Academic literature on the topic 'Nox4 overexpression'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nox4 overexpression.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nox4 overexpression"

1

Kim, Young-Mee, Seok-Jo Kim, Ryosuke Tatsunami, Hisao Yamamura, Tohru Fukai, and Masuko Ushio-Fukai. "ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis." American Journal of Physiology-Cell Physiology 312, no. 6 (June 1, 2017): C749—C764. http://dx.doi.org/10.1152/ajpcell.00346.2016.

Full text
Abstract:
Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol- and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H2O2) or overexpression of Nox4, which produces H2O2, increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H2O2 to promote mtROS production. Mechanistically, H2O2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H2O2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program.
APA, Harvard, Vancouver, ISO, and other styles
2

Moon, Joon Hwan, Tae Hoon Kim, Heung Man Lee, Seung Hoon Lee, Whan Choe, Ha Kyun Kim, Jung Hoon Lee, Kyoung Ho Oh, and Sang Hag Lee. "Overexpression of the Superoxide Anion and NADPH Oxidase Isoforms 1 and 4 (NOX1 and NOX4) in Allergic Nasal Mucosa." American Journal of Rhinology & Allergy 23, no. 4 (July 2009): 370–76. http://dx.doi.org/10.2500/ajra.2009.23.3340.

Full text
Abstract:
Background The purpose of this study was to investigate the expression and distribution of superoxide anion, NADPH oxidase (NOX)1, and NOX4 in healthy, allergic nasal mucosa and nasal polyps to evaluate the possible influence of oxidative stress on the development of allergic rhinitis and nasal polyps. Methods The expression and distribution of superoxide anion, NOX1 and NOX4 were evaluated in healthy and allergic nasal mucosa and nasal polyps, using dihydroethidium fluorescence, semiquantitative reverse transcriptase-polymerase chain reaction, immunohistochemistry, and Western blot. Results NOX1 and NOX4 were localized mainly in the epithelial layer, submucosal glands, vascular endothelium, and inflammatory cells in healthy and allergic nasal mucosa and nasal polyps. The cellular source that generated superoxide anion is also localized in the epithelial cells, submucosal glands, vascular endothelium, and inflammatory cells, demonstrating the similar sites of expression of NOX1 and NOX4 in healthy and allergic nasal mucosa and nasal polyps. NOX1 and NOX4 mRNA and proteins and superoxide anions had increased levels of expression in allergic nasal mucosa and nasal polyps compared with healthy nasal mucosa. Conclusions These results indicate that NOX1 and NOX4 may play an important role in reactive oxygen species production, contributing to the oxidative stress in allergic rhinitis and nasal polyp tissues.
APA, Harvard, Vancouver, ISO, and other styles
3

Nadworny, Alyson S., Mallik R. Guruju, Daniel Poor, Robert M. Doran, Ram V. Sharma, Michael I. Kotlikoff, and Robin L. Davisson. "Nox2 and Nox4 influence neonatal c-kit+ cardiac precursor cell status and differentiation." American Journal of Physiology-Heart and Circulatory Physiology 305, no. 6 (September 15, 2013): H829—H842. http://dx.doi.org/10.1152/ajpheart.00761.2012.

Full text
Abstract:
Redox status has emerged as critical in modulating stemness and lineage commitment in several precursor cell types. However, a role for redox genes, specifically NADPH oxidases (Nox), in cardiac precursor cells (CPCs) has not been established. We tested whether CPCs marked by type III receptor tyrosine kinase c-kit (c-kit+) exhibit a unique NADPH oxidase signature that confers precursor status and whether alterations in this profile are functionally linked to changes in lineage specification. Dihydroethidium (DHE) microfluorography indicated reduced basal reactive oxygen species (ROS) formation within early postnatal c-kit+ CPCs. Real-time quantitative PCR revealed downregulation of ROS generator Nox2 and its subunit p67phox in c-kit+ CPCs under basal conditions but upregulation of Nox2 and Nox4 over the course of differentiation. Adenoviral silencing of Nox2 and Nox4 increased expression of CPC markers c-kit and Flk-1 and blunted smooth and cardiac muscle differentiation, respectively, while overexpression of Nox2 and Nox4 significantly reduced c-kit expression. These changes were accompanied by altered expression of transcription factors regulating cardiac lineage commitment, Gata6 and Gata4, and cytokine transforming growth factor (TGF)-β1. Similar to other precursor cell types, RT2Profiler PCR Arrays revealed that c-kit+ CPCs also exhibit enhanced antioxidant capacity at the mRNA level. In conclusion, we report that c-kit+ CPCs demonstrate reduced Nox2 expression and ROS levels and that increases in Nox2 and Nox4 influence their differentiation into mature cells. We speculate that ROS generators Nox2 and Nox4, along with the antioxidant genes identified by PCR Arrays, may be novel targets in CPCs that could prove useful in cell-based therapy of the heart.
APA, Harvard, Vancouver, ISO, and other styles
4

Hu, Fang, Meng Xue, Yang Li, Yi-Jie Jia, Zong-Ji Zheng, Yan-Lin Yang, Mei-Ping Guan, Liao Sun, and Yao-Ming Xue. "Early Growth Response 1 (Egr1) Is a Transcriptional Activator of NOX4 in Oxidative Stress of Diabetic Kidney Disease." Journal of Diabetes Research 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/3405695.

Full text
Abstract:
Background. NADPH oxidase 4 (NOX4) plays a major role in renal oxidative stress of diabetic kidney disease (DKD). NOX4 was significantly increased in Egr1-expressing fibroblasts, but the relationship between Egr1 and NOX4 in DKD is unclear. Methods. For the evaluation of the potential relationship between Egr1 and NOX4, both were detected in HFD/STZ-induced mice and HK-2 cells treated with TGF-β1. Then, changes in NOX4 expression were detected in HK-2 cells and mice with overexpression and knockdown of Egr1. The direct relationship between Egr1 and NOX4 was explored via chromatin immunoprecipitation (ChIP). Results. We found increased levels of Egr1, NOX4, and α-SMA in the kidney cortices of diabetic mice and in TGF-β1-treated HK-2 cells. Overexpression or silencing of Egr1 in HK-2 cells could upregulate or downregulate NOX4 and α-SMA. ChIP assays revealed that TGF-β1 induced Egr1 to bind to the NOX4 promoter. Finally, Egr1 overexpression or knockdown in diabetic mice could upregulate or downregulate the expression of NOX4 and ROS, and α-SMA was also changed. Conclusion. Our study provides strong evidence that Egr1 is a transcriptional activator of NOX4 in oxidative stress of DKD. Egr1 contributes to DKD by enhancing EMT, in part by targeting NOX4.
APA, Harvard, Vancouver, ISO, and other styles
5

Gusan, Svetlana, and Madhu B. Anand-Srivastava. "cAMP attenuates the enhanced expression of Gi proteins and hyperproliferation of vascular smooth muscle cells from SHR: role of ROS and ROS-mediated signaling." American Journal of Physiology-Cell Physiology 304, no. 12 (June 15, 2013): C1198—C1209. http://dx.doi.org/10.1152/ajpcell.00269.2012.

Full text
Abstract:
We previously showed that angiotensin II (ANG II)-induced overexpression of inhibitory G proteins (Gi) was attenuated by dibutyryl-cAMP (db-cAMP) in A10 vascular smooth muscle cells (VSMC). Since enhanced levels of endogenous ANG II contributed to the overexpression of Gi protein and hyperproliferation of VSMC from spontaneously hypertensive rats (SHR), the present study was therefore undertaken to examine if cAMP could also attenuate the overexpression of Gi proteins and hyperproliferation of VSMC from SHR and to explore the underlying molecular mechanisms responsible for this response. The enhanced expression of Giα proteins in VSMC from SHR and Nω-nitro-l-arginine methyl ester hypertensive rats was decreased by db-cAMP. In addition, enhanced inhibition of adenylyl cyclase by inhibitory hormones and forskolin-stimulated adenylyl cyclase activity by low concentration of GTPγS in VSMC from SHR was also restored to Wistar-Kyoto (WKY) levels by db-cAMP. Furthermore, db-cAMP also attenuated the hyperproliferation and the increased production of superoxide anion, NAD(P)H oxidase activity, overexpression of Nox1/Nox2/Nox4 and p47phox proteins, increased phosphorylation of PDGF-receptor (R), EGF-R, c-Src, and ERK1/2 to control levels. In addition, the protein kinase A (PKA) inhibitor reversed the effects of db-cAMP on the expression of Nox4 and Giα proteins and hyperproliferation of VSMC from SHR to WKY levels, while stimulation of the exchange protein directly activated by cAMP did not have any effect on these parameters. These results suggest that cAMP via PKA pathway attenuates the overexpression of Gi proteins and hyperproliferation of VSMC from SHR through the inhibition of ROS and ROS-mediated transactivation of EGF-R/PDGF-R and MAPK signaling pathways.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Dan, Ying-Hao Zang, Yun Qiu, Feng Zhang, Ai-Dong Chen, Jue-Jin Wang, Qi Chen, Yue-Hua Li, Yu-Ming Kang, and Guo-Qing Zhu. "BCL6 Attenuates Proliferation and Oxidative Stress of Vascular Smooth Muscle Cells in Hypertension." Oxidative Medicine and Cellular Longevity 2019 (January 22, 2019): 1–9. http://dx.doi.org/10.1155/2019/5018410.

Full text
Abstract:
Proliferation and oxidative stress of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling in hypertension and several major vascular diseases. B-cell lymphoma 6 (BCL6) functions as a transcriptional repressor. The present study is designed to determine the roles of BCL6 in VSMC proliferation and oxidative stress and underlying mechanism. Angiotensin (Ang) II was used to induce VSMC proliferation and oxidative stress in human VSMCs. Effects of BCL6 overexpression and knockdown were, respectively, investigated in Ang II-treated human VSMCs. Therapeutical effects of BCL6 overexpression on vascular remodeling, oxidative stress, and proliferation were determined in the aorta of spontaneously hypertensive rats (SHR). Ang II reduced BCL6 expression in human VSMCs. BCL6 overexpression attenuated while BCL6 knockdown enhanced the Ang II-induced upregulation of NADPH oxidase 4 (NOX4), production of reactive oxygen species (ROS), and proliferation of VSMCs. BCL6 expression was downregulated in SHR. BCL6 overexpression in SHR reduced NOX4 expression, ROS production, and proliferation of the aortic media of SHR. Moreover, BCL6 overexpression attenuated vascular remodeling and hypertension in SHR. However, BCL6 overexpression had no significant effects on NOX2 expression in human VSMCs or in SHR. We conclude that BCL6 attenuates proliferation and oxidative stress of VSMCs in hypertension.
APA, Harvard, Vancouver, ISO, and other styles
7

Nishimura, Ataru, Tetsuro Ago, Junya Kuroda, Koichi Arimura, Masaki Tachibana, Kuniyuki Nakamura, Yoshinobu Wakisaka, Junichi Sadoshima, Koji Iihara, and Takanari Kitazono. "Detrimental role of pericyte Nox4 in the acute phase of brain ischemia." Journal of Cerebral Blood Flow & Metabolism 36, no. 6 (October 13, 2015): 1143–54. http://dx.doi.org/10.1177/0271678x15606456.

Full text
Abstract:
Pericytes are mural cells abundantly present in cerebral microvessels and play important roles, including the formation and maintenance of the blood–brain barrier. Nox4 is a major source of reactive oxygen species in cardiovascular cells and modulate cellular functions, particularly under pathological conditions. In the present study, we found that the expression of Nox4 was markedly induced in microvascular cells, including pericytes, in peri-infarct areas after middle cerebral artery occlusion stroke models in mice. The upregulation of Nox4 was greater in a permanent middle cerebral artery occlusion model compared with an ischemia/reperfusion transient middle cerebral artery occlusion model. We performed permanent middle cerebral artery occlusion on mice with Nox4 overexpression in pericytes (Tg-Nox4). Infarct volume was significantly greater with enhanced reactive oxygen species production and blood–brain barrier breakdown in peri-infarct areas in Tg-Nox4, compared with littermate controls. In cultured brain pericytes, Nox4 was significantly upregulated by hypoxia and was promptly downregulated by reoxygenation. Phosphorylation of NFκB and production of matrix metalloproteinase 9 were significantly increased in both cultured pericytes overexpressing Nox4 and in peri-infarct areas in Tg-Nox4. Collectively, Nox4 is upregulated in pericytes in peri-infarct areas after acute brain ischemia and may enhance blood–brain barrier breakdown through activation of NFκB and matrix metalloproteinase 9, thereby causing enlargement of infarct volume.
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Yen-Hao, Chih-Yen Chien, Fu-Min Fang, Tai-Lin Huang, Yan-Ye Su, Sheng-Dean Luo, Chao-Cheng Huang, Wei-Che Lin, and Shau-Hsuan Li. "Nox4 Overexpression as a Poor Prognostic Factor in Patients with Oral Tongue Squamous Cell Carcinoma Receiving Surgical Resection." Journal of Clinical Medicine 7, no. 12 (December 1, 2018): 497. http://dx.doi.org/10.3390/jcm7120497.

Full text
Abstract:
Background: Nox4 has been reported to promote tumor progression of various types of cancer through many different pathways. The current study was designed to evaluate the prognostic significance of Nox4 in patients with oral tongue squamous cell carcinoma (OTSCC) receiving surgical resection. Methods: We retrospectively analyzed the 161 patients with OTSCC treated with surgical resection, including 81 patients with high expression of Nox4 and 80 patients with low expression of Nox4. Two OTSCC cell lines, SAS and SCC4, were used to investigate the proliferation activity. Results: The univariate and multivariable analyses showed that negative nodal metastasis and low expression of Nox4 were significantly associated with superior disease-free survival (DFS) and overall survival (OS). Western blotting analysis indicated that Nox4 was highly expressed in these two OTSCC cell lines and knockdown of Nox4 was successful by transfecting with Nox4 shRNA. In addition, these cell lines were also treated with a Nox4 inhibitor (GKT-137831) and the results showed GKT-137831 could inhibit the proliferation of OTSCC tumor cells in a dose-dependent manner. Conclusion: Our study suggests that Nox4 plays an important role in disease progression of OTSCC and Nox4 overexpression is a poor prognostic factor for patients with OTSCC who received surgical resection.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Xi-Ling, Li-Long Pan, Fen Long, Wei-Jun Wu, Di Yan, Peng Xu, Si-Yu Liu, et al. "Endogenous Hydrogen Sulfide Ameliorates NOX4 Induced Oxidative Stress in LPS-Stimulated Macrophages and Mice." Cellular Physiology and Biochemistry 47, no. 2 (2018): 458–74. http://dx.doi.org/10.1159/000489980.

Full text
Abstract:
Background/Aims: Sepsis is a severe and complicated syndrome that is characterized by dysregulation of host inflammatory responses and organ failure. Cystathionine-γ-lyase (CSE)/ hydrogen sulfide (H2S) has potential anti-inflammatory activities in a variety of inflammatory diseases. NADPH oxidase 4 (Nox4), a member of the NADPH oxidases, is the major source of reactive oxygen species (ROS) and its expression is increased in sepsis, but its function in CSE-mediated anti-inflammatory activities remains unknown. Methods: Macrophages were either transfected with CSE, Nox4 siRNA or transduced with lentiviral vector encoding CSE or Nox4, and then stimulated with lipopolysaccharide (LPS). The expression of inflammatory mediators and signaling pathway activation were measured by quantitative PCR (qPCR), ELISA, and immunoblotting. LPS-induced shock severity in WT, Nox4 knockdown and CSE knockout (CSE-/-) mice was assessed. Results: Here we showed that CSE and Nox4 were upregulated in macrophage and mouse in response to LPS. After LPS stimulation, the inflammatory responses were significantly ameliorated by lentiviral Nox4 shRNA knockdown, but were exacerbated by lentiviral overexpressing Nox4. Furthermore, Nox4 mediated inflammation through PI3K/Akt and p-p38 mitogen-activated protein kinase signal pathway. Notably, CSE knockout served to amplify the inflammatory cascade by increasing Nox4-ROS signaling activation in septic mice and macrophage. Similarly, the enhanced production of inflammatory mediators by macrophages was reduced by CSE overexpression. Conclusion: Thus, we demonstrated that CSE/H2S attenuated LPS-induced sepsis against oxidative stress and inflammation damage probably largely through mediated Nox4 pathway.
APA, Harvard, Vancouver, ISO, and other styles
10

