Dissertations / Theses on the topic 'Nonlinear time series models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Nonlinear time series models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dupré, la Tour Tom. "Nonlinear models for neurophysiological time series." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT018/document.
Full textIn neurophysiological time series, strong neural oscillations are observed in the mammalian brain, and the natural processing tools are thus centered on narrow-band linear filtering.As this approach is too reductive, we propose new methods to represent these signals.We first focus on the study of phase-amplitude coupling (PAC), which consists in an amplitude modulation of a high frequency band, time-locked with a specific phase of a slow neural oscillation.We propose to use driven autoregressive models (DAR), to capture PAC in a probabilistic model. Giving a proper model to the signal enables model selection by using the likelihood of the model, which constitutes a major improvement in PAC estimation.%We first present different parametrization of DAR models, with fast inference algorithms and stability discussions.Then, we present how to use DAR models for PAC analysis, demonstrating the advantage of the model-based approach on three empirical datasets.Then, we explore different extensions to DAR models, estimating the driving signal from the data, PAC in multivariate signals, or spectro-temporal receptive fields.Finally, we also propose to adapt convolutional sparse coding (CSC) models for neurophysiological time-series, extending them to heavy-tail noise distribution and multivariate decompositions. We develop efficient inference algorithms for each formulation, and show that we obtain rich unsupervised signal representations
Li, Dao. "Common Features in Vector Nonlinear Time Series Models." Doctoral thesis, Högskolan Dalarna, Statistik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:du-13253.
Full text黃鎮山 and Chun-shan Wong. "Statistical inference for some nonlinear time series models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31239444.
Full textWong, Chun-shan. "Statistical inference for some nonlinear time series models /." Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20715316.
Full textSando, Simon Andrew. "Estimation of a class of nonlinear time series models." Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/15985/1/Simon_Sando_Thesis.pdf.
Full textSando, Simon Andrew. "Estimation of a class of nonlinear time series models." Queensland University of Technology, 2004. http://eprints.qut.edu.au/15985/.
Full textAinkaran, Ponnuthurai. "Analysis of Some Linear and Nonlinear Time Series Models." Thesis, The University of Sydney, 2004. http://hdl.handle.net/2123/582.
Full textAinkaran, Ponnuthurai. "Analysis of Some Linear and Nonlinear Time Series Models." University of Sydney. Mathematics & statistics, 2004. http://hdl.handle.net/2123/582.
Full textPitrun, Ivet 1959. "A smoothing spline approach to nonlinear inference for time series." Monash University, Dept. of Econometrics and Business Statistics, 2001. http://arrow.monash.edu.au/hdl/1959.1/8367.
Full textBatten, Douglas James. "Nonlinear time series modeling of some Canadian river flow data." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ54860.pdf.
Full textLin, Zhongli. "On the statistical inference of some nonlinear time series models." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43757625.
Full textJin, Shusong, and 金曙松. "Nonlinear time series modeling with application to finance and other fields." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B3199605X.
Full textLin, Zhongli, and 林中立. "On the statistical inference of some nonlinear time series models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43757625.
Full textSofia, Stefano. "Nonlinear time-series models for Mediterranean rainfall data with zeroes." Thesis, University of Sunderland, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439975.
Full textZeng, Songlin. "Nonlinear Time Series Models with Applications in Macroeconomics and Finance." Thesis, Cergy-Pontoise, 2013. http://www.theses.fr/2013CERG0638.
Full textThe following three chapters investigate: 1) whether Southeast Asian real exchange rates are nonlinear mean reverting, 2) bayesian inference on nonlinear time series model with applications in real exchange rate, and 3)cyclicality and bounce-back effect in stock market. Since the late nineties, both theoretical and empirical analyses devoted to the real exchange rate suggest that their dynamics might be well approximated by nonlinear models. This paper examines this possibility for post-1970 monthly ASEAN-5 data, extending the existing research in two directions. First, we use recently developed unit root tests which allow for more flexible nonlinear stationary models under the alternative than the commonly used Self-Exciting Threshold or Exponential Smooth Transition AutoRegressions. Second, while different nonlinear models survive the mis-specification tests, a Monte Carlo experiment from generalized impulse response functions is used to compare their relative relevance. Our results support the nonlinear mean-reverting hypothesis, and hence the Purchasing Power Parity, in half the cases and point to the Multiple Regime-Logistic Smooth Transition and the Self-Exciting Threshold AutoRegressive models as the most likely data generating processes of these real exchange rates.Various nonlinear threshold models are employed to mimic the real exchange rate dynamics. A natural question arises: Which model does the best job of modeling the real exchange rate process? It is difficult and not straightforward to formally compare the nonlinear models within classic approach. In the second chapter, we propose to use Bayesian approach to address this issue. The second part of my dissertation actually uses a Bayesian method to estimate some nonlinear time series models, the ACR model, SETAR model, and MAR model. We propose a full Bayesian inference approach and particular attention is paid to the parameters of the threshold variables. We discuss the choice of the prior distributions and propose a Markov-chain Monte Carlo algorithm for estimating both the parameters and the latent variables. A simulation study and the application to real exchange rate data illustrate the analysis. Our empirical results of the second chapter show that i) Bayesian estimations closely match those of the Maximum likelihood for French real exchange rate vis-a-vis Deutsche Mark; ii)the speed of real exchange rate's adjustment to equilibrium level is overestimated if heterogeneous variances in two regimes is not taken into account; iii) ACR model is preferred to other nonlinear threshold models, SETAR and MAR; iv) within ACR class models, the suitable transition function form is selected based on Bayes factor.This paper proposes an empirical study of the shape of recoveries in financial markets from a bounce-back augmented Markov Switching model. It relies on models first applied by Kim, Morley et Piger [2005] to the business cycle analysis. These models are estimated for monthly stock market returns data of five developed countries for the post-1970 period. Focusing on a potential bounce-back effect in financial markets, its presence and shape are formally tested. Our results show that i) the bounce-back effect is statistically significant and large in all countries, but Germany where evidence is less clear-cut and ii) the negative permanent impact of bear markets on the stock price index is notably reduced when the rebound is explicitly taken into account
Lyman, Mark B. "A modified cluster-weighted approach to nonlinear time series /." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1945.pdf.
Full textBasu, Deepankar. "Essays on Dynamic Nonlinear Time Series Models and on Gender Inequality." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211331801.
Full textLi, Guodong. "On some nonlinear time series models and the least absolute deviation estimation." Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B3878239X.
Full textLi, Guodong, and 李國棟. "On some nonlinear time series models and the least absolute deviation estimation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B3878239X.
Full textNakamura, Tomomichi. "Modelling nonlinear time series using selection methods and information criteria." University of Western Australia. School of Mathematics and Statistics, 2004. http://theses.library.uwa.edu.au/adt-WU2004.0085.
Full textSandberg, Rickard. "Testing the unit root hypothesis in nonlinear time series and panel models." Doctoral thesis, Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:hhs:diva-536.
Full textDiss. Stockholm : Handelshögskolan, 2004
Jin, Shusong. "Nonlinear time series modeling with application to finance and other fields." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B3199605X.
Full textMENDES, EDUARDO FONSECA. "MODELING NONLINEAR TIME SERIES WITH A TREE-STRUCTURED MIXTURE OF GAUSSIAN MODELS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2006. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9689@1.
Full textNeste trabalho um novo modelo de mistura de distribuições é proposto, onde a estrutura da mistura é determinada por uma árvore de decisão com transição suave. Modelos baseados em mistura de distribuições são úteis para aproximar distribuições condicionais desconhecidas de dados multivariados. A estrutura em árvore leva a um modelo que é mais simples, e em alguns casos mais interpretável, do que os propostos anteriormente na literatura. Baseando-se no algoritmo de Esperança- Maximização (EM), foi derivado um estimador de quasi- máxima verossimilhança. Além disso, suas propriedades assintóticas são derivadas sob condições de regularidades. Uma estratégia de crescimento da árvore, do especifico para o geral, é também proposta para evitar possíveis problemas de identificação. Tanto a estimação quanto a estratégia de crescimento são avaliados em um experimento Monte Carlo, mostrando que a teoria ainda funciona para pequenas amostras. A habilidade de aproximação universal é ainda analisada em experimentos de simulação. Para concluir, duas aplicações com bases de dados reais são apresentadas.
In this work a new model of mixture of distributions is proposed, where the mixing structure is determined by a smooth transition tree architecture. Models based on mixture of distributions are useful in order to approximate unknown conditional distributions of multivariate data. The tree structure yields a model that is simpler, and in some cases more interpretable, than previous proposals in the literature. Based on the Expectation-Maximization (EM) algorithm a quasi-maximum likelihood estimator is derived and its asymptotic properties are derived under mild regularity conditions. In addition, a specific-to-general model building strategy is proposed in order to avoid possible identification problems. Both the estimation procedure and the model building strategy are evaluated in a Monte Carlo experiment, which give strong support for the theorydeveloped in small samples. The approximation capabilities of the model is also analyzed in a simulation experiment. Finally, two applications with real datasets are considered.
Lee, Kian Lam. "Nonlinear time series modelling and prediction using polynomial and radial basis function expansions." Thesis, University of Sheffield, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246940.
Full textYang, Fuyu. "Bayesian inference in nonlinear univariate time series : investigation of GSTUR and SB models." Thesis, University of Leicester, 2009. http://hdl.handle.net