Contents
Academic literature on the topic 'Noyaux polynomiaux'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Noyaux polynomiaux.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Noyaux polynomiaux"
Vaudour, Emmanuelle, Paul-Emile Noirot-Cosson, and Olivier Membrive. "Apport des images satellitaires de très haute résolution spatiale Pléiades à la caractérisation des cultures et des opérations culturales en début de saison." Revue Française de Photogrammétrie et de Télédétection, no. 208 (September 5, 2014): 97–103. http://dx.doi.org/10.52638/rfpt.2014.106.
Full textSun, Yi. "A representation-theoretic proof of the branching rule for Macdonald polynomials." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (January 1, 2015). http://dx.doi.org/10.46298/dmtcs.2493.
Full textDissertations / Theses on the topic "Noyaux polynomiaux"
Wacker, Jonas. "Random features for dot product kernels and beyond." Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS241.
Full textDot product kernels, such as polynomial and exponential (softmax) kernels, are among the most widely used kernels in machine learning, as they enable modeling the interactions between input features, which is crucial in applications like computer vision, natural language processing, and recommender systems. However, a fundamental drawback of kernel-based statistical models is their limited scalability to a large number of inputs, which requires resorting to approximations. In this thesis, we study techniques to linearize kernel-based methods by means of random feature approximations and we focus on the approximation of polynomial kernels and more general dot product kernels to make these kernels more useful in large scale learning. In particular, we focus on a variance analysis as a main tool to study and improve the statistical efficiency of such sketches
Madani, Soffana. "Contributions à l’estimation à noyau de fonctionnelles de la fonction de répartition avec applications en sciences économiques et de gestion." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1183/document.
Full textThe income distribution of a population, the distribution of failure times of a system and the evolution of the surplus in with-profit policies - studied in economics and management - are related to continuous functions belonging to the class of functionals of the distribution function. Our thesis covers the kernel estimation of some functionals of the distribution function with applications in economics and management. In the first chapter, we offer local polynomial estimators in the i.i.d. case of two functionals of the distribution function, written LF and TF , which are useful to produce the smooth estimators of the Lorenz curve and the scaled total time on test transform. The estimation method is described in Abdous, Berlinet and Hengartner (2003) and we prove the good asymptotic behavior of the local polynomial estimators. Until now, Gastwirth (1972) and Barlow and Campo (1975) have defined continuous piecewise estimators of the Lorenz curve and the scaled total time on test transform, which do not respect the continuity of the original curves. Illustrations on simulated and real data are given. The second chapter is intended to provide smooth estimators in the i.i.d. case of the derivatives of the two functionals of the distribution function presented in the last chapter. Apart from the estimation of the first derivative of the function TF with a smooth estimation of the distribution function, the estimation method is the local polynomial approximation of functionals of the distribution function detailed in Berlinet and Thomas-Agnan (2004). Various types of convergence and asymptotic normality are obtained, including the probability density function and its derivatives. Simulations appear and are discussed. The starting point of the third chapter is the Parzen-Rosenblatt estimator (Rosenblatt (1956), Parzen (1964)) of the probability density function. We first improve the bias of this estimator and its derivatives by using higher order kernels (Berlinet (1993)). Then we find the modified conditions for the asymptotic normality of these estimators. Finally, we build a method to remove boundary effects of the estimators of the probability density function and its derivatives, thanks to higher order derivatives. We are interested, in this final chapter, in the hazard rate function which, unlike the two functionals of the distribution function explored in the first chapter, is not a fraction of two linear functionals of the distribution function. In the i.i.d. case, kernel estimators of the hazard rate and its derivatives are produced from the kernel estimators of the probability density function and its derivatives. The asymptotic normality of the first estimators is logically obtained from the second ones. Then, we are placed in the multiplicative intensity model, a more general framework including censored and dependent data. We complete the described method in Ramlau-Hansen (1983) to obtain good asymptotic properties of the estimators of the hazard rate and its derivatives and we try to adopt the local polynomial approximation in this context. The surplus rate in with-profit policies will be nonparametrically estimated as its mathematical expression depends on transition rates (hazard rates from one state to another) in a Markov chain (Ramlau-Hansen (1991), Norberg (1999))
Letendre, Thomas. "Contributions à l'étude des sous-variétés aléatoires." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSE1240/document.
Full textWe study the volume and Euler characteristic of codimension r ∈ {1, . . . , n} random submanifolds in a dimension n manifold M. First, we consider Riemannian random waves. That is M is a closed Riemannian manifold and we study the common zero set Zλ of r independent random linear combinations of eigenfunctions of the Laplacian associated to eigenvalues smaller than λ 0. We compute estimates for the mean volume and Euler characteristic of Zλ as λ goes to infinity. We also consider a model of random real algebraic manifolds. In this setting, M is the real locus of a projective manifold defined over the reals. Then, we consider the real vanishing locus Zd of a random real global holomorphic section of E ⊗ Ld, where E is a rank r Hermitian vector bundle, L is an ample Hermitian line bundle and both these bundles are defined over the reals. We compute the asymptotics of the mean volume and Euler characteristic of Zd as d goes to infinity. In this real algebraic setting, we also compute the asymptotic of the variance of the volume of Zd, when 1 r < n. In this case, we prove asympotic equidistribution results for Zd in M
Lazag, Pierre. "Déformations de Christoffel et loi des grands nombres pour des processus déterminantaux discrets." Thesis, Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0134.
Full textThis thesis studies several aspects of classes of determinantal processes. In a first part, we introduce determinantal processes arising from the higher Landau levels in the unit disk. We give a precise asymptotic for the variance of the number of points inside a disk of which the radius tends to one -. In a second part, we introduce the Christoffel deformations of discrete orthogonal polynomial ensembles, by multiplying the underlying orthogonality measure by a positive polynomial. We prove that the Christoffel deformatons of the Charlier ensemble converge towards deformations of the discrete Bessel process ; we also establish that Christoffel deformations of the z-measures are determinantal point process with an explicit kernel ; we eventually prove that the Christoffel deformations of the non-degenerate z-measures converge to a modification of the process with the Gamma kernel. In the last part, we establish a law of large numbers for local patterns in random plane partitions, generalizing in dimension two a phenomenon that occurs for a class of one dimensional Schur measures
Tencaliec, Patricia. "Developments in statistics applied to hydrometeorology : imputation of streamflow data and semiparametric precipitation modeling." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM006/document.
Full textPrecipitation and streamflow are the two most important meteorological and hydrological variables when analyzing river watersheds. They provide fundamental insights for water resources management, design, or planning, such as urban water supplies, hydropower, forecast of flood or droughts events, or irrigation systems for agriculture.In this PhD thesis we approach two different problems. The first one originates from the study of observed streamflow data. In order to properly characterize the overall behavior of a watershed, long datasets spanning tens of years are needed. However, the quality of the measurement dataset decreases the further we go back in time, and blocks of data of different lengths are missing from the dataset. These missing intervals represent a loss of information and can cause erroneous summary data interpretation or unreliable scientific analysis.The method that we propose for approaching the problem of streamflow imputation is based on dynamic regression models (DRMs), more specifically, a multiple linear regression with ARIMA residual modeling. Unlike previous studies that address either the inclusion of multiple explanatory variables or the modeling of the residuals from a simple linear regression, the use of DRMs allows to take into account both aspects. We apply this method for reconstructing the data of eight stations situated in the Durance watershed in the south-east of France, each containing daily streamflow measurements over a period of 107 years. By applying the proposed method, we manage to reconstruct the data without making use of additional variables, like other models require. We compare the results of our model with the ones obtained from a complex approach based on analogs coupled to a hydrological model and a nearest-neighbor approach, respectively. In the majority of cases, DRMs show an increased performance when reconstructing missing values blocks of various lengths, in some of the cases ranging up to 20 years.The second problem that we approach in this PhD thesis addresses the statistical modeling of precipitation amounts. The research area regarding this topic is currently very active as the distribution of precipitation is a heavy-tailed one, and at the moment, there is no general method for modeling the entire range of data with high performance. Recently, in order to propose a method that models the full-range precipitation amounts, a new class of distribution called extended generalized Pareto distribution (EGPD) was introduced, specifically with focus on the EGPD models based on parametric families. These models provide an improved performance when compared to previously proposed distributions, however, they lack flexibility in modeling the bulk of the distribution. We want to improve, through, this aspect by proposing in the second part of the thesis, two new models relying on semiparametric methods.The first method that we develop is the transformed kernel estimator based on the EGPD transformation. That is, we propose an estimator obtained by, first, transforming the data with the EGPD cdf, and then, estimating the density of the transformed data by applying a nonparametric kernel density estimator. We compare the results of the proposed method with the ones obtained by applying EGPD on several simulated scenarios, as well as on two precipitation datasets from south-east of France. The results show that the proposed method behaves better than parametric EGPD, the MIAE of the density being in all the cases almost twice as small.A second approach consists of a new model from the general EGPD class, i.e., we consider a semiparametric EGPD based on Bernstein polynomials, more specifically, we use a sparse mixture of beta densities. Once again, we compare our results with the ones obtained by EGPD on both simulated and real datasets. As before, the MIAE of the density is considerably reduced, this effect being even more obvious as the sample size increases