Fang, Lijun, Wei Wang, Jiazheng Chen, Anju Zuo, Hongmei Gao, Tao Yan, Pengqi Wang, et al. "Osthole Attenuates Bleomycin-Induced Pulmonary Fibrosis by Modulating NADPH Oxidase 4-Derived Oxidative Stress in Mice." Oxidative Medicine and Cellular Longevity 2021 (September 4, 2021): 1–12. http://dx.doi.org/10.1155/2021/3309944.

Full text
Abstract:
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by the extensive accumulation of myofibroblasts and collagens. However, the exact mechanism that underlies this condition is unclear. Growing evidence suggests that NADPH oxidases (NOXs), especially NOX4-derived oxidative stress, play an important role in the development of lung fibrosis. Bleomycin (BLM) is a tumor chemotherapeutic agent, which has been widely employed to establish IPF animal models. Osthole (OST) is an active constituent of the fruit of Cnidium ninidium. Here, we used an in vivo mouse model and found that OST suppressed BLM-induced body weight loss, lung injury, pulmonary index increase, fibroblast differentiation, and pulmonary fibrosis. OST also significantly downregulated BLM-induced NOX4 expression and oxidative stress in the lungs. In vitro, OST could inhibit TGF-β1-induced Smad3 phosphorylation, differentiation, proliferation, collagen synthesis, NOX4 expression, and ROS generation in human lung fibroblasts in a concentration-dependent manner. Moreover, NOX4 overexpression could prevent the above effects of OST. We came to the conclusion that OST could significantly attenuate BLM-induced pulmonary fibrosis in mice, via the mechanism that involved downregulating TGF-β1/NOX4-mediated oxidative stress in lung fibroblasts.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nox4 overexpression"

1

Maxim, Nicolas T. Mr. "Tumor-Specific Cell Death Induction by Noxa Overexpression for Head and Neck Squamous Cell Carcinoma (HNSCC) Treatment." VCU Scholars Compass, 2016. http://scholarscompass.vcu.edu/etd/4230.

Full text
Abstract:
The primary focus of this research is the mechanisms of cell death in head and neck squamous cell carcinoma (HNSCC) treatment. These cancers typically originate in squamous cells that line the moist mucosal surfaces of head and neck. HNSCC is commonly treated with a platinum based agent, cisplatin. While the drug does offer strong antitumor effects, its prolonged use often results in tumor-acquired resistance, which limits treatment effectiveness. We have shown that cisplatin treatment induces the expression of a pro-apoptotic BCL-2 family member Noxa, which then initiates caspase- dependent apoptosis through its binding and sequestration of pro-survival protein MCL-1 for its inactivation. Without Noxa induction, cell death is significantly reduced when treating HNSCCs with cisplatin. The objectives of this study are (1) to determine the molecular mechanisms by which Noxa induces cell death in HNSCC cells; (2) to determine the molecular mechanisms of cisplatin-resistance in isogenic HNSCC cell lines. We observed an increase of apoptosis by ectopic expression of Noxa in all HNSCC cell lines tested, but not in immortalized human normal oral keratinocytes (NOK), suggesting that Noxa overexpression is sufficient to induce tumor-specific cell death. Noxa-induced cell death was mediated by BAX and BAK activation. BAK activation was mediated through Noxa binding to MCL-1, but not BCL-XL. Cisplatin- resistant cells induced less Noxa and apoptosis, supporting that Noxa induction is prerequisite for apoptosis induced by cisplatin. Taken together, Noxa induces tumor- specific cell death in HNSCC cells primarily through BAX and BAK activation, which suggests the therapeutic potential of this protein.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nox4 overexpression"

1

Finnberg, Niklas K., Junaid Abdulghani, Hormoz Ehya, and Wafik El-Deiry. "Abstract 5636: Targeting of NOXA overexpression in anaplastic thyroid cancer (ATC)." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-5636.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography