To see the other types of publications on this topic, follow the link: Nonradiative energy transfer.

Journal articles on the topic 'Nonradiative energy transfer'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nonradiative energy transfer.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tewari, K. K., and S. D. Pandey. "Pb2+→Mn2+nonradiative energy transfer in KBr." Physical Review B 40, no. 4 (August 1, 1989): 2101–8. http://dx.doi.org/10.1103/physrevb.40.2101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Suchocki, Andrzej, Zbigniew Kalinski, Jerzy M. Langer, and Richard C. Powell. "Nonradiative energy‐transfer processes in Cd1−xMnxF2crystals." Journal of Applied Physics 71, no. 1 (January 1992): 28–36. http://dx.doi.org/10.1063/1.350703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stepashkina, A. S., D. M. Samosvat, O. P. Chikalova-Luzina, and G. G. Zegrya. "Nonradiative resonance energy transfer between quantum dots." Journal of Physics: Conference Series 461 (August 28, 2013): 012001. http://dx.doi.org/10.1088/1742-6596/461/1/012001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Basun, S. A., S. P. Feofilov, and A. A. Kaplyanskii. "Fast resonant nonradiative energy transfer in alexandrite." Journal of Luminescence 48-49 (January 1991): 166–70. http://dx.doi.org/10.1016/0022-2313(91)90097-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prochazka, K., B. Bednar, E. Mukhtar, P. Svoboda, J. Trnena, and M. Almgren. "Nonradiative energy transfer in block copolymer micelles." Journal of Physical Chemistry 95, no. 11 (May 1991): 4563–68. http://dx.doi.org/10.1021/j100164a069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bililign, Solomon, Brian C. Hattaway, and Gwang-Hi Jeung. "Nonradiative Energy Transfer in Li*(3p)−CH4Collisions." Journal of Physical Chemistry A 106, no. 2 (January 2002): 222–27. http://dx.doi.org/10.1021/jp012616w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Guzelturk, Burak, Murat Olutas, Savas Delikanli, Yusuf Kelestemur, Onur Erdem, and Hilmi Volkan Demir. "Nonradiative energy transfer in colloidal CdSe nanoplatelet films." Nanoscale 7, no. 6 (2015): 2545–51. http://dx.doi.org/10.1039/c4nr06003b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kaur, Amrita, Pardeep Kaur, and Sahil Ahuja. "Förster resonance energy transfer (FRET) and applications thereof." Analytical Methods 12, no. 46 (2020): 5532–50. http://dx.doi.org/10.1039/d0ay01961e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Samosvat, D. M., O. P. Chikalova-Luzina, and G. G. Zegrya. "Nonradiative resonance energy transfer between semiconductor quantum dots." Journal of Experimental and Theoretical Physics 121, no. 1 (July 2015): 76–95. http://dx.doi.org/10.1134/s1063776115060138.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

MORAWETZ, H. "Studies of Synthetic Polymers by Nonradiative Energy Transfer." Science 240, no. 4849 (April 8, 1988): 172–76. http://dx.doi.org/10.1126/science.240.4849.172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Eteng, Akaa Agbaeze, Sharul Kamal Abdul Rahim, and Chee Yen Leow. "Wireless Nonradiative Energy Transfer: Antenna performance enhancement techniques." IEEE Antennas and Propagation Magazine 57, no. 3 (June 2015): 16–22. http://dx.doi.org/10.1109/map.2015.2437281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Aceves, R., U. Caldiño G, J. Rubio O, and E. Camarillo. "Nonradiative energy transfer Sn2+ → Mn2+ in monocrystalline KBr." Journal of Luminescence 65, no. 3 (August 1995): 113–19. http://dx.doi.org/10.1016/0022-2313(95)00069-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ibrayev N. Kh., Kucherenko M. G., Temirbayeva D. A., and Seliverstova E. V. "Plasmon-activated Forster energy transfer in molecular systems." Optics and Spectroscopy 130, no. 5 (2022): 569. http://dx.doi.org/10.21883/eos.2022.05.54441.1-22.

Full text
Abstract:
To explain the experimentally observed effect of silver nanoparticles on the fluorescence of organic dyes and the nonradiative intermolecular transfer of electronic excitation energy in multilayer nanostructures, the previously proposed theoretical model of plasmon resonance in spherical nanoparticles of metals was used. The rates of radiative and nonradiative (FRET) processes in film structures with Ag nanoparticles were calculated for fluorescein and rhodamine B molecules, as well as for two-component systems fluorescein-nile red (NR) and rhodamine B-NR. A version of the model was used that takes into account the effect of NPs on FRET between molecules, the radiative decay of donor and acceptor molecules, and the energy transfer from the dye to plasmonic nanoparticles. The calculation of the UDA rate for pairs with different energy transfer efficiency showed a greater increase in the UDA parameter for the fluorescein-nile red pair than for the rhodamine B-nile red pair. Estimation of the fluorescence enhancement factor of donor and energy acceptor molecules and the rate of energy transfer from the dye to silver NPs showed their insignificant contribution to the formation of the resulting energy transfer efficiency enhancement in the presence of plasmonic NPs. Keywords: energy transfer, silver nanoparticles, plasmon, model
APA, Harvard, Vancouver, ISO, and other styles
14

Kucherenko, M. G., V. N. Stepanov, and N. Yu Kruchinin. "Intermolecular nonradiative energy transfer in clusters with plasmonic nanoparticles." Optics and Spectroscopy 118, no. 1 (January 2015): 103–10. http://dx.doi.org/10.1134/s0030400x15010154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Samosvat, D. M., O. P. Chikalova-Luzina, A. S. Stepashkina, and G. G. Zegrya. "Nonradiative resonance energy transfer between two semiconductor quantum dots." Technical Physics Letters 39, no. 1 (January 2013): 74–77. http://dx.doi.org/10.1134/s1063785013010240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Morawetz, Herbert. "Recent Applications of Nonradiative Energy Transfer to Polymer Studies." Collection of Czechoslovak Chemical Communications 58, no. 10 (1993): 2266–71. http://dx.doi.org/10.1135/cccc19932266.

Full text
Abstract:
Recent studies of polymers in solution and in bulk by energy transfer between two fluorescent labels are reviewed. Such studies are concerned with the equilibrium and dynamics of polymer chain expansion, molecular cluster formation in solution, the miscibility of polymers in bulk, and the interdiffusion of polymer latex particles.
APA, Harvard, Vancouver, ISO, and other styles
17

Poddubny, A. N., and A. V. Rodina. "Nonradiative and radiative Förster energy transfer between quantum dots." Journal of Experimental and Theoretical Physics 122, no. 3 (March 2016): 531–38. http://dx.doi.org/10.1134/s1063776116030092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Chikalova-Luzina, O. P., D. M. Samosvat, V. M. Vyatkin, and G. G. Zegrya. "Nonradiative resonance energy transfer in the quantum dot system." Physica E: Low-dimensional Systems and Nanostructures 114 (October 2019): 113568. http://dx.doi.org/10.1016/j.physe.2019.113568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Singldinger, Andreas, Moritz Gramlich, Christoph Gruber, Carola Lampe, and Alexander S. Urban. "Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets." ACS Energy Letters 5, no. 5 (April 1, 2020): 1380–85. http://dx.doi.org/10.1021/acsenergylett.0c00471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kucherenko, M. G., and D. A. Kislov. "Plasmon-activated intermolecular nonradiative energy transfer in spherical nanoreactors." Journal of Photochemistry and Photobiology A: Chemistry 354 (March 2018): 25–32. http://dx.doi.org/10.1016/j.jphotochem.2017.10.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Tomin, V. I. "Nonradiative energy transfer in a concentrated solution of prodan." Optics and Spectroscopy 101, no. 4 (October 2006): 563–67. http://dx.doi.org/10.1134/s0030400x06100109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Muoz F., A., G. Muoz H., and J. Rubio O. "Nonradiative energy transfer fromCu+toMn2+ions in monocrystalline NaCl." Physical Review B 41, no. 15 (May 15, 1990): 10830–34. http://dx.doi.org/10.1103/physrevb.41.10830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Khrebtov, A. I., R. R. Reznik, E. V. Ubyivovk, A. P. Litvin, I. D. Skurlov, P. S. Parfenov, A. S. Kulagina, V. V. Danilov, and G. E. Cirlin. "Nonradiative Energy Transfer in Hybrid Nanostructures with Varied Dimensionality." Semiconductors 53, no. 9 (September 2019): 1258–61. http://dx.doi.org/10.1134/s1063782619090082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gaudreau, L., K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. García de Abajo, and F. H. L. Koppens. "Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene." Nano Letters 13, no. 5 (April 15, 2013): 2030–35. http://dx.doi.org/10.1021/nl400176b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

LAREO, LEONARDO R., and JANNETH GONZÁLEZ. "INTRAMOLECULAR EXCITED ENERGY TRANSFER PATHWAYS IN PROTEINS." Journal of Theoretical and Computational Chemistry 07, no. 01 (February 2008): 91–102. http://dx.doi.org/10.1142/s0219633608003629.

Full text
Abstract:
The transfer of energy perturbations within protein structure is an important phenomenon in many biological processes. In particular, the transfer of energy perturbations within a molecule in the absence of electron transfer is critical to the understanding of such processes as signaling involving receptors, channels, and enzymes among others, and to the design and development of relevant conducting materials. In this work, we have proposed a mechanism to explain this nonradiative, nonelectron energy transfer based on the π-orbital interactions of aromatic amino acids. Additionally, some theoretical background and possible computational approaches are presented as support for the proposal.
APA, Harvard, Vancouver, ISO, and other styles
26

Ибраев, Н. Х., М. Г. Кучеренко, Д. А. Темирбаева, and Е. В. Селиверстова. "Плазмон-активированный фёрстеровский перенос энергии в молекулярных системах." Оптика и спектроскопия 130, no. 5 (2022): 721. http://dx.doi.org/10.21883/os.2022.05.52426.1-22.

Full text
Abstract:
To explain the experimentally observed effect of silver nanoparticles on the fluorescence of organic dyes and the nonradiative intermolecular transfer of electronic excitation energy in multilayer nanostructures, the previously proposed theoretical model of plasmon resonance in spherical nanoparticles of metals was used. The rates of radiative and nonradiative (FRET) processes in film structures with Ag nanoparticles were calculated for fluorescein and rhodamine B molecules, as well as for two-component systems fluorescein–nile red (NR) and rhodamine B–NR. A version of the model was used that takes into account the effect of NPs on FRET between molecules, the radiative decay of donor and acceptor molecules, and the energy transfer from the dye to plasmonic nanoparticles. The calculation of the UDA rate for pairs with different energy transfer efficiency showed a greater increase in the UDA parameter for the fluorescein–nile red pair than for the rhodamine B–nile red pair. Estimation of the fluorescence enhancement factor of donor and energy acceptor molecules and the rate of energy transfer from the dye to silver NPs showed their insignificant contribution to the formation of the resulting energy transfer efficiency enhancement in the presence of plasmonic NPs.
APA, Harvard, Vancouver, ISO, and other styles
27

Avila-Huerta, Mariana D., Edwin J. Ortiz-Riaño, Diana L. Mancera-Zapata, Karen Cortés-Sarabia, and Eden Morales-Narváez. "Facile Determination of COVID-19 Seroconversion via Nonradiative Energy Transfer." ACS Sensors 6, no. 6 (May 28, 2021): 2136–40. http://dx.doi.org/10.1021/acssensors.1c00795.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

van de Haar, Marie Anne, Anne C. Berends, Michael R. Krames, Liudmyla Chepyga, Freddy T. Rabouw, and Andries Meijerink. "Eu3+ Sensitization via Nonradiative Interparticle Energy Transfer Using Inorganic Nanoparticles." Journal of Physical Chemistry Letters 11, no. 3 (January 10, 2020): 689–95. http://dx.doi.org/10.1021/acs.jpclett.9b03764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Gan, Daoji, and L. Andrew Lyon. "Interfacial Nonradiative Energy Transfer in Responsive Core−Shell Hydrogel Nanoparticles." Journal of the American Chemical Society 123, no. 34 (August 2001): 8203–9. http://dx.doi.org/10.1021/ja015974l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Bednář, B., L. Karásek, and J. Pokorný. "Nonradiative energy transfer studies of block copolymers in selective solvents." Polymer 37, no. 23 (November 1996): 5261–68. http://dx.doi.org/10.1016/0032-3861(96)00344-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Park, Jun Kue, Kyu Won Lee, W. Lee, and Cheol Eui Lee. "Nonradiative energy transfer in ZnO nanorods/dye-doped polymer heterostructures." Applied Physics Letters 94, no. 23 (June 8, 2009): 233301. http://dx.doi.org/10.1063/1.3153117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Levin, M. B., M. G. Reva, V. V. Rodchenkova, and Boris M. Uzhinov. "Ratio of radiative to nonradiative energy transfer in lasing systems." Soviet Journal of Quantum Electronics 16, no. 6 (June 30, 1986): 833–36. http://dx.doi.org/10.1070/qe1986v016n06abeh006927.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Konyshev, Yu V., R. T. Nasibullin, V. N. Cherepanov, G. V. Baryshnikov, and R. R. Valiev. "Theoretical Study of Nonradiative Energy Transfer from Exciplex to Perovskites." Russian Physics Journal 62, no. 10 (February 2020): 1911–16. http://dx.doi.org/10.1007/s11182-020-01922-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Efimova, S. L., A. V. Sorokin, A. N. Lebedenko, Yu V. Malyukin, and E. N. Obukhova. "Nonradiative energy transfer in carbocyanine dye compositions inside surfactant micelles." Journal of Applied Spectroscopy 73, no. 2 (March 2006): 164–70. http://dx.doi.org/10.1007/s10812-006-0053-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Cho, Eun-Bum, and Dukjoon Kim. "Nonradiative Energy Transfer in Chromophore-Tagged PS–PEO Diblock Copolymers." Macromolecular Symposia 249-250, no. 1 (April 2007): 437–44. http://dx.doi.org/10.1002/masy.200750416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Karpińska, Miriam, Minpeng Liang, Roman Kempt, Kati Finzel, Machteld Kamminga, Mateusz Dyksik, Nan Zhang, et al. "Nonradiative Energy Transfer and Selective Charge Transfer in a WS2/(PEA)2PbI4 Heterostructure." ACS Applied Materials & Interfaces 13, no. 28 (July 6, 2021): 33677–84. http://dx.doi.org/10.1021/acsami.1c08377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Choi, Yong Gyu, Kyong Hon Kim, Yong Seop Han, and Jong Heo. "Sensitizing effect of Yb3+ on near-infrared fluorescence emission of Cr4+-doped calcium aluminate glasses." Journal of Materials Research 15, no. 2 (February 2000): 278–81. http://dx.doi.org/10.1557/jmr.2000.0045.

Full text
Abstract:
We have demonstrated that an efficient energy transfer takes place from Yb3+ to Cr4+ in calcium aluminate glasses. Yb3+ improves excitation efficiency at around 980 nm, enhancing emission intensity of Cr4+ fluorescence at 1.2–1.6 μm. Nonradiative energy transfer via electric dipole–dipole interaction between ytterbium and chromium ions was found to be dominant over radiative Yb3+ → Cr4+ energy transfer. A diffusionlimited energy transfer mechanism well explains the decay behavior of Yb3+/Cr4+- codoped glasses. This codoping scheme may be applicable to other Cr4+-containing crystals and glasses.
APA, Harvard, Vancouver, ISO, and other styles
38

Grajek, Hanna, Jacek Kubicki, Ignacy Gryczyński, Jerzy Karolczak, Grażyna Żurkowska, Agnieszka I. Piotrowicz-Cieślak, and Piotr Bojarski. "Effect of Dimer Structure and Inhomogeneous Broadening of Energy Levels on the Action of Flavomononucleotide in Rigid Polyvinyl Alcohol Films." International Journal of Molecular Sciences 22, no. 14 (July 20, 2021): 7759. http://dx.doi.org/10.3390/ijms22147759.

Full text
Abstract:
The results of time-resolved fluorescence measurements of flavin mononucleotide (FMN) in rigid polyvinyl alcohol films (PVA) demonstrate that fluorescence intensity decays are strongly accelerated in the presence of fluorescent dimers and nonradiative energy transfer processes. The fluorescence decay originating both from H and J dimer states of FMN was experimentally observed for the first time. The mean fluorescence lifetimes for FMN dimers were obtained: τfl = 2.66 ns (at λexc = 445 nm) and τfl = 2.02 (at λexc = 487 nm) at λobs = 600 nm and T = 253 K from H and J state of dimers, respectively. We show that inhomogeneous orientational broadening of energy levels (IOBEL) affects the shape of the fluorescence decay and leads to the dependence of the average monomer fluorescence lifetime on excitation wavelength. IOBEL affected the nonradiative energy transfer and indicated that different flavin positioning in the protein pocket could (1) change the spectroscopic properties of flavins due to the existence of “blue” and “red” fluorescence centers, and (2) diminish the effectiveness of energy transfer between FMN molecules.
APA, Harvard, Vancouver, ISO, and other styles
39

Johnson, E., and R. Aroca. "Energy transfer between Langmuir–Blodgett monolayers of organic dyes." Canadian Journal of Chemistry 69, no. 11 (November 1, 1991): 1728–31. http://dx.doi.org/10.1139/v91-253.

Full text
Abstract:
The Langmuir–Blodgett technique has been used to prepare multilayer structures in order to investigate the distance dependence of the nonradiative transfer of electronic energy from a donor plane of molecules to an acceptor plane. The distance between well-separated donor molecules and acceptor molecules was carefully controlled by spacer layers of arachidic acid. New systems for energy transfer studies are considered that use N-hexyl-N′-ethyl-3,4:9,10-perylenetetracarboxyldiimide (HPTCDE) and N-hexyl-3,4:9,10-perylenetetracarboxylmonoimide (HPTCO) as donors and lutetium diphthalocyanine (LuPc2) as acceptor. The limitations of the Förster dipole theory of energy transfer from a donor monolayer of point dipoles to an acceptor layer are discussed. Key words: energy transfer, Langmuir–Blodgett, diphthalocyanine, perylene.
APA, Harvard, Vancouver, ISO, and other styles
40

An, Li Min, Yan Fang Duan, Hong Liu, Jie Yi, Chun Xia Liu, Xiao Guang Li, Li Zhi He, Ling Song Zhou, Pu Yu Wang, and Wen Yu An. "Fluorescence from the Compound System of PVK Molecules and SiO2 Nanoparticles with Different Sizes." Advanced Materials Research 981 (July 2014): 797–800. http://dx.doi.org/10.4028/www.scientific.net/amr.981.797.

Full text
Abstract:
SiO2nanoparticles (NPs) are synthesized in ethanol solution and mixed with polyvinyl carbazole (PVK). The sizes of SiO2NPs are 40nm and 60nm. PVK/SiO2NPs compound systems with different sizes and with different ratios of mass fraction are obtained. Photoluminescence spectra are employed to research the optical properties of PVK molecules and PVK/SiO2NPs compound system. In compound system, the process of interface energy transfer between PVK and SiO2NPs are observed. The mainly energy transfer form is nonradiative resonance transfer.
APA, Harvard, Vancouver, ISO, and other styles
41

El Kabbash, Mohamed, Alireza Rahimi Rashed, Kandammathe Valiyaveedu Sreekanth, Antonio De Luca, Melissa Infusino, and Giuseppe Strangi. "Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems." Journal of Nanomaterials 2016 (2016): 1–21. http://dx.doi.org/10.1155/2016/4819040.

Full text
Abstract:
The presence of an excitonic element in close proximity of a plasmonic nanostructure, under certain conditions, may lead to a nonradiative resonant energy transfer known as Exciton Plasmon Resonant Energy Transfer (EPRET) process. The exciton-plasmon coupling and dynamics have been intensely studied in the last decade; still many relevant aspects need more in-depth studies. Understanding such phenomenon is not only important from fundamental viewpoint, but also essential to unlock many promising applications. In this review we investigate the plasmon-exciton resonant energy transfer in different hybrid systems at the nano- and mesoscales, in order to gain further understanding of such processes across scales and pave the way towards active plasmonic devices.
APA, Harvard, Vancouver, ISO, and other styles
42

Yeltik, Aydan, Gokce Kucukayan-Dogu, Burak Guzelturk, Somayeh Fardindoost, Yusuf Kelestemur, and Hilmi Volkan Demir. "Evidence for Nonradiative Energy Transfer in Graphene-Oxide-Based Hybrid Structures." Journal of Physical Chemistry C 117, no. 48 (November 20, 2013): 25298–304. http://dx.doi.org/10.1021/jp408465a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zygelman, B., A. Dalgarno, M. Kimura, and N. F. Lane. "Radiative and nonradiative charge transfer inHe++H collisions at low energy." Physical Review A 40, no. 5 (September 1, 1989): 2340–45. http://dx.doi.org/10.1103/physreva.40.2340.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yang, Zhenling, Yuqiang Liu, Xing He, Yanan Wen, and Yanqiang Yang. "Competition between surface trapping and nonradiative energy transfer to gold nanofilm." Journal of Applied Physics 108, no. 9 (November 2010): 094309. http://dx.doi.org/10.1063/1.3503518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Di Bartolo, B., J. Danko, and D. Pacheco. "Nonradiative energy transfer without lifetime quenching in doped Mn-based crystals." Physical Review B 35, no. 12 (April 15, 1987): 6386–94. http://dx.doi.org/10.1103/physrevb.35.6386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pokorna, Veronika, Frantisek Mikes, Jan Pecka, and Drahomir Vyprachticky. "Study of poly(methyl methacrylate) stereocomplex formation by nonradiative energy transfer." Macromolecules 26, no. 8 (April 1993): 2139–40. http://dx.doi.org/10.1021/ma00060a052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Shokurov, Alexander V., Lubov’ V. Nikolayeva, Darina N. Novak, Vladimir V. Arslanov, and Sofiya L. Selektor. "Nonradiative energy transfer in planar systems based on structurally different fluorophores." Mendeleev Communications 27, no. 4 (July 2017): 366–67. http://dx.doi.org/10.1016/j.mencom.2017.07.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kühne, H., G. Weiser, E. I. Terukov, A. N. Kusnetsov, and V. Kh Kudoyarova. "Resonant nonradiative energy transfer to erbium ions in amorphous hydrogenated silicon." Journal of Applied Physics 86, no. 2 (July 15, 1999): 896–901. http://dx.doi.org/10.1063/1.370820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Cardullo, R. A., S. Agrawal, C. Flores, P. C. Zamecnik, and D. E. Wolf. "Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer." Proceedings of the National Academy of Sciences 85, no. 23 (December 1, 1988): 8790–94. http://dx.doi.org/10.1073/pnas.85.23.8790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Yuldasheva, D. K., D. N. Pevtsov, A. V. Gadomska, and S. A. Tovstun. "Kinetics of Nonradiative Energy Transfer between Close-Packed InP/ZnS Nanocrystals." High Energy Chemistry 56, no. 6 (December 2022): 399–410. http://dx.doi.org/10.1134/s0018143922060182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography
We use cookies to improve our website's functionality. Learn more