Academic literature on the topic 'Nonlocal Neumann boundary conditions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlocal Neumann boundary conditions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nonlocal Neumann boundary conditions"
Dipierro, Serena, Xavier Ros-Oton, and Enrico Valdinoci. "Nonlocal problems with Neumann boundary conditions." Revista Matemática Iberoamericana 33, no. 2 (2017): 377–416. http://dx.doi.org/10.4171/rmi/942.
Full textYou, Huaiqian, Xin Yang Lu, Nathaniel Trask, and Yue Yu. "An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems." ESAIM: Mathematical Modelling and Numerical Analysis 55 (2021): S811—S851. http://dx.doi.org/10.1051/m2an/2020058.
Full textYou, Huaiqian, XinYang Lu, Nathaniel Task, and Yue Yu. "An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 4 (June 18, 2020): 1373–413. http://dx.doi.org/10.1051/m2an/2019089.
Full textTurmetov, B. Kh, and V. V. Karachik. "NEUMANN BOUNDARY CONDITION FOR A NONLOCAL BIHARMONIC EQUATION." Bulletin of the South Ural State University series "Mathematics. Mechanics. Physics" 14, no. 2 (2022): 51–58. http://dx.doi.org/10.14529/mmph220205.
Full textBogoya, Mauricio, and Cesar A. Gómez S. "On a nonlocal diffusion model with Neumann boundary conditions." Nonlinear Analysis: Theory, Methods & Applications 75, no. 6 (April 2012): 3198–209. http://dx.doi.org/10.1016/j.na.2011.12.019.
Full textAksoylu, Burak, and Fatih Celiker. "Nonlocal problems with local Dirichlet and Neumann boundary conditions." Journal of Mechanics of Materials and Structures 12, no. 4 (May 20, 2017): 425–37. http://dx.doi.org/10.2140/jomms.2017.12.425.
Full textGomez, C. A., and J. A. Caicedo. "ON A RESCALED NONLOCAL DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITIONS." Advances in Mathematics: Scientific Journal 10, no. 8 (August 7, 2021): 3013–22. http://dx.doi.org/10.37418/amsj.10.8.2.
Full textAndreu, F., J. M. Mazón, J. D. Rossi, and J. Toledo. "A nonlocal p-Laplacian evolution equation with Neumann boundary conditions." Journal de Mathématiques Pures et Appliquées 90, no. 2 (August 2008): 201–27. http://dx.doi.org/10.1016/j.matpur.2008.04.003.
Full textAgarwal, Praveen, Jochen Merker, and Gregor Schuldt. "Singular Integral Neumann Boundary Conditions for Semilinear Elliptic PDEs." Axioms 10, no. 2 (April 24, 2021): 74. http://dx.doi.org/10.3390/axioms10020074.
Full textKarachik, Valery, Batirkhan Turmetov, and Hongfen Yuan. "Four Boundary Value Problems for a Nonlocal Biharmonic Equation in the Unit Ball." Mathematics 10, no. 7 (April 3, 2022): 1158. http://dx.doi.org/10.3390/math10071158.
Full textDissertations / Theses on the topic "Nonlocal Neumann boundary conditions"
Roman, Svetlana. "Green's functions for boundary-value problems with nonlocal boundary conditions." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111227_092148-01085.
