Journal articles on the topic 'Normal tissue complication probability'

To see the other types of publications on this topic, follow the link: Normal tissue complication probability.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Normal tissue complication probability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kukołowicz, Paweł. "Clinical aspects of normal tissue complication probability." Reports of Practical Oncology & Radiotherapy 9, no. 6 (2004): 261–67. http://dx.doi.org/10.1016/s1507-1367(04)71038-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Xu, Cheng-Jian, Arjen van der Schaaf, Aart A. van't Veld, Johannes A. Langendijk, and Cornelis Schilstra. "Statistical Validation of Normal Tissue Complication Probability Models." International Journal of Radiation Oncology*Biology*Physics 84, no. 1 (September 2012): e123-e129. http://dx.doi.org/10.1016/j.ijrobp.2012.02.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Alexander, M. A. R., W. A. Brooks, and S. W. Blake. "Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy." Physics in Medicine and Biology 52, no. 7 (March 7, 2007): 1831–43. http://dx.doi.org/10.1088/0031-9155/52/7/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Palma, G., A. Buonanno, S. Monti, R. Pacelli, and L. Cella. "OC-0512: Space based normal tissue complication probability modeling." Radiotherapy and Oncology 127 (April 2018): S267—S268. http://dx.doi.org/10.1016/s0167-8140(18)30822-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tai, A., L. Grossheim, B. Erickson, and A. X. Li. "Modeling of Normal Tissue Complication Probability in Liver Irradiation." International Journal of Radiation Oncology*Biology*Physics 69, no. 3 (November 2007): S602—S603. http://dx.doi.org/10.1016/j.ijrobp.2007.07.1908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Palma, Giuseppe, Serena Monti, Manuel Conson, Roberto Pacelli, and Laura Cella. "Normal tissue complication probability (NTCP) models for modern radiation therapy." Seminars in Oncology 46, no. 3 (June 2019): 210–18. http://dx.doi.org/10.1053/j.seminoncol.2019.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bonta, Dacian V., Ernesto Fontenla, Yong Lu, and George T. Y. Chen. "A variable critical-volume model for normal tissue complication probability." Medical Physics 28, no. 7 (July 2001): 1338–43. http://dx.doi.org/10.1118/1.1380432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Marks, Lawrence B., Ellen D. Yorke, Andrew Jackson, Randall K. Ten Haken, Louis S. Constine, Avraham Eisbruch, Søren M. Bentzen, Jiho Nam, and Joseph O. Deasy. "Use of Normal Tissue Complication Probability Models in the Clinic." International Journal of Radiation Oncology*Biology*Physics 76, no. 3 (March 2010): S10—S19. http://dx.doi.org/10.1016/j.ijrobp.2009.07.1754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hornby, Colin J., Trevor Ackerly, Andrew See, and Moshi Geso. "Exploring the effect of marked normal structure volume on normal tissue complication probability." Medical Dosimetry 28, no. 4 (December 2003): 223–27. http://dx.doi.org/10.1016/j.meddos.2003.08.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gholami, Somayeh, Francesco Longo, Sara Shahzadeh, Hassan Ali Nedaie, Ryan Sharp, and Ali S.Meigooni. "Normal lung tissue complication probability in MR-Linac and conventional radiotherapy." Reports of Practical Oncology & Radiotherapy 25, no. 6 (November 2020): 961–68. http://dx.doi.org/10.1016/j.rpor.2020.09.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Zhou, Su-Min, Shiva K. Das, Zhiheng Wang, Xuejun Sun, Mark Dewhirst, Fang-Fang Yin, and Lawrence B. Marks. "Self-consistent tumor control probability and normal tissue complication probability models based on generalized EUDa)." Medical Physics 34, no. 7 (June 13, 2007): 2807–15. http://dx.doi.org/10.1118/1.2740010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Pacelli, R. "SP-0650: Advances in clinical radiobiology: modelling of normal tissue complication probability." Radiotherapy and Oncology 127 (April 2018): S345. http://dx.doi.org/10.1016/s0167-8140(18)30960-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

