler pressas till sin gräns och pulserna som bär data packas tätare i tiden. Detta kallas snabbare-än-Nyquist (FTN) och kommer att bryta mot Nyquists kriterium för intersymbolinterferens, vilket innebär att de databärande pulserna inte längre kommer vara ortogonala och att signalsamplen kommer vara beroende av mer än en skickad symbol. Det uppstår intersymbolinterferens (ISI) och dess konsekvenser studeras inom kanalmodellen AWGN. Vi visar att göra en maximum likelihood uppskattning baserat på dessa data är ett NP-svårt problem. Normalt används Viterbi algoritmen när man har ISI, men den har exponentiell komplexitet. På ett block med N symboler och interferens i storleken K symboler är komplexiteten O(N*2K) vilket gör att algoritmen är svår att använda i praktiska fall. Istället så föreslås en förkodning, som tillsammans med en avkodning reducerar komplexiteten. Kodningen appliceras blockvis och på ett block med N symboler är komplexiteten O(N2) för kodning/avkodning. Denna måste i båda fall föregås av en O(N3) beräkning, som dock behöver göras endast en gång. Simuleringar visar den föreslagna kodningens fördelar. I den första simuleringen testades den ihop med turbokodning med blocklängd på 6000 bitar och en kodningsgrad på 2/3. När FTN användes för att skicka 25% mer data krävdes det cirka 2.5 dB högre signal-till-brus-förhållande (SNR) för att den icke förkodade signalen skulle ha samma felfrekvens som den förkodade. När det förkodade fallet presterade felfritt gjorde det oförkodade fel på nästan alla block. Ett annat scenario som testades var det med korta koder, liten fördröjning och hög robusthet. I detta scenario skickades 600 bitar med en kodningsgrad på 2/3, alltså 400 bitar ren data. Genom att använda FTN med en dubbel packningsgrad, vilket innebär att 1200 bitar skickades under samma tid, var det möjligt att sänka kodningsgraden till 1/3, eftersom det bara var 400 bitar ren data som skulle överföras. Detta ökad robustheten i systemet ty då FTN fallet gjorde felfritt hade det klassiska Nyquist fallet fortfarande en felfrekvens på 0.19 för sina block. Det krävdes 1.25 dB högre SNR för Nyquist fallet att bli felfritt jämfört med FTN och lägre kodningsgrad.
Maji, Nabanita. "An Interactive Tutorial for NP-Completeness." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52973.
Full textMaster of Science
Huang, Xiuzhen. "Parameterized complexity and polynomial-time approximation schemes." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1446.
Full textBeyersdorff, Olaf. "Disjoint NP-pairs and propositional proof systems." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981087590.
Full textOno, Satoshi. "In pursuit of NP-hard combinatorial optimization problems." Diss., Online access via UMI:, 2009.
Find full textCornet, Alexis. "Algorithmes et résultats de complexité pour des problèmes de graphes avec contraintes additionnelles." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC034/document.
Full textDomination problems (dominating set, independant dominating set, ...) as well as covering problems (vertex-cover, Steiner tree, ...) are NP-complete. However, for most of these problems, it is always possible to construct a (eventually bad) solution in polynomial time, or at least it is possible to determine whether a solution exists. Those problems originally came from industry, but are simplified modelizations of the real life problems. We add additional constraints modeling plausible practical constraints : conflicts which are pairs of elements that cannot apear simultaneously in a solution (to modelize various incompatibilities), connexity in a second graph (elements of the solution must be able to communicate, and the communication links are a second graph), and obligations which are subsets of interdependant vertices which must be added simultaneously in a solution.We don't aim to model a specific real-world problem, but to study how these plausible constraints affect the complexity of the studied problems. We will see that, in many cases, even determining the existence of a solution (regardless of its size) become hard. The firefighter problem models firefighters aiming to contain a fire spreading turn by turn in a (eventually infinite) graph. We studied this problem with the addition of deplacement constraints for the firefighters (a limited moving speed between turns). We will see that, most of the time, this constraint increase the number of firefighters necessary to contain the fire, but does not trigger such major change as constraints studied in the others problems
Serédi, Silvester. "Evoluční algoritmy v úloze booleovské splnitelnosti." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236224.
Full textFallgren, Mikael. "Optimization of Joint Cell, Channel and Power Allocation in Wireless Communication Networks." Doctoral thesis, KTH, Optimeringslära och systemteori, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-40274.
Full textFinancial support by the Swedish Foundation for Strategic Research (SSF) QC 20110915
Wenner, Cenny. "Label Cover Reductions for Unconditional Approximation Hardness of Constraint Satisfaction." Doctoral thesis, Stockholms universitet, Numerisk analys och datalogi (NADA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-107685.
Full textKombinatoriska optimering inkluderar naturliga uppgifter såsom att hitta den snabbaste vägen till sitt arbetet, att schemalägga jobb hos specialister, eller att placera hållplatser för att minimera resenärers restid.Vi begränsar vi oss till de problem i vilket man ges en samling vilkor på variablermed målet att hitta en tilldelning av variablerna uppfyllandes så många som möjligt av vilkoren;så kallade Vilkorsuppfyllningsproblem (eng: Constraint Satisfaction Problems, CSPs).De flesta CSPs är NP-svåra att lösa optimalt och vi beaktar istället approximationer. Specifikt kallas, för 0 <= c <= 1, en lösning för en faktor-c approximation om antalet vilkor uppfyllda av lösningen är minst cgånger det största antalet uppfyllda av någon läsning. Denna avhandling består av tre artiklar som presenterar nya resultat begränsande hurpass väl man kan approximera CSPs i diverse situationer.För paritetsvilkor är en samling konsistenta vilkor enkla att lösa genom Gausselimination. Vi visar att för samtliga vilkor som uppfylls av en paritet och åtminstonde en ytterliggare tilldelning så är det inte bara NP-svårt at lösa utan till och med att ge en icke-trivial approximation.Oanvändarbarhet är en stark svårighetsegenskap som i princip säger att det är NP-svårt att ge icke-triviala approximationer även när man gemensamt för alla vilkor får ändra vad som uppfyller dem eller inte. Vi ger de första exemplen på icke-trivialt oanvändbara vilkor utan negationer betingat endast på P != NP.Vi visar på approximerbarhet för diverse ordningsvilorsproblem. I dessa ges man vilkor på hur objekt ska vara ordnade relativt varandra och målet är att hitta en ordning som uppfyller så många av vilkoren som möjligt. Vi ger bättre svårighetsresultat för de två mest välkända ordningsproblem, visar att det finns problem där det är NP-svårt att approximera bättre än triviala strategier, och att det finns ordningsproblem där godtyckligt dåliga approximationsgarantier är NP-svåra.
NADA är en delad institution mellan SU och KTH där senare nu kallar den CSC.
ApproxNP
Glorieux, Antoine. "Optimizing the imbalances in a graph." Thesis, Evry, Institut national des télécommunications, 2017. http://www.theses.fr/2017TELE0011/document.
Full textThe imbalance of a vertex in a directed graph is the absolute value of the difference between its outdegree and indegree. In this thesis we study the problem of orienting the edges of a graph in such a way that the image of the vector which components are the imbalances of the vertices of the graph under an objective function f is maximized. The first case considered is the problem of maximizing the minimum imbalance of all the vertices over all the possible orientations of the input graph. We first characterize graphs for which the optimal objective value is zero. Next we give several results concerning the computational complexity of the problem. Finally, we deal with several mixed integer programming formulations for this problem and present some numerical experiments. Next, we show that the case for f=1/2 | |·| |₁ leads to the famous unweighted maximum cut problem. We introduce some new formulations along with a new bound shown to be tighter than Michel Goemans & David Williamson's. Theoretical and computational results regarding bounds quality and performance are also reported. Finally, in order to strengthen some formulations of the studied problems, we study a specific class of polytopes. Consider the polytope consisting in the convex hull of the 0/1 assignment matrices where each column contains exactly one coefficient equal to 1 appended with their index of the lowest row that is not identically equal to the zero row. We give a full description of this polytope and some of its variants which naturally appear in the context of several combinatorial optimization problems. We also show that linear optimization over those polytopes can be done in polynomial time
Зінченко, Людмила Вікторівна. "Інформаційна рекомендаційна система в сфері освітніх послуг." Master's thesis, КПІ ім. Ігоря Сікорського, 2019. https://ela.kpi.ua/handle/123456789/31409.
Full textMaster's thesis: 85 p., 7 figures, 23 tables, 29 sources, 1 applications. Relevance: Online education is relevant today. Unfortunately, there are few alternative resources in Ukraine where online help can be obtained from various subject areas. More and more students from schools and universities, people who are retraining or just looking to develop are looking for ways to gain new theoretical knowledge and practical skills online. It is extremely difficult to master a large flow of information on your own, whatever the subject area is not learned by students, and therefore requires the help of professionals. Therefore, scheduling functionality is of great value. To solve the problem of how to implement this part of the functionality, a new mathematical problem will be posed and solved, which will give the opportunity and the basis for solving such problems. Connection of the thesis with scientific programs, plans, topics. The thesis was written at the branch of The Department of Computer-aided management and data processing systems of the National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» at the V. M. Glushkov Institute of Cybernetics of the National Academy of Sciences of Ukraine under the topic VF.180.11 «To develop a mathematical apparatus focused on the creation of intelligent information technologies for solving combinatorial optimization and information security problems» (2017-2021 biennium), which is executed by the Resolution of the Bureau of Informatics of the National Academy of Sciences of Ukraine from 23.06.2016 р. № 2. The purpose of the study is improving the quality of informing potential consumers and intellectualizing the processes of providing educational services online, by developing original software and algorithmic software and implementing it in the form of a specialized software system.. To achieve this goal, you must complete the following tasks: − review the existing formulations of educational tasks; − review existing methods for scheduling tasks; − carry out comparative analysis of different methods and models and classify them; − formalize the timetable for mentors and students; − develop a local search algorithm and an ant algorithm; − carry out the analysis of experimental studies; − develop software to provide educational services; − develop a startup project. The object of study is a process for scheduling mentors and students that meets certain criteria. The subject of study is methods and models of combinatorial optimization problems in scheduling theory problems. The scientific novelty of the results is the formulation and analysis of a new task, as well as the study of methods for solving this problem, the development of methods of local search and ant algorithm for the task of scheduling online classes. Publications. Work materials have been published in the international scientific journals «INNOVATIVE SOLUTIONS IN MODERN SCIENCE» (№6 (33), 2019) and «POLISH JOURNAL OF SCIENCE» (№16, 2019), as well as in theses of international scientific and practical conferences «Mathematical and systems simulation» (MODS 2019), «Information systems and control technologies» (ISTU-2019).
Nilsson, Mikael. "Spanneröar och spannervägar." Thesis, Institutionen för datavetenskap, Naturvetenskapliga fakulteten, Lunds universitet, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93331.
Full textI det här magisterarbetet undersöks om det är möjligt att på ett effektivt sätt dela upp en graf i spanneröar, dvs. öar som uppfyller spanneregenskapen som består i att avståndet mellan två noder via grafens bågar inte får vara för stort i förhållande till det euklidiska avståndet mellan noderna. Att hitta en uppdelning som skapar så få kontaktpunkter mellan öarna som möjligt eftersöks. Ett antal heuristiker testas och utvärderas med resultatet att en heuristik som använder sig av MAX-FLOW för att dela upp noder som bryter mot spannervillkoret presterar bäst för täta grafer medan en heuristik av typ single-link clustering presterar bäst för glesa grafer. I arbetet visas att problemet att finna en spannerväg, en väg där noderna som passeras uppfyller spannervillkoret, mellan två noder i en graf av storlek n är NP-komplett om spannerkonstanten är större än n^(1+1/k)*k^0.5 för något heltal k. En algoritm för att hitta spannervägar med komplexiteten O(2^(0.822n)) presenteras. Ett specialproblem där grafen ligger längs tallinjen och bara har noder på heltalspunkter studeras slutligen och här konstrueras en algoritm med komplexiteten O(2^((c*log n)^2))) där c är en konstant som beror på spannerkonstanten. Till exempel nås O(2^((5.32*log n)^2))) för stretch 1.5.
Foucaud, Florent. "Aspects combinatoires et algorithmiques des codes identifiants dans les graphes." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2012. http://tel.archives-ouvertes.fr/tel-00766138.
Full textSayadi, Mohamed Yosri. "Construction et analyse des algorithmes exacts et exponentiels : énumération input-sensitive." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0316.
Full textMoon and Moser proved that the maximum number of maximal independent sets in a graph of n vertices is at most 3^{n/3}. This maximum number, called upper bound, is tight given the existence of a family of graphs with such a number called lower bound. Unlike the enumeration of maximal independent sets, having a tight bounds is not obvious at all. And it’s quite common in the “input-sensitive” enumeration to have a big gap. This problem concerns even the most studied sets as minimal dominating sets where the best known algorithm to enumerate those sets runs in time O(1.7159^n) and the best known lower bound is only 1.5704^n. During this thesis, we proposed a "Measure and Conquer" algorithm to enumerate all minimal dominating sets for chordal graphs in time O(1.5048^n). Minimal connected dominating sets and maximal irredundant sets, which are closely related to minimal dominating sets, were also studied. An enumeration algorithm of minimal connected dominating sets in convex bipartite graphs has been proposed with a running time in O(1.7254^n). Enumeration algorithms of maximal irredundant sets have also been given for chordal graphs, interval graphs, and forests in times O(1.7549^n), O(1.6957^n) and O(1.6181^n) respectively instead of the trivial algorithm in time O*(2^n). We complement these upper bounds by showing that there are forest graphs with Omega(1.5292^n) maximal irredundant sets. We proved also that every maximal irredundant set of a cograph is a minimal dominating set. This implies that the maximum number of those sets in cographs is Theta(15^{n/6}). Finally, to vary, we studied a new set has been defined recently: The minimal tropical connected set. A lower bound of 1.4961^n has been proposed but we failed to improve the upper bound of 2^n. Enumeration algorithms of minimal tropical connected sets have been given for cobipartite, interval and block graphs in times O*(3^{n/3}), O(1.8613^n) and O*(3^{n/3}) respectively. A lower bound of 1.4766^n for splits graphs and 3^{n/3} for cobipartite, interval graphs and block graphs have been provided. We proposed a new lower bound of 1.5848^n, as a perspective and in order to draw community attention to the maximum number of minimal total dominating sets
Khosravian, Ghadikolaei Mehdi. "Extension of NP Optimization Problems." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED064.
Full textThe problem of determining the quality of a partial solution occurs in almost every algorithmic approach that gradually computes a global solution. Pruning search trees, proving approximation guarantees, or the efficiency of enumeration strategies usually require a suitable way to decide if a given partial solution is a reasonable candidate to pursue for extension to a global one, of assured quality. In this thesis, we study a special type of optimization problems, called extension problems for a large number of optimization problems on graphs. Possibly contradicting intuition, these problems tend to be NP-hard, even for problems where the underlying optimization problem can be solved in polynomial time. We present many positive/negative hardness and approximation results for different input scenarios. Moreover, the parameterized complexity of extension problems with respect to size of partial solutions, as well as the optimality of some exact algorithms under the Exponential-Time Hypothesis (ETH) are studied
Miček, David. "Genetické algoritmy." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2009. http://www.nusl.cz/ntk/nusl-218215.
Full textHo, Yiu Yu. "Global secure sets of trees and grid-like graphs." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4922.
Full textID: 030423421; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 206-210).
Ph.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Oliveira, Igor Carboni. "Complexidade computacional e o problema P vs NP." [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/275804.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-16T09:31:55Z (GMT). No. of bitstreams: 1 Oliveira_IgorCarboni_M.pdf: 1109272 bytes, checksum: 3ab44664e4e0b862409cc8038c431a06 (MD5) Previous issue date: 2010
Resumo: A teoria de complexidade computacional procura estabelecer limites para a eficiência dos algoritmos, investigando a dificuldade inerente dos problemas computacionais. O problema P vs NP é uma questão central em complexidade computacional. Informalmente, ele procura determinar se, para uma classe importante de problemas computacionais, a busca exaustiva por soluções é essencialmente a melhor alternativa algorítmica possível. Esta dissertação oferece tanto uma introdução clássica ao tema, quanto uma exposição a diversos teoremas mais avançados, resultados recentes e problemas em aberto. Em particular, o método da diagonalização é discutido em profundidade. Os principais resultados obtidos por diagonalização são os teoremas de hierarquia de tempo e de espaço (Hartmanis e Stearns [54, 104]). Apresentamos uma generalização desses resultados, obtendo como corolários os teoremas clássicos provados por Hartmanis e Stearns. Essa é a primeira vez que uma prova unificada desses resultados aparece na literatura
Abstract: Computational complexity theory is the field of theoretical computer science that aims to establish limits on the efficiency of algorithms. The main open question in computational complexity is the P vs NP problem. Intuitively, it states that, for several important computational problems, there is no algorithm that performs better than a trivial exhaustive search. We present here an introduction to the subject, followed by more recent and advanced results. In particular, the diagonalization method is discussed in detail. Although it is a classical technique in computational complexity, it is the only method that was able to separate strong complexity classes so far. Some of the most important results in computational complexity theory have been proven by diagonalization. In particular, Hartmanis and Stearns [54, 104] proved that, given more resources, one can solve more computational problems. These results are known as hierarchy theorems. We present a generalization of the deterministic hierarchy theorems, recovering the classical results proved by Hartmanis and Stearns as corollaries. This is the first time that such unified treatment is presented in the literature
Mestrado
Teoria da Computação
Mestre em Ciência da Computação
Colares, Rafael. "Exploring Combinatorial Aspects of the Stop Number Problem." Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC050.
Full textThe Stop Number Problem arises in the management of a dial-a-ride system with small autonomous electric vehicles. In such a system, a fleet of identical capacitated vehicles travels along a predefined circuit with fixed stations in order to serve clients requesting for a ride from an origin station to a destination station. Notice that multiple clients may share the same origin and/or destination stations. The Stop Number Problem consists of assigning each client request to avehicle such that no vehicle gets overloaded. The goal is to minimize the number of times the fleet of vehicles stops for picking up or delivering clients. When every client requests for exactly one seat in a vehicle, Stop Number Problem is called Unit Stop Number Problem. In this thesis, Unit Stop Number Problem is addressed as a combinatorial-optimization problem.First, we investigate the complexity of such problem. On the one hand, we study some properties of optimal solutions and derive a series of particular cases that are shown to be solvable in polynomial time. On the other hand, we show that Unit Stop Number Problem is NP-Hard even when restricted to case where each vehicle can take at most two clients at once and the graph induced by the client requests is planar bipartite. Such result -- which positively answers a conjecture known in the literature -- is then extended to other related problems such as the k-Edge Partitioning and the Traffic Grooming problem, improving their respective state-of-the-art complexity standards.In a second part, we consider an integer-programming formulation known in the literature for solving the Unit Stop Number Problem. A preliminary analysis is conducted in order to prove the weakness of such formulation. Afterwards, such formulation is reinforced through a polyhedral approach. We provide a facial study of the polytope associated with the solutions of this problem. New valid inequalities are introduced and necessary and sufficient conditions for which they are facet-defining are given.Finally, based on the discussed polyhedral results, we derive a new efficient branch-and-cut algorithm. Performance boosting features such as symmetry breaking methods and variable elimination/relaxation are also investigated and implemented into the developed framework. Results convincingly demonstrate the strength of the reinforcing valid inequalities and therefore of our branch-and-cut algorithm
Brancotte, Bryan. "Agrégation de classements avec égalités : algorithmes, guides à l'utilisateur et applications aux données biologiques." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112184/document.
Full textThe rank aggregation problem is to build consensus among a set of rankings (ordered elements). Although this problem has numerous applications (consensus among user votes, consensus between results ordered differently by different search engines ...), computing an optimal consensus is rarely feasible in cases of real applications (problem NP-Hard). Many approximation algorithms and heuristics were therefore designed. However, their performance (time and quality of product loss) are quite different and depend on the datasets to be aggregated. Several studies have compared these algorithms but they have generally not considered the case (yet common in real datasets) that elements can be tied in rankings (elements at the same rank). Choosing a consensus algorithm for a given dataset is therefore a particularly important issue to be studied (many applications) and it is an open problem in the sense that none of the existing studies address it. More formally, a consensus ranking is a ranking that minimizes the sum of the distances between this consensus and the input rankings. Like much of the state-of-art, we have considered in our studies the generalized Kendall-Tau distance, and variants. Specifically, this thesis has three contributions. First, we propose new complexity results associated with cases encountered in the actual data that rankings may be incomplete and where multiple items can be classified equally (ties). We isolate the different "features" that can explain variations in the results produced by the aggregation algorithms (for example, using the generalized distance of Kendall-Tau or variants, pre-processing the datasets with unification or projection). We propose a guide to characterize the context and the need of a user to guide him into the choice of both a pre-treatment of its datasets but also the distance to choose to calculate the consensus. We finally adapt existing algorithms to this new context. Second, we evaluate these algorithms on a large and varied set of datasets both real and synthetic reproducing actual features such as similarity between rankings, the presence of ties and different pre-treatments. This large evaluation comes with the proposal of a new method to generate synthetic data with similarities based on a Markov chain modeling. This evaluation led to the isolation of datasets features that impact the performance of the aggregation algorithms, and to design a guide to characterize the needs of a user and advise him in the choice of the algorithm to be use. A web platform to replicate and extend these analyzes is available (rank-aggregation-with-ties.lri.fr). Finally, we demonstrate the value of using the rankings aggregation approach in two use cases. We provide a tool to reformulating the text user queries through biomedical terminologies, to then query biological databases, and ultimately produce a consensus of results obtained for each reformulation (conqur-bio.lri.fr). We compare the results to the references platform and show a clear improvement in quality results. We also calculate consensus between list of workflows established by experts in the context of similarity between scientific workflows. We note that the computed consensus agree with the expert in a very large majority of cases
Jurčík, Lukáš. "Evoluční algoritmy při řešení problému obchodního cestujícího." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2014. http://www.nusl.cz/ntk/nusl-224447.
Full textMenadjelia, Nardjes. "Vers le recouvrement automatique dans la composition de services WEB basée protocole." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00874865.
Full textNijjar, Paul. "An Attempt to Automate NP-Hardness Reductions via SO∃ Logic." Thesis, University of Waterloo, 2004. http://hdl.handle.net/10012/1162.
Full textTourniaire, Emeric. "Problèmes NP-difficiles : approximation modérément exponentielle et complexité paramétrique." Phd thesis, Université Paris Dauphine - Paris IX, 2013. http://tel.archives-ouvertes.fr/tel-00874599.
Full textTa, Thanh Thuy Tien. "New single machine scheduling problems with deadline for the characterization of optimal solutions." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4015/document.
Full textWe consider a single machine scheduling problem with deadlines and we want to characterise the set of optimal solutions, without enumerating them. We assume that jobs are numbered in EDD order and that this sequence is feasible. The key idea is to use the lattice of permutations and to associate to the supremum permutation the EDD sequence. In order to characterize a lot of solutions, we search for a feasible sequence, as far as possible to the supremum. The distance is the level of the sequence in the lattice, which has to be minimum. This new objective function is investigated. Some polynomially particular cases are identified, but the complexity of the general case problem remains open. Some resolution methods, polynomial and exponential, are proposed and evaluated. The level of the sequence being related to the positions of jobs in the sequence, new objective functions related to the jobs positions are identified and studied. The problem of minimizing the total weighted positions of jobs is proved to be strongly NP-hard. Some particular cases are investigated, resolution methods are also proposed and evaluated
Rocha, Thiago Alves. "Complexidade Descritiva de Classes de Complexidade ProbabilÃsticas de Tempo Polinomial e das Classes ⊕P e NP∩coNP AtravÃs de LÃgicas com Quantificadores de Segunda Ordem." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12684.
Full textVÃrios problemas computÃveis podem ser resolvidos de maneira mais eficiente ou mais natural atravÃs de algoritmos probabilÃsticos, o que mostra que o uso de tais algoritmos à bastante relevante em computaÃÃo. Entretanto, os algoritmos probabilÃsticos podem retornar uma resposta errada com uma certa probabilidade. Observe, ainda que o uso de algoritmos probabilÃsticos nÃo resolve problemas nÃo computÃveis. A Complexidade Computacional caracteriza a complexidade de um problema a partir da quantidade de recursos computacionais, como espaÃo e tempo, para resolvÃ-lo. Problemas que tem a mesma complexidade compÃem uma classe. As classes de complexidade computacional sÃo relacionadas atravÃs de uma hierarquia. A Complexidade Descritiva usa lÃgicas para expressar os problemas e capturar classes de complexidade computacional no sentido de expressar todos, e apenas, os problemas desta classe. Dessa forma, a complexidade de um problema nÃo depende de fatores fÃsicos, como tempo e espaÃo, mas apenas da expressividade da lÃgica que o define. Resultados importantes da Ãrea mostraram que vÃrias classes de complexidade computacional podem ser caracterizadas por lÃgicas. Por exemplo, a classe NP foi mostrada equivalente à classe dos problemas expressos pelo fragmento existencial da LÃgica de Segunda Ordem. Este estreito relacionamento entre tais Ãreas permite que alguns resultados da Ãrea de LÃgica sejam transferidos para a de Complexidade Computacional e vice-versa. Apesar da importÃncia de algoritmos probabilÃsticos e da Complexidade Descritiva, existem poucos resultados de caracterizaÃÃo, por lÃgicas, das classes de complexidade computacional probabilÃsticas. Neste trabalho, buscamos mostrar caracterizaÃÃes para cada uma das classes de complexidade probabilÃsticas de tempo polinomial. Nos nossos resultados, utilizamos quantificadores generalizados de segunda ordem para simular a aceitaÃÃo das mÃquinas nÃo-determinÃsticas dessas classes. Achamos caracterizaÃÃes lÃgicas na literatura apenas para as classes PP e BPP. No primeiro caso, a lÃgica utilizada era a de primeira ordem adicionada de um quantificador maioria de segunda ordem. Com a abordagem criada neste trabalho, conseguimos obter uma prova alternativa para a caracterizaÃÃo de PP. Com essa mesma metodologia, tambÃm conseguimos caracterizar a classe ⊕P atravÃs de uma lÃgica com um quantificador de paridade. No caso de BPP, existia um resultado que utilizava uma lÃgica com semÃntica probabilÃstica. Usando nossa abordagem de quantificadores generalizados, conseguimos obter uma caracterizaÃÃo alternativa para essa classe. Com o mesmo mÃtodo, conseguimos caracterizar as classes probabilÃsticas semÃnticas RP, coRP, ZPP e a classe semÃntica NP∩coNP. Por fim, mostramos uma aplicaÃÃo dos resultados de Complexidade Descritiva na criaÃÃo de algoritmos atravÃs de uma especificaÃÃo lÃgica.
Many computable problems can be solved more efficiently or in a more natural way through probabilistic algorithms, which shows that the use of such algorithms is quite relevant in Computer Science. However, probabilistic algorithms may return a wrong answer with a certain probability. Also, the use of probabilistic algorithms does not solve problems that are not computable. In Computational Complexity, the complexity of a problem is characterized based on the amount of computational resources, such as space and time, needed to solve it. Problems that have the same complexity compose the same class. The computational complexity classes are related by a hierarchy. In Descriptive Complexity, a logic is used to express problems and capture computational complexity classes in order to express all and only the problems of this class. Thus, the complexity of a problem does not depend on physical factors, such as time and space, but only on the expressiveness of the logic that defines it. Important results of the area states that several classes of computational complexity can be characterized by a logic. For example, the class NP has been shown equivalent to the class of problems expressed by the existential fragment of Second-Order Logic. This close relationship between these areas allows some results about Logics to be transferred to Computational Complexity and vice versa. Despite of the importance of probabilistic algorithms and of Descriptive Complexity, there are few results on the characterization, by a logic, of probabilistic computational complexity classes. In this work, we show characterizations for each of the polinomial time probabilistic complexity classes. In our results, we use second-order generalized quantifiers to simulate the acceptance of the nondeterministic machines of these classes. We found Logical characterizations in the literature only for classes PP and BPP. In the first case, the logic employed was the first-order added by a quantifier most of second-order. With the approach established in this work, we obtain an alternative proof for the characterization of PP. With the same methodology, we also characterize the class ⊕P through a logic with a second-order parity quantifier. In the case of BPP , there was a result that used a logic with probabilistic semantics. Using our approach of generalized quantifiers, we obtain an alternative characterization for this class. With the same method, we were able to characterize the probabilistic semantic classes RP, coRP, ZPP and the semantic class NP ∩ coNP. Finally, we show an application of Descriptive Complexity results in the creation of algorithms from a logic specification.
Rocha, Thiago Alves. "Complexidade descritiva de classes de complexidade probabilísticas de tempo polinomial e das classes ⊕P e NP∩coNP através de lógicas com quantificadores de segunda ordem." reponame:Repositório Institucional da UFC, 2014. http://www.repositorio.ufc.br/handle/riufc/10588.
Full textSubmitted by Daniel Eduardo Alencar da Silva (dealencar.silva@gmail.com) on 2015-01-23T20:35:59Z No. of bitstreams: 1 2014_dis_tarocha.pdf: 600184 bytes, checksum: 8e317715dd15118a1061361a5251f08e (MD5)
Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-02-09T15:45:32Z (GMT) No. of bitstreams: 1 2014_dis_tarocha.pdf: 600184 bytes, checksum: 8e317715dd15118a1061361a5251f08e (MD5)
Made available in DSpace on 2015-02-09T15:45:32Z (GMT). No. of bitstreams: 1 2014_dis_tarocha.pdf: 600184 bytes, checksum: 8e317715dd15118a1061361a5251f08e (MD5) Previous issue date: 2014
Many computable problems can be solved more efficiently or in a more natural way through probabilistic algorithms, which shows that the use of such algorithms is quite relevant in Computer Science. However, probabilistic algorithms may return a wrong answer with a certain probability. Also, the use of probabilistic algorithms does not solve problems that are not computable. In Computational Complexity, the complexity of a problem is characterized based on the amount of computational resources, such as space and time, needed to solve it. Problems that have the same complexity compose the same class. The computational complexity classes are related by a hierarchy. In Descriptive Complexity, a logic is used to express problems and capture computational complexity classes in order to express all and only the problems of this class. Thus, the complexity of a problem does not depend on physical factors, such as time and space, but only on the expressiveness of the logic that defines it. Important results of the area states that several classes of computational complexity can be characterized by a logic. For example, the class NP has been shown equivalent to the class of problems expressed by the existential fragment of Second-Order Logic. This close relationship between these areas allows some results about Logics to be transferred to Computational Complexity and vice versa. Despite of the importance of probabilistic algorithms and of Descriptive Complexity, there are few results on the characterization, by a logic, of probabilistic computational complexity classes. In this work, we show characterizations for each of the polinomial time probabilistic complexity classes. In our results, we use second-order generalized quantifiers to simulate the acceptance of the nondeterministic machines of these classes. We found Logical characterizations in the literature only for classes PP and BPP. In the first case, the logic employed was the first-order added by a quantifier most of second-order. With the approach established in this work, we obtain an alternative proof for the characterization of PP. With the same methodology, we also characterize the class ⊕P through a logic with a second-order parity quantifier. In the case of BPP , there was a result that used a logic with probabilistic semantics. Using our approach of generalized quantifiers, we obtain an alternative characterization for this class. With the same method, we were able to characterize the probabilistic semantic classes RP, coRP, ZPP and the semantic class NP ∩ coNP. Finally, we show an application of Descriptive Complexity results in the creation of algorithms from a logic specification.
Vários problemas computáveis podem ser resolvidos de maneira mais eficiente ou mais natural através de algoritmos probabilísticos, o que mostra que o uso de tais algoritmos é bastante relevante em computação. Entretanto, os algoritmos probabilísticos podem retornar uma resposta errada com uma certa probabilidade. Observe, ainda que o uso de algoritmos probabilísticos não resolve problemas não computáveis. A Complexidade Computacional caracteriza a complexidade de um problema a partir da quantidade de recursos computacionais, como espaço e tempo, para resolvê-lo. Problemas que tem a mesma complexidade compõem uma classe. As classes de complexidade computacional são relacionadas através de uma hierarquia. A Complexidade Descritiva usa lógicas para expressar os problemas e capturar classes de complexidade computacional no sentido de expressar todos, e apenas, os problemas desta classe. Dessa forma, a complexidade de um problema não depende de fatores físicos, como tempo e espaço, mas apenas da expressividade da lógica que o define. Resultados importantes da área mostraram que várias classes de complexidade computacional podem ser caracterizadas por lógicas. Por exemplo, a classe NP foi mostrada equivalente à classe dos problemas expressos pelo fragmento existencial da Lógica de Segunda Ordem. Este estreito relacionamento entre tais áreas permite que alguns resultados da área de Lógica sejam transferidos para a de Complexidade Computacional e vice-versa. Apesar da importância de algoritmos probabilísticos e da Complexidade Descritiva, existem poucos resultados de caracterização, por lógicas, das classes de complexidade computacional probabilísticas. Neste trabalho, buscamos mostrar caracterizações para cada uma das classes de complexidade probabilísticas de tempo polinomial. Nos nossos resultados, utilizamos quantificadores generalizados de segunda ordem para simular a aceitação das máquinas não-determinísticas dessas classes. Achamos caracterizações lógicas na literatura apenas para as classes PP e BPP. No primeiro caso, a lógica utilizada era a de primeira ordem adicionada de um quantificador maioria de segunda ordem. Com a abordagem criada neste trabalho, conseguimos obter uma prova alternativa para a caracterização de PP. Com essa mesma metodologia, também conseguimos caracterizar a classe ⊕P através de uma lógica com um quantificador de paridade. No caso de BPP, existia um resultado que utilizava uma lógica com semântica probabilística. Usando nossa abordagem de quantificadores generalizados, conseguimos obter uma caracterização alternativa para essa classe. Com o mesmo método, conseguimos caracterizar as classes probabilísticas semânticas RP, coRP, ZPP e a classe semântica NP∩coNP. Por fim, mostramos uma aplicação dos resultados de Complexidade Descritiva na criação de algoritmos através de uma especificação lógica.
Mohamed, Babou Hafedh. "Comparaison de réseaux biologiques." Phd thesis, Université de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00767578.
Full textKapfunde, Goodwell. "Near-capacity sphere decoder based detection schemes for MIMO wireless communication systems." Thesis, University of Hertfordshire, 2013. http://hdl.handle.net/2299/11350.
Full textLyaudet, Laurent. "Graphes et hypergraphes : complexités algorithmique et algébrique." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2007. http://tel.archives-ouvertes.fr/tel-00905137.
Full textKopřiva, Jan. "Srovnání algoritmů při řešení problému obchodního cestujícího." Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2009. http://www.nusl.cz/ntk/nusl-222126.
Full textTravers, Stephen. "Structural Properties of NP-Hard Sets and Uniform Characterisations of Complexity Classes." Doctoral thesis, 2007. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-27124.
Full textDiese Dissertation behandelt die Komplexitätstheorie, ein zentrales Teilgebiet der Theoretischen Informatik. Die Komplexitätstheorie untersucht die inhärente Schwierigkeit, effiziente Algorithmen für Berechnungsprobleme zu entwerfen. Sie analysiert die Skalierbarkeit von Berechnungsproblemen und Algorithmen und stellt grundsätzliche Grenzen für die Leistungsfähigkeit von Computern auf. Berechnungsprobleme werden in Komplexitätsklassen kategorisiert. Dabei spielen die Klasse NP und die in ihr enthaltene Klasse der NP-vollständigen Probleme eine wichtige Rolle. Letztere umfasst zahlreiche in der Praxis bedeutsame Probleme aus dem Bereich Operations Research. Darüber hinaus repräsentiert die Klasse NP mit dem P-NP Problem gleichfalls das wichtigste ungelöste Problem in der Informatik. Der erste Teil dieser Dissertation ist der Untersuchung NP-vollständiger und noch allgemeiner, NP-harter Mengen gewidmet. Durch eine systematische Untersuchung der Frage, wie sich partielle Modifikationen von Mengen auf deren NP-Härte auswirken, soll das Verständnis dieser wichtigen Komplexitätsklasse verbessert werden. Die Untersuchungen in diesem Bereich stehen in enger Verbindung zu wichtigen ungelösten Fragen, wie beispielsweise der Frage nach der Komplexität von Vereinigungen disjunkter NP-vollständiger Mengen und darüber hinaus der Frage nach der Existenz dünner, NP-harter Mengen. Der zweite Teil der Dissertation beschäftigt sich ebenfalls mit der Komplexitätstheorie, nimmt dabei aber eine andere Perspektive ein: Während im ersten Teil mit der Untersuchung struktureller Eigenschaften innere Aspekte von Komplexitätsklassen im Vordergrund stehen dreht es sich im zweiten Teil um die Beschreibung von Komplexitätsklassen. Dabei werden so genannte Blattsprachen verwendet, welche einen uniformen Beschreibungsmechanismus für Komplexitätsklassen darstellen. Die bestehenden Blattsprachen-Konzepte werden durch einen neuen Ansatz ergänzt, der in einem gewissen Sinne die Vorteile der bekannten Ansätze vereint. Die erzielten Ergebnisse sind Evidenz dafür, dass die Verbindung zwischen der Theorie der formalen Sprachen und der Komplexitätstheorie noch enger ist als bislang vermutet
"Complexity analysis of task assignment problems and vehicle scheduling problems." Chinese University of Hong Kong, 1994. http://library.cuhk.edu.hk/record=b5887281.
Full textThesis (M.Phil.)--Chinese University of Hong Kong, 1994.
Chapter 1 --- Introduction --- p.1
Chapter 2 --- Scheduling Problems of Chain-like Task System --- p.4
Chapter 2.1 --- Introduction --- p.4
Chapter 2.2 --- Problem Assumptions and Notations Definition --- p.7
Chapter 2.3 --- Related Works --- p.9
Chapter 2.3.1 --- Bokhari's Algorithm --- p.10
Chapter 2.3.2 --- Sheu and Chiang's Algorithm --- p.12
Chapter 2.3.3 --- Hsu's Algorithm --- p.12
Chapter 2.4 --- Decision Algorithms for Un-mergeable Task System --- p.18
Chapter 2.4.1 --- Feasible Length-K Schedule --- p.18
Chapter 2.4.2 --- Generalized Decision Test --- p.23
Chapter 2.5 --- Dominated and Non-dominated Task Systems --- p.26
Chapter 2.5.1 --- Algorithm for Dominated Task System --- p.26
Chapter 2.5.2 --- Property of Non-dominated Task System --- p.27
Chapter 2.6 --- A Searching-Based Algorithm for the Optimization Problem --- p.28
Chapter 2.6.1 --- Algorithm --- p.29
Chapter 2.6.2 --- Complexity Analysis --- p.31
Chapter 2.7 --- A Searching Algorithm Based on a Sorted Matrix --- p.33
Chapter 2.7.1 --- Sorted Matrix --- p.33
Chapter 2.7.2 --- Algorithm for the Optimization Problem --- p.35
Chapter 2.7.3 --- Complexity Analysis --- p.40
Chapter 2.8 --- A Constructive Algorithm for the Optimization Problem --- p.43
Chapter 2.9 --- A Modified Constructive Algorithm --- p.46
Chapter 2.9.1 --- Algorithm --- p.46
Chapter 2.9.2 --- Worst-Case Analysis --- p.50
Chapter 2.9.3 --- Sufficient Condition for Efficient Algorithm H --- p.58
Chapter 2.9.4 --- Average-Case Analysis --- p.62
Chapter 2.10 --- Performance Evaluation --- p.65
Chapter 2.10.1 --- Optimal Schedule --- p.65
Chapter 2.10.2 --- Space Complexity Analysis --- p.67
Chapter 2.10.3 --- Time Complexity Analysis --- p.68
Chapter 2.10.4 --- Simulation of Algorithm F and Algorithm H --- p.70
Chapter 2.11 --- Conclusion --- p.74
Chapter 3 --- Vehicle Scheduling Problems with Time Window Constraints --- p.77
Chapter 3.1 --- Introduction --- p.77
Chapter 3.2 --- Problem Formulation and Notations --- p.79
Chapter 3.3 --- NP-hardness of VSP-WINDOW-SLP --- p.83
Chapter 3.3.1 --- A Transformation from PARTITION --- p.83
Chapter 3.3.2 --- Intuitive Idea of the Reduction --- p.85
Chapter 3.3.3 --- NP-completeness Proof --- p.87
Chapter 3.4 --- Polynomial Time Algorithm for the VSP-WINDOW on a Straight Line with Common Ready Time --- p.98
Chapter 3.5 --- Strong NP-hardness of VSP-WINDOW-TREEP --- p.106
Chapter 3.5.1 --- A Transformation from 3-PARTITION --- p.107
Chapter 3.5.2 --- NP-completeness Proof --- p.107
Chapter 3.6 --- Conclusion --- p.111
Chapter 4 --- Conclusion --- p.115
Bibliography --- p.119
Travers, Stephen [Verfasser]. "Structural properties of NP-hard sets and uniform characterisations of complexity classes / vorgelegt von Stephen Travers." 2008. http://d-nb.info/988512785/34.
Full textChurchley, Ross William. "On graph-transverse matching problems." Thesis, 2012. http://hdl.handle.net/1828/4137.
Full textGraduate
Sauer, Paul Van der Merwe. "The complexity of unavoidable word patterns." Thesis, 2019. http://hdl.handle.net/10500/27343.