Full textDisertacijoje tiriami antros ir aukštesnės eilės diferencialinis ir diskretusis uždaviniai su įvairiomis, tame tarpe ir nelokaliosiomis, sąlygomis, kurios yra aprašytos tiesiškai nepriklausomais tiesiniais funkcionalais. Pateikiamos šių uždavinių Gryno funkcijų išraiškos ir jų egzistavimo sąlygos, jei žinoma homogeninės lygties fundamentalioji sistema. Gautas dviejų Gryno funkcijų sąryšis uždaviniams su ta pačia lygtimi, bet su papildomomis sąlygomis. Rezultatai pritaikomi uždaviniams su nelokaliosiomis kraštinėmis sąlygomis. Įvadiniame skyriuje aprašyta tiriamoji problema ir temos objektas, išanalizuotas temos aktualumas, išdėstyti darbo tikslai, uždaviniai, naudojama tyrimų metodika, mokslinis darbo naujumas ir gautų rezultatų reikšmė, pateikti ginamieji teiginiai ir darbo rezultatų aprobavimas. m-tosios eilės diferencialinis uždavinys ir jo Gryno funkcija nagrinėjami pirmajame skyriuje. Surastas uždavinio sprendinys, išreikštas per Gryno funkciją. Pateikta Gryno funkcijos egzistavimo sąlyga. Antrajame skyriuje pateikti pirmojo skyriaus pagrindiniai apibrėžimai ir rezultatai antros eilės diferencialinei lygčiai. Pavyzdžiuose išsamiai išanalizuotas gautų rezultatų pritaikymas uždaviniams su nelokaliosiomis kraštinėmis sąlygomis. Trečiajame skyriuje nagrinėjama antros eilės diskrečioji lygtis su dviem sąlygomis. Surastos diskrečiosios Gryno funkcijos išraiška ir jos egzistavimo sąlyga. Taip pat pateiktas dviejų Gryno funkcijų sąryšis, kuris leidžia surasti diskrečiosios... [toliau žr. visą tekstą]
Mäder-Baumdicker, Elena [Verfasser], and Ernst [Akademischer Betreuer] Kuwert. "The area preserving curve shortening flow with Neumann free boundary conditions = Der flächenerhaltende Curve Shortening Fluss mit einer freien Neumann-Randbedingung." Freiburg : Universität, 2014. http://d-nb.info/1123480648/34.
Full textBenincasa, Tommaso <1981>. "Analysis and optimal control for the phase-field transition system with non-homogeneous Cauchy-Neumann boundary conditions." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3066/1/benincasa_tommaso_tesi.pdf.
Full textBenincasa, Tommaso <1981>. "Analysis and optimal control for the phase-field transition system with non-homogeneous Cauchy-Neumann boundary conditions." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3066/.
Full textPERROTTA, Antea. "Differential Formulation coupled to the Dirichlet-to-Neumann operator for scattering problems." Doctoral thesis, Università degli studi di Cassino, 2020. http://hdl.handle.net/11580/75845.
Full textCoco, Armando. "Finite-Difference Ghost-Cell Multigrid Methods for Elliptic problems with Mixed Boundary Conditions and Discontinuous Coefficients." Doctoral thesis, Università di Catania, 2012. http://hdl.handle.net/10761/1107.
Full textCao, Shunxiang. "Numerical Methods for Fluid-Solid Coupled Simulations: Robin Interface Conditions and Shock-Dominated Applications." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/93514.
Full textDoctor of Philosophy
Numerical simulations that couple computational fluid dynamics (CFD) solvers and computational solid dynamics (CSD) solvers have been widely used in the solution of nonlinear fluid-solid interaction (FSI) problems underlying many engineering applications. This is primarily because they are based on partitioned solutions of fluid and solid subsystems, which facilitates the use of existing numerical methods and computational codes developed for each subsystem. The first part of this dissertation focuses on developing advanced numerical algorithms for coupling the two subsystems. The aim is to resolve a major numerical instability issue that occurs when solving problems involving incompressible, heavy fluids and thin, lightweight structures. Specifically, this work first presents a new coupling algorithm based on a one-parameter Robin interface condition. An embedded boundary method is developed to enforce the Robin interface condition, which can be advantageous in solving problems involving complex geometry and large deformation. The new coupling algorithm has been shown to significantly improve numerical stability when the constant parameter is carefully selected. Next, the constant parameter is generalized into a spatially varying function whose local value is determined by the local material and geometric properties of the structure. Numerical studies show that when solving FSI problems involving non-uniform structures, using this spatially varying Robin interface condition can outperform the constant-parameter version in both stability and accuracy under the same computational cost. In the second part of this dissertation, a recently developed three-dimensional multiphase CFD - CSD coupled solver is extended to simulate complex FSI problems featuring shock wave, bubbles, and material damage and fracture. The aim is to understand the material’s response to loading induced by a shock wave and the collapse of nearby bubbles, which is important for advancing the beneficial use of shock wave and bubble collapse for material modification. Two computational studies are presented. The first one investigates the dynamic response and failure of a brittle material exposed to a prescribed shock wave. The causal relationship between shock loading and material failure, and the effects of the shock wave’s profile on material damage are discussed. The second study investigates the shock-induced bubble collapse near various solid and soft materials. The two-way interaction between bubble dynamics and materials response, and the reciprocal effects of the material’s properties are discussed in detail.
Roman, Svetlana. "Gryno funkcijos uždaviniams su nelokaliosiomis kraštinėmis sąlygomis." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111227_092259-85107.
Full textIn the dissertation, second-order and higher-order differential and discrete equations with additional conditions which are described by linearly independent linear functionals are investigated. The solutions to these problems, formulae and the existence conditions of Green's functions are presented, if the general solution of a homogeneous equation is known. The relation between two Green's functions of two nonhomogeneous problems for the same equation but with different additional conditions is obtained. These results are applied to problems with nonlocal boundary conditions. In the introduction the topicality of the problem is defined, the goals and tasks of the research are formulated, the scientific novelty of the dissertation, the methodology of research, the practical value and the significance of the results are presented. m-order differential problem and its Green's function are investigated in the first chapter. The relation between two Green's functions and the existence condition of Green's function are obtained. In the second chapter, the main definitions and results of the first chapter are formulated for the second-order differential equation with additional conditions. In the examples the application of the received results is analyzed for problems with nonlocal boundary conditions in detail. In the third chapter, the second-order difference equation with two additional conditions is considered. The expression of Green's function and its existence... [to full text]
Eschke, Andy. "Analytical solution of a linear, elliptic, inhomogeneous partial differential equation with inhomogeneous mixed Dirichlet- and Neumann-type boundary conditions for a special rotationally symmetric problem of linear elasticity." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-149965.
Full textBensiali, Bouchra. "Approximations numériques en situations complexes : applications aux plasmas de tokamak." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4332/document.
Full textMotivated by two issues related to tokamak plasmas, this thesis proposes two numerical approximation methods for two mathematical problems associated with them. On the one hand, in order to study the turbulent transport of particles, a numerical method based on subdivision schemes is presented for the simulation of particle trajectories in a strongly varying velocity field. On the other hand, in the context of modeling the plasma-wall interaction, a penalization method is proposed to take into account Neumann or Robin boundary conditions. Analyzed on model problems of increasing complexity, these methods are finally applied in more realistic situations of practical interest in the study of the edge plasma
Books on the topic "Nonlocal Neumann boundary conditions"
E, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Find full textE, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Find full textE, Zorumski William, and Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Find full textE, Zorumski W., Watson Willie R, and Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Find full textE, Zorumski W., Watson Willie R, and Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Find full textSun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Find full textSun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Find full textSun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Find full textSun, Xian-He. A high-order direct solver for Helmholtz equations with Neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Find full textPeriodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Find full textBook chapters on the topic "Nonlocal Neumann boundary conditions"
Sayas, Francisco-Javier, Thomas S. Brown, and Matthew E. Hassell. "Neumann boundary conditions." In Variational Techniques for Elliptic Partial Differential Equations, 3–26. Boca Raton, Florida : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429507069-6.
Full textArendt, Wolfgang, and Karsten Urban. "Neumann and Robin boundary conditions." In Partial Differential Equations, 241–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13379-4_7.
Full textDroniou, Jérôme, Robert Eymard, Thierry Gallouët, Cindy Guichard, and Raphaèle Herbin. "Neumann, Fourier and Mixed Boundary Conditions." In Mathématiques et Applications, 67–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-79042-8_3.
Full textAdomian, George. "Decomposition Solutions for Neumann Boundary Conditions." In Solving Frontier Problems of Physics: The Decomposition Method, 190–95. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8289-6_7.
Full textMotreanu, Dumitru, Viorica Venera Motreanu, and Nikolaos Papageorgiou. "Nonlinear Elliptic Equations with Neumann Boundary Conditions." In Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, 387–436. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9323-5_12.
Full textLeung, Anthony W. "Large Systems under Neumann Boundary Conditions, Bifurcations." In Systems of Nonlinear Partial Differential Equations, 325–73. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-3937-1_7.
Full textFeltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Existence Results." In Positive Solutions to Indefinite Problems, 69–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_3.
Full textFeltrin, Guglielmo. "Neumann and Periodic Boundary Conditions: Multiplicity Results." In Positive Solutions to Indefinite Problems, 101–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94238-4_4.
Full textAksoylu, Burak, Fatih Celiker, and Orsan Kilicer. "Nonlocal Operators with Local Boundary Conditions: An Overview." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1–38. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-22977-5_34-1.
Full textAksoylu, Burak, Fatih Celiker, and Orsan Kilicer. "Nonlocal Operators with Local Boundary Conditions: An Overview." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1293–330. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-58729-5_34.
Full textConference papers on the topic "Nonlocal Neumann boundary conditions"
Parks, Michael. "On Neumann-type Boundary Conditions for Nonlocal Models." In Proposed for presentation at the Mechanistic Machine Learning and Digital Twins for Computational Science, Engineering & Technology held September 27-29, 2021 in San Diego, CA. US DOE, 2021. http://dx.doi.org/10.2172/1889347.
Full textLi, Fan, and Lingling Zhang. "Blow-up phenomenon of parabolic equations with nonlocal terms under Neumann boundary conditions." In 2021 3rd International Conference on Industrial Artificial Intelligence (IAI). IEEE, 2021. http://dx.doi.org/10.1109/iai53119.2021.9619348.
Full textD'Elia, Marta. "Challenges in nonlocal modeling: nonlocal boundary conditions and nonlocal interfaces." In Proposed for presentation at the WCCM 2020 held January 11-15, 2021 in Virtual. US DOE, 2020. http://dx.doi.org/10.2172/1833494.
Full textLOMBARDO, M. C., and M. SAMMARTINO. "NONLOCAL BOUNDARY CONDITIONS FOR THE NAVIER–STOKES EQUATIONS." In Proceedings of the 13th Conference on WASCOM 2005. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812773616_0047.
Full textArda, Mustafa, and Metin Aydogdu. "Nonlocal effect on boundary conditions of cantilever nanobeam." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026430.
Full textGámez, José L. "Local bifurcation for elliptic problems: Neumann versus Dirichlet boundary conditions." In The First 60 Years of Nonlinear Analysis of Jean Mawhin. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702906_0006.
Full textKuryliak, D. B., and Z. T. Nazarchuk. "Wave scattering by wedge with Dirichlet and Neumann boundary conditions." In Proceedings of III International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. DIPED-98. IEEE, 1998. http://dx.doi.org/10.1109/diped.1998.730938.
Full textPiasecki, Tomasz. "Steady compressible Oseen flow with slip boundary conditions." In Nonlocal and Abstract Parabolic Equations and their Applications. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2009. http://dx.doi.org/10.4064/bc86-0-16.
Full textNalbant, Nese, and Yasar Sozen. "The positivity of differential operator with nonlocal boundary conditions." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756198.
Full textGe, Zanyu, Huaibao Xiao, Guizhen Lu, and Dongdong Zeng. "Horizontal diffraction based on parabolic equation with nonlocal boundary conditions." In 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing). IEEE, 2017. http://dx.doi.org/10.1109/emc-b.2017.8260444.
Full textReports on the topic "Nonlocal Neumann boundary conditions"
D'Elia, Marta, and Yue Yu. On the prescription of boundary conditions for nonlocal Poisson's and peridynamics models. Office of Scientific and Technical Information (OSTI), June 2021. http://dx.doi.org/10.2172/1817978.
Full textD'Elia, Marta, Pavel Bochev, Mauro Perego, Jeremy Trageser, and David Littlewood. An optimization-based strategy for peridynamic-FEM coupling and for the prescription of nonlocal boundary conditions. Office of Scientific and Technical Information (OSTI), October 2021. http://dx.doi.org/10.2172/1825041.
Full text