van Luijk, P. "IMPROVING NORMAL TISSUE COMPLICATION PROBABILITY MODELS: THE NEED TO INCLUDE BIOLOGICAL MECHANISMS." Radiotherapy and Oncology 98 (March 2011): S5. http://dx.doi.org/10.1016/s0167-8140(11)71715-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Christophides, Damianos, Ane L. Appelt, Arief Gusnanto, John Lilley, and David Sebag-Montefiore. "Method for Automatic Selection of Parameters in Normal Tissue Complication Probability Modeling." International Journal of Radiation Oncology*Biology*Physics 101, no. 3 (July 2018): 704–12. http://dx.doi.org/10.1016/j.ijrobp.2018.02.152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Tai, An, Beth Erickson, and X. Allen Li. "Extrapolation of Normal Tissue Complication Probability for Different Fractionations in Liver Irradiation." International Journal of Radiation Oncology*Biology*Physics 74, no. 1 (May 2009): 283–89. http://dx.doi.org/10.1016/j.ijrobp.2008.11.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Nuraini, Rany, and Rena Widita. "Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) with Consideration of Cell Biological Effect." Journal of Physics: Conference Series 1245 (August 2019): 012092. http://dx.doi.org/10.1088/1742-6596/1245/1/012092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

ZHOU, S., S. DAS, Z. WANG, L. MARKS, and X. SUN. "Tumor control probability and normal tissue complication probability models based on generalized equivalent uniform dose formalism." International Journal of Radiation OncologyBiologyPhysics 60 (September 2004): S584—S585. http://dx.doi.org/10.1016/s0360-3016(04)01881-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhou, S., S. Das, Z. Wang, L. Marks, and X. Sun. "Tumor control probability and normal tissue complication probability models based on generalized equivalent uniform dose formalism." International Journal of Radiation Oncology*Biology*Physics 60, no. 1 (September 2004): S584—S585. http://dx.doi.org/10.1016/j.ijrobp.2004.07.577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Tsai, Chiao-Ling, and Jason Chia-Hsien Cheng. "Evolving development of multi-parametric normal tissue complication probability model for liver radiotherapy." Translational Cancer Research 8, S2 (March 2019): S120—S123. http://dx.doi.org/10.21037/tcr.2018.11.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Godói, M., and P. Nicolucci. "THEORETICAL ANALYSIS OF FLASH EFFECT ON TUMOUR CONTROL AND NORMAL TISSUE COMPLICATION PROBABILITY." Physica Medica 94 (February 2022): S116—S117. http://dx.doi.org/10.1016/s1120-1797(22)01711-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Frometa-Castillo, Terman. "The Statistical Models Project (SMp) Normal Tissue Complication Probability (NTCP) Model and Parameters." American Journal of Applied Mathematics and Statistics 5, no. 4 (November 3, 2017): 115–18. http://dx.doi.org/10.12691/ajams-5-4-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vågane, Randi, and Dag R. Olsen. "Analysis of normal tissue complication probability of the lung using a reliability model." Acta Oncologica 45, no. 5 (January 2006): 610–17. http://dx.doi.org/10.1080/02841860600658245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Levin-Plotnik, Daphne, Andrzej Niemierko, and Solange Akselrod. "Effect of incomplete repair on normal tissue complication probability in the spinal cord." International Journal of Radiation Oncology*Biology*Physics 46, no. 3 (February 2000): 631–38. http://dx.doi.org/10.1016/s0360-3016(99)00372-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cannev, P. A., R. Sanderson, C. Deehan, and T. Wheldon. "Variation in normal tissue complication probability with radiation technique in early breast cancer." European Journal of Cancer 34 (September 1998): S58—S59. http://dx.doi.org/10.1016/s0959-8049(98)80236-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

