Academic literature on the topic 'NP-complexity'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'NP-complexity.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "NP-complexity"
Vardi, Moshe Y. "On P, NP, and computational complexity." Communications of the ACM 53, no. 11 (November 2010): 5. http://dx.doi.org/10.1145/1839676.1839677.
Full textde Haan, Ronald, and Stefan Szeider. "Parameterized complexity classes beyond para-NP." Journal of Computer and System Sciences 87 (August 2017): 16–57. http://dx.doi.org/10.1016/j.jcss.2017.02.002.
Full textJiang, Yaozhi. "A Proof “P≠NP” for P vs. NP Problem by Multiple-Tape Turing-Machine." Journal of Mathematics Research 12, no. 4 (July 7, 2020): 1. http://dx.doi.org/10.5539/jmr.v12n4p1.
Full textBeame, Paul, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. "The Relative Complexity of NP Search Problems." Journal of Computer and System Sciences 57, no. 1 (August 1998): 3–19. http://dx.doi.org/10.1006/jcss.1998.1575.
Full textCALUDE, CRISTIAN S., ELENA CALUDE, and MELISSA S. QUEEN. "INDUCTIVE COMPLEXITY OF THE P VERSUS NP PROBLEM." Parallel Processing Letters 23, no. 01 (March 2013): 1350007. http://dx.doi.org/10.1142/s0129626413500072.
Full textLittman, M. L., J. Goldsmith, and M. Mundhenk. "The Computational Complexity of Probabilistic Planning." Journal of Artificial Intelligence Research 9 (August 1, 1998): 1–36. http://dx.doi.org/10.1613/jair.505.
Full textJukna, Stasys. "On the P versus NP intersected with co-NP question in communication complexity." Information Processing Letters 96, no. 6 (December 2005): 202–6. http://dx.doi.org/10.1016/j.ipl.2005.08.003.
Full textMulmuley, Ketan D. "On P vs. NP and geometric complexity theory." Journal of the ACM 58, no. 2 (April 2011): 1–26. http://dx.doi.org/10.1145/1944345.1944346.
Full textBirget, J. C. "Inverse monoids associated with the complexity class NP." Semigroup Forum 98, no. 2 (January 3, 2019): 369–97. http://dx.doi.org/10.1007/s00233-018-9990-x.
Full textBuss, Samuel R. "Towards NP–P via proof complexity and search." Annals of Pure and Applied Logic 163, no. 7 (July 2012): 906–17. http://dx.doi.org/10.1016/j.apal.2011.09.009.
Full textDissertations / Theses on the topic "NP-complexity"
Sempolinski, Peter. "Automatic Solutions of Logic Puzzles." Thesis, Boston College, 2009. http://hdl.handle.net/2345/690.
Full textThe use of computer programs to automatically solve logic puzzles is examined in this work. A typical example of this type of logic puzzle is one in which there are five people, with five different occupations and five different color houses. The task is to use various clues to determine which occupation and which color belongs to each person. The clues to this type of puzzle often are statements such as, ''John is not the barber,'' or ''Joe lives in the blue house.'' These puzzles range widely in complexity with varying numbers of objects to identify and varying numbers of characteristics that need to be identified for each object. With respect to the theoretical aspects of solving these puzzles automatically, this work proves that the problem of determining, given a logic puzzle, whether or not that logic puzzle has a solution is NP-Complete. This implies, provided that P is not equal to NP, that, for large inputs, automated solvers for these puzzles will not be efficient in all cases. Having proved this, this work proceeds to seek methods that will work for solving these puzzles efficiently in most cases. To that end, each logic puzzle can be encoded as an instance of boolean satisfiability. Two possible encodings are proposed that both translate logic puzzles into boolean formulas in Conjunctive Normal Form. Using a selection of test puzzles, a group of boolean satisfiability solvers is used to solve these puzzles in both encodings. In most cases, these simple solvers are successful in producing solutions efficiently
Thesis (BS) — Boston College, 2009
Submitted to: Boston College. College of Arts and Sciences
Discipline: College Honors Program
Discipline: Computer Science
Simone, James Nicholas. "NP user interface modeling." Diss., Online access via UMI:, 2009.
Find full textRingh, Emil. "Low complexity algorithms for faster-than-Nyquistsign : Using coding to avoid an NP-hard problem." Thesis, KTH, Optimeringslära och systemteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136936.
Full textDetta examensarbete handlar om vad som händer då kommunikationskanaler pressas till sin gräns och pulserna som bär data packas tätare i tiden. Detta kallas snabbare-än-Nyquist (FTN) och kommer att bryta mot Nyquists kriterium för intersymbolinterferens, vilket innebär att de databärande pulserna inte längre kommer vara ortogonala och att signalsamplen kommer vara beroende av mer än en skickad symbol. Det uppstår intersymbolinterferens (ISI) och dess konsekvenser studeras inom kanalmodellen AWGN. Vi visar att göra en maximum likelihood uppskattning baserat på dessa data är ett NP-svårt problem. Normalt används Viterbi algoritmen när man har ISI, men den har exponentiell komplexitet. På ett block med N symboler och interferens i storleken K symboler är komplexiteten O(N*2K) vilket gör att algoritmen är svår att använda i praktiska fall. Istället så föreslås en förkodning, som tillsammans med en avkodning reducerar komplexiteten. Kodningen appliceras blockvis och på ett block med N symboler är komplexiteten O(N2) för kodning/avkodning. Denna måste i båda fall föregås av en O(N3) beräkning, som dock behöver göras endast en gång. Simuleringar visar den föreslagna kodningens fördelar. I den första simuleringen testades den ihop med turbokodning med blocklängd på 6000 bitar och en kodningsgrad på 2/3. När FTN användes för att skicka 25% mer data krävdes det cirka 2.5 dB högre signal-till-brus-förhållande (SNR) för att den icke förkodade signalen skulle ha samma felfrekvens som den förkodade. När det förkodade fallet presterade felfritt gjorde det oförkodade fel på nästan alla block. Ett annat scenario som testades var det med korta koder, liten fördröjning och hög robusthet. I detta scenario skickades 600 bitar med en kodningsgrad på 2/3, alltså 400 bitar ren data. Genom att använda FTN med en dubbel packningsgrad, vilket innebär att 1200 bitar skickades under samma tid, var det möjligt att sänka kodningsgraden till 1/3, eftersom det bara var 400 bitar ren data som skulle överföras. Detta ökad robustheten i systemet ty då FTN fallet gjorde felfritt hade det klassiska Nyquist fallet fortfarande en felfrekvens på 0.19 för sina block. Det krävdes 1.25 dB högre SNR för Nyquist fallet att bli felfritt jämfört med FTN och lägre kodningsgrad.
Maji, Nabanita. "An Interactive Tutorial for NP-Completeness." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52973.
Full textMaster of Science
Huang, Xiuzhen. "Parameterized complexity and polynomial-time approximation schemes." Texas A&M University, 2004. http://hdl.handle.net/1969.1/1446.
Full textBeyersdorff, Olaf. "Disjoint NP-pairs and propositional proof systems." Doctoral thesis, [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=981087590.
Full textOno, Satoshi. "In pursuit of NP-hard combinatorial optimization problems." Diss., Online access via UMI:, 2009.
Find full textCornet, Alexis. "Algorithmes et résultats de complexité pour des problèmes de graphes avec contraintes additionnelles." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC034/document.
Full textDomination problems (dominating set, independant dominating set, ...) as well as covering problems (vertex-cover, Steiner tree, ...) are NP-complete. However, for most of these problems, it is always possible to construct a (eventually bad) solution in polynomial time, or at least it is possible to determine whether a solution exists. Those problems originally came from industry, but are simplified modelizations of the real life problems. We add additional constraints modeling plausible practical constraints : conflicts which are pairs of elements that cannot apear simultaneously in a solution (to modelize various incompatibilities), connexity in a second graph (elements of the solution must be able to communicate, and the communication links are a second graph), and obligations which are subsets of interdependant vertices which must be added simultaneously in a solution.We don't aim to model a specific real-world problem, but to study how these plausible constraints affect the complexity of the studied problems. We will see that, in many cases, even determining the existence of a solution (regardless of its size) become hard. The firefighter problem models firefighters aiming to contain a fire spreading turn by turn in a (eventually infinite) graph. We studied this problem with the addition of deplacement constraints for the firefighters (a limited moving speed between turns). We will see that, most of the time, this constraint increase the number of firefighters necessary to contain the fire, but does not trigger such major change as constraints studied in the others problems
Serédi, Silvester. "Evoluční algoritmy v úloze booleovské splnitelnosti." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2013. http://www.nusl.cz/ntk/nusl-236224.
Full textFallgren, Mikael. "Optimization of Joint Cell, Channel and Power Allocation in Wireless Communication Networks." Doctoral thesis, KTH, Optimeringslära och systemteori, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-40274.
Full textFinancial support by the Swedish Foundation for Strategic Research (SSF) QC 20110915
Books on the topic "NP-complexity"
Gogan, J. Vincent. Slice functions and the method of approximations. Toronto, Ont: University of Toronto, Dept. of Computer Science, 1990.
Find full textGogan, J. Vincent. Slice functions and the method of approximations. Ottawa: National Library of Canada, 1990.
Find full textAntoine, Lobstein, and Cohen Gerard, eds. Algorithmic complexityand communication problems. London: UCL Press, 1996.
Find full textEfficient checking of polynomials and proofs and the hardness of approximation problems. Berlin: Springer₋Verlag, 1995.
Find full textBarthelemy, Jean-Pierre. Algorithmic complexity and communication problems. London: UCL Press, 1996.
Find full textZakrzewski, Marek. Wprowadzenie w teorię złożoności obliczeniowej: W kręgu zagadnienia P-NP. Wrocław: Wydawn. Politechniki Wrocławskiej, 1990.
Find full textP Np And Npcompleteness The Basics Of Computational Complexity. Cambridge University Press, 2010.
Find full textBogdanov, Andrej, and Luca Trevisan. Average-Case Complexity. Now Publishers Inc, 2006.
Find full textPercus, Allon, Gabriel Istrate, and Cristopher Moore, eds. Computational Complexity and Statistical Physics. Oxford University Press, 2005. http://dx.doi.org/10.1093/oso/9780195177374.001.0001.
Full textCohen, G., J.-P. Barthelmy, and A. Lobstein. Algorithmic Complexity and Telecommunication Problems. CRC, 1997.
Find full textBook chapters on the topic "NP-complexity"
Arvind, Vikraman. "Complexity Theory Basics: NP and NL." In Perspectives in Computational Complexity, 1–22. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05446-9_1.
Full textMyasnikov, Alexei, Vladimir Shpilrain, and Alexander Ushakov. "Generic complexity of NP-complete problems." In Non-commutative Cryptography and Complexity of Group-theoretic Problems, 141–45. Providence, Rhode Island: American Mathematical Society, 2011. http://dx.doi.org/10.1090/surv/177/12.
Full textLassaigne, Richard, and Michel de Rougemont. "Time complexity: the classes P and NP." In Logic and Complexity, 191–212. London: Springer London, 2004. http://dx.doi.org/10.1007/978-0-85729-392-3_12.
Full textFleszar, Krzysztof, Christian Glaßer, Fabian Lipp, Christian Reitwießner, and Maximilian Witek. "Structural Complexity of Multiobjective NP Search Problems." In LATIN 2012: Theoretical Informatics, 338–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29344-3_29.
Full textCalude, Cristian S., Elena Calude, and Melissa S. Queen. "Inductive Complexity of P versus NP Problem." In Unconventional Computation and Natural Computation, 2–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32894-7_2.
Full textde Haan, Ronald, and Stefan Szeider. "Machine Characterizations for Parameterized Complexity Classes Beyond Para-NP." In Lecture Notes in Computer Science, 217–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46078-8_18.
Full textMulmuley, Ketan, and Milind Sohoni. "Geometric Complexity Theory, P vs. NP and Explicit Obstructions." In Advances in Algebra and Geometry, 239–61. Gurgaon: Hindustan Book Agency, 2003. http://dx.doi.org/10.1007/978-93-86279-12-5_20.
Full textJenner, Birgit, and Jacobo Torán. "The Complexity of Obtaining Solutions for Problems in NP and NL." In Complexity Theory Retrospective II, 155–78. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-1872-2_7.
Full textÀlvarez, Carme, Josep Díaz, and Jacobo Torán. "Complexity classes with complete problems between P and NP-C." In Fundamentals of Computation Theory, 13–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/3-540-51498-8_2.
Full textGruber, Hermann, and Markus Holzer. "Inapproximability of Nondeterministic State and Transition Complexity Assuming P ≠ NP." In Developments in Language Theory, 205–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-73208-2_21.
Full textConference papers on the topic "NP-complexity"
Zhou, Xianjun, Qian Zhang, Danwen Wu, and Zhizhi Yan. "NP-complexity solved wireless spectrum auctions." In 2010 2nd IEEE International Conference on Information Management and Engineering. IEEE, 2010. http://dx.doi.org/10.1109/icime.2010.5478170.
Full textBeame, Paul, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. "The relative complexity of NP search problems." In the twenty-seventh annual ACM symposium. New York, New York, USA: ACM Press, 1995. http://dx.doi.org/10.1145/225058.225147.
Full textSamorodnitsky, Alex, and Luca Trevisan. "A PCP characterization of NP with optimal amortized query complexity." In the thirty-second annual ACM symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/335305.335329.
Full textCozman, Fabio Gagliardi, and Denis Deratani Mauá. "The Finite Model Theory of Bayesian Networks: Descriptive Complexity." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/727.
Full textFaliszewski, Piotr, Alexander Karpov, and Svetlana Obraztsova. "The Complexity of Election Problems with Group-Separable Preferences." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/29.
Full textSouza, Uéverton, Fábio Protti, Maise Da Silva, and Dieter Rautenbach. "Multivariate Investigation of NP-Hard Problems: Boundaries Between Parameterized Tractability and Intractability." In XXVIII Concurso de Teses e Dissertações da SBC. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/ctd.2015.9996.
Full textde Weerdt, Mathijs, Michael Albert, Vincent Conitzer, and Koos van der Linden. "Complexity of Scheduling Charging in the Smart Grid." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/658.
Full textApt, Krzysztof R., Eryk Kopczyński, and Dominik Wojtczak. "On the Computational Complexity of Gossip Protocols." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/106.
Full textChen, Jiehua, Robert Ganian, and Thekla Hamm. "Stable Matchings with Diversity Constraints: Affirmative Action is beyond NP." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/21.
Full textLiu, Jin-Fan, and Karim A. Abdel-Malek. "The Problem of Scheduling Parallel Computations of Multibody Dynamic Analysis Is NP-Hard." In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/mech-1150.
Full textReports on the topic "NP-complexity"
Baader, Franz, and Ralf Küsters. Matching Concept Descriptions with Existential Restrictions Revisited. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.98.
Full textBaader, Franz, and Ralf Küsters. Matching Concept Descriptions with Existential Restrictions Revisited. Aachen University of Technology, 1999. http://dx.doi.org/10.25368/2022.98.
Full textZiesler, Pamela, and Claire Spalding. Statistical abstract: 2021. National Park Service, May 2022. http://dx.doi.org/10.36967/nrds-2293345.
Full text