Full textThe avoidability, or unavoidability of patterns in words over finite alphabets has been studied extensively. The word α over a finite set A is said to be unavoidable for an infinite set B+ of nonempty words over a finite set B if, for all but finitely many elements w of B+, there exists a semigroup morphism φ ∶ A+ → B+ such that φ(α) is a factor of w. In this treatise, we start by presenting a historical background of results that are related to unavoidability. We present and discuss the most important theorems surrounding unavoidability in detail. We present various complexity-related properties of unavoidable words. For words that are unavoidable, we provide a constructive upper bound to the lengths of words that avoid them. In particular, for a pattern α of length n over an alphabet of size r, we give a concrete function N(n, r) such that no word of length N(n, r) over the alphabet of size r avoids α. A natural subsequent question is how many unavoidable words there are. We show that the fraction of words that are unavoidable drops exponentially fast in the length of the word. This allows us to calculate an upper bound on the number of unavoidable patterns for any given finite alphabet. Subsequently, we investigate computational aspects of unavoidable words. In particular, we exhibit concrete algorithms for determining whether a word is unavoidable. We also prove results on the computational complexity of the problem of determining whether a given word is unavoidable. Specifically, the NP-completeness of the aforementioned problem is established.
Decision Sciences
D. Phil. (Operations Research)
Mousavi, Nima. "Algorithmic Problems in Access Control." Thesis, 2014. http://hdl.handle.net/10012/8303.
Full textMade, Vollenweider Ignacio. "De PH a IP : un curso en complejidad computacional." Bachelor's thesis, 2019. http://hdl.handle.net/11086/16009.
Full textEn este trabajo estudiamos algunas de las clases más importantes de la teoría de Complejidad Computacional. Nos basamos en el programa que propone el libro Computational Complexity a modern approach, del cual vemos la segunda mitad de la primera parte del programa (excluyendo Criptografía, Computación Cuántica y el Teorema PCP). En particular, estudiamos la clase de la Jerarquía Polinomial (PH), la clase de Circuitos Booleanos (P /poly ), la Computación Randomizada (BPP) y los Protocolos Interactivos (IP). Además vemos las principales técnicas de la teoría para obtener resultados las cuales son Diagonalización, Lower bounds y Arithmetization. Y estudiamos también sus respectivas limitaciones: Relativización, Natural proofs y Algebrization.
In this work we study some of the most important classes of the Computational Complexity Theory. We base on the program proposed by the book Computational Complexity a modern approach, of which we see the second half of the first part of the program (excluding Cryptography, Quantum Computing and the PCP Theorem). In particular, we study the class of the Polynomial Hierarchy (PH), the class of Boolean Circuits (P /poly ), the Randomized Computing (BPP) and the Interactive Protocols (IP). In addition we see the main techniques of the theory to obtain results which are Diagonalization, Lower bounds and Arithmetization. And we also study their respective limitations: Relativization, Natural proofs and Algebrization.
Fil: Made Vollenweider, Ignacio. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.
Jirotka, Tomáš. "NP vyhledávací problémy." Master's thesis, 2011. http://www.nusl.cz/ntk/nusl-300252.
Full textKosub, Sven. "Complexity and Partitions." Doctoral thesis, 2001. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-2808.
Full textDie klassische Komplexitätstheorie untersucht in erster Linie die Komplexität von Mengen, d.h. von Zerlegungen (Partitionen) einer Grundmenge in zwei Teile. Häufig werden aber natürliche Fragestellungen viel angemessener durch Zerlegungen in mehr als zwei Teile abgebildet. Eine besonders interessante Klasse solcher Fragestellungen sind Klassifikationsprobleme für Relationen. Zum Beispiel definiert eine Binärrelation R typischerweise eine Zerlegung der Menge aller Paare (x,y) in vier Teile, klassifizierbar danach, ob R(x,y) und R(y,x), R(x,y) aber nicht R(y,x), nicht R(x,y) aber dafür R(y,x) oder weder R(x,y) noch R(y,x) gilt. Anhand konkreter Klassifikationsprobleme, wie zum Beispiel der Einbettbarkeit von Graphen und der Folgerbarkeit für aussagenlogische Formeln, werden in der Dissertation Instrumente für eine qualitative Analyse der Komplexität von Partitionen, die von NP-Relationen erzeugt werden, in Form der Booleschen Hierarchie der NP-Partitionen und ihrer Erweiterungen systematisch entwickelt. Die Boolesche Hierarchie der NP-Partitionen wird als Verallgemeinerung der bereits bekannten und wohluntersuchten Boolesche Hierarchie über NP eingeführt. Während die letztere Hierarchie eine sehr einfache Struktur aufweist, stellt sich die Boolesche Hierarchie der NP-Partitionen im Falle von Zerlegungen in mindestens 3 Teile als sehr viel komplizierter heraus. Um einen Überblick über diese Hierarchien zu erlangen, werden alternative Beschreibungen der Klassen der Hierarchien mittels endlicher, bewerteter Verbände angegeben. Darauf aufbauend wird die Einbettungsvermutung aufgestellt, die uns die vollständige Information über die Struktur der Hierarchie liefert. Diese Vermutung wird mit verschiedene Resultaten untermauert. Eine Erweiterung der Booleschen Hierarchie der NP-Partitionen ergibt sich auf natürliche Weise aus der Charakterisierung ihrer Klassen durch Verbände. Dazu werden Klassen betrachtet, die von endlichen, bewerteten Halbordnungen erzeugt werden. Es zeigt sich, dass die wesentlichen Konzepte vom Verbandsfall übertragen werden können. Die entstehende Verfeinerung der Booleschen Hierarchie der NP-Partitionen ermöglicht die exaktere Analyse der Komplexität bestimmter Relationen (wie zum Beispiel der Einbettbarkeit von Graphen) und die Beschreibung projektiv abgeschlossener Partitionenklassen
Ristad, Eric Sven. "GPSG-Recognition is NP-Hard." 1985. http://hdl.handle.net/1721.1/5615.
Full textWulff, Sharon Jay. "Computational Complexity Of Bi-clustering." Thesis, 2008. http://hdl.handle.net/10012/3900.
Full textChester, Sean. "Representative Subsets for Preference Queries." Thesis, 2013. http://hdl.handle.net/1828/4833.
Full textGraduate
0984