D'Avino, V., M. Conson, G. Palma, R. Liuzzi, M. Magliulo, R. Pacelli, and L. Cella. "Normal Tissue Complication Probability Models for Radiation-Induced Hypothyroidism in Hodgkin Lymphoma Survivors." International Journal of Radiation Oncology*Biology*Physics 96, no. 2 (October 2016): E638. http://dx.doi.org/10.1016/j.ijrobp.2016.06.2227.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Semenenko, V. A., and X. A. Li. "Prediction of Normal Tissue Complication Probability for Individual Patients Based on Published Data." International Journal of Radiation Oncology*Biology*Physics 75, no. 3 (November 2009): S474. http://dx.doi.org/10.1016/j.ijrobp.2009.07.1081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Semenenko, Vladimir A., Sergey S. Tarima, Kiran Devisetty, Charles A. Pelizzari, and Stanley L. Liauw. "Validation of Normal Tissue Complication Probability Predictions in Individual Patient: Late Rectal Toxicity." International Journal of Radiation Oncology*Biology*Physics 85, no. 4 (March 2013): 1103–9. http://dx.doi.org/10.1016/j.ijrobp.2012.07.2375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Chow, James C. L., Daniel Markel, and Runqing Jiang. "Technical Note: Calculation of normal tissue complication probability using Gaussian error function model." Medical Physics 37, no. 9 (August 26, 2010): 4924–29. http://dx.doi.org/10.1118/1.3483097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

van der Schaaf, Arjien, Johannes Albertus Langendijk, Claudio Fiorino, and Tiziana Rancati. "Embracing Phenomenological Approaches to Normal Tissue Complication Probability Modeling: A Question of Method." International Journal of Radiation Oncology*Biology*Physics 91, no. 3 (March 2015): 468–71. http://dx.doi.org/10.1016/j.ijrobp.2014.10.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

D’Andrea, Marco, Marcello Benassi, and Lidia Strigari. "Modeling Radiotherapy Induced Normal Tissue Complications: An Overview beyond Phenomenological Models." Computational and Mathematical Methods in Medicine 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/2796186.

Full text
Abstract:
An overview of radiotherapy (RT) induced normal tissue complication probability (NTCP) models is presented. NTCP models based on empirical and mechanistic approaches that describe a specific radiation induced late effect proposed over time for conventional RT are reviewed with particular emphasis on their basic assumptions and related mathematical translation and their weak and strong points.
APA, Harvard, Vancouver, ISO, and other styles
31

McGinn, C. J., R. K. Ten Haken, W. D. Ensminger, S. Walker, S. Wang, and T. S. Lawrence. "Treatment of intrahepatic cancers with radiation doses based on a normal tissue complication probability model." Journal of Clinical Oncology 16, no. 6 (June 1998): 2246–52. http://dx.doi.org/10.1200/jco.1998.16.6.2246.

Full text
Abstract:
PURPOSE To attempt to safely escalate the dose of radiation for patients with intrahepatic cancer, we designed a protocol in which each patient received the maximum possible dose while being subjected to a 10% risk of radiation-induced liver disease (RILD, or radiation hepatitis) based on a normal tissue complication probability (NTCP) model. We had two hypotheses: H1; with this approach, we could safely deliver higher doses of radiation than we would have prescribed based on our previous protocol, and H2; the model would predict the observed complication probability (10%). PATIENTS AND METHODS Patients with either primary hepatobiliary cancer or colorectal cancer metastatic to the liver and normal liver function were eligible. We used an NTCP model with parameters calculated from our previous patient data to prescribe a dose that subjected each patient to a 10% complication risk within the model. Treatment was delivered with concurrent hepatic arterial fluorodeoxyuridine (HA FUdR). Patients were evaluated for RILD 2 and 4 months after the completion of treatment. RESULTS Twenty-one patients completed treatment and were followed up for at least 3 months. The mean dose delivered by the current protocol was 56.6 +/- 2.31 Gy (range, 40.5 to 81 Gy). This dose was significantly greater than the dose that would have been prescribed by the previous protocol (46.0 +/- 1.65 Gy; range, 33 to 66 Gy; P < .01). These data are consistent with H1. One of 21 patients developed RILD. The complication rate of 4.8% (95% confidence interval, 0% to 23.8%) did not differ significantly from the predicted 8.8% NTCP (based on dose delivered) and excluded a 25% true incidence rate (P < .05). This finding supports H2. CONCLUSION Our results suggest that an NTCP model can be used prospectively to safely deliver far greater doses of radiation for patients with intrahepatic cancer than with previous approaches. Although the observed complication probability is within the confidence intervals of our model, it is possible that this model overestimates the risk of complication and that further dose escalation will be possible. Additional follow-up and accrual will be required to determine if these higher doses produce further improvements in response and survival.
APA, Harvard, Vancouver, ISO, and other styles
32

Rahman, M. "Analysis of normal tissue complication probability-based radiobiological models: a systematic review of literatures." Breast 56 (April 2021): S29—S30. http://dx.doi.org/10.1016/s0960-9776(21)00116-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Das, S., S. Chen, F. Yin, and L. Marks. "SU-FF-T-498: Improving Normal Tissue Complication Probability Fits Using Non-Binary Outcomes." Medical Physics 36, no. 6Part16 (June 2009): 2637–38. http://dx.doi.org/10.1118/1.3181996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Onjukka, Eva, Colin Baker, and Alan Nahum. "The performance of normal-tissue complication probability models in the presence of confounding factors." Medical Physics 42, no. 5 (April 15, 2015): 2326–41. http://dx.doi.org/10.1118/1.4917219.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Luca Cozzi, Francesca M. Buffa, Ant. "Comparative Analysis of Dose Volume Histogram Reduction Algorithms for Normal Tissue Complication Probability Calculations." Acta Oncologica 39, no. 2 (January 2000): 165–71. http://dx.doi.org/10.1080/028418600430725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Cella, Laura, Raffaele Liuzzi, Manuel Conson, Vittoria D’Avino, Marco Salvatore, and Roberto Pacelli. "Multivariate Normal Tissue Complication Probability Modeling of Heart Valve Dysfunction in Hodgkin Lymphoma Survivors." International Journal of Radiation Oncology*Biology*Physics 87, no. 2 (October 2013): 304–10. http://dx.doi.org/10.1016/j.ijrobp.2013.05.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Deasy, Joseph O., Søren M. Bentzen, Andrew Jackson, Randall K. Ten Haken, Ellen D. Yorke, Louis S. Constine, Ashish Sharma, and Lawrence B. Marks. "Improving Normal Tissue Complication Probability Models: The Need to Adopt a “Data-Pooling” Culture." International Journal of Radiation Oncology*Biology*Physics 76, no. 3 (March 2010): S151—S154. http://dx.doi.org/10.1016/j.ijrobp.2009.06.094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kindts, I., G. Defraene, A. Laenen, S. Petillion, E. van Limbergen, T. Depuydt, and C. G. Weltens. "Normal Tissue Complication Probability Modeling of Long-Term Aesthetic Outcome After Breast-Conserving Therapy." International Journal of Radiation Oncology*Biology*Physics 99, no. 2 (October 2017): E24. http://dx.doi.org/10.1016/j.ijrobp.2017.06.648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Van Weerd, E., J. Jacobs, S. Hutschemaekers, M. Kroesen, Y. Klaver, M. Rodrigues, H. Werz, et al. "OC-0110: Normal tissue complication probability during proton therapy for head & neck cancer patients." Radiotherapy and Oncology 152 (November 2020): S54—S55. http://dx.doi.org/10.1016/s0167-8140(21)00136-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mukesh, Mukesh B., Emma Harris, Sandra Collette, Charlotte E. Coles, Harry Bartelink, Jenny Wilkinson, Philip M. Evans, et al. "Normal tissue complication probability (NTCP) parameters for breast fibrosis: Pooled results from two randomised trials." Radiotherapy and Oncology 108, no. 2 (August 2013): 293–98. http://dx.doi.org/10.1016/j.radonc.2013.07.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Van den Bosch, Lisa, Ewoud Schuit, Hans Paul van der Laan, Johannes B. Reitsma, Karel G. M. Moons, Roel J. H. M. Steenbakkers, Frank J. P. Hoebers, Johannes A. Langendijk, and Arjen van der Schaaf. "Key challenges in normal tissue complication probability model development and validation: towards a comprehensive strategy." Radiotherapy and Oncology 148 (July 2020): 151–56. http://dx.doi.org/10.1016/j.radonc.2020.04.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kanayama, N., R. G. J. Kierkels, R. J. H. M. Steenbakkers, A. Van der Schaaf, M. Miyazaki, T. Fujii, K. Nishiyama, J. A. Langendijk, and T. Teshima. "PO-064: Normal tissue complication probability model for tube feeding dependence 6 months after radiotherapy." Radiotherapy and Oncology 122 (March 2017): 32. http://dx.doi.org/10.1016/s0167-8140(17)30198-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Palorini, F., A. Cicchetti, T. Rancati, C. Cozzarini, B. Avuzzi, C. Degli Esposti, P. Franco, et al. "PO-0729: Normal Tissue Complication Probability for late urinary toxicities after RT for prostate cancer." Radiotherapy and Oncology 123 (May 2017): S382—S383. http://dx.doi.org/10.1016/s0167-8140(17)31166-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Palma, G., A. Buonanno, S. Monti, R. Pacelli, and L. Cella. "A New Paradigm for Radiation-Induced Toxicity Analysis: Space Based Normal Tissue Complication Probability Modeling." International Journal of Radiation Oncology*Biology*Physics 102, no. 3 (November 2018): S96—S97. http://dx.doi.org/10.1016/j.ijrobp.2018.06.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bakhshandeh, Mohsen, Bijan Hashemi, Seied Rabi Mehdi Mahdavi, Alireza Nikoofar, Maryam Vasheghani, and Anoshirvan Kazemnejad. "Normal Tissue Complication Probability Modeling of Radiation-Induced Hypothyroidism After Head-and-Neck Radiation Therapy." International Journal of Radiation Oncology*Biology*Physics 85, no. 2 (February 2013): 514–21. http://dx.doi.org/10.1016/j.ijrobp.2012.03.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Huang, E., J. Bradley, I. El Naqa, L. Pesce, and J. Deasy. "SU-GG-T-444: Normal Tissue Complication Probability (NTCP) Modeling Using Self-Organizing Map (SOM)." Medical Physics 37, no. 6Part22 (June 2010): 3288. http://dx.doi.org/10.1118/1.3468842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Roenjom, M., C. Brink, S. M. Bentzen, L. Hegedüs, J. Overgaard, J. B. B. Petersen, H. Primdahl, and J. Johansen. "A Validation Study of Normal Tissue Complication Probability (NTCP) Models for Radiation-Induced Hypothyroidism (HT)." International Journal of Radiation Oncology*Biology*Physics 90, no. 1 (September 2014): S517. http://dx.doi.org/10.1016/j.ijrobp.2014.05.1583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Annede, Pierre, Hugues Mailleux, Patrick Sfumato, Marjorie Ferré, Aurélie Autret, Leonel Varela Cagetti, Alban Macagno, et al. "Multivariate normal tissue complication probability modeling of vaginal late toxicity after brachytherapy for cervical cancer." Brachytherapy 17, no. 6 (November 2018): 922–28. http://dx.doi.org/10.1016/j.brachy.2018.07.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Rana, S., and CY Cheng. "Radiobiological impact of planning techniques for prostate cancer in terms of tumor control probability and normal tissue complication probability." Annals of Medical and Health Sciences Research 4, no. 2 (2014): 167. http://dx.doi.org/10.4103/2141-9248.129023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rana, S., and C. Cheng. "Radiobiological Impact of Planning Techniques for Prostate Cancer in Terms of Tumor Control Probability and Normal Tissue Complication Probability." International Journal of Radiation Oncology*Biology*Physics 87, no. 2 (October 2013): S694—S695. http://dx.doi.org/10.1016/j.ijrobp.2013.06.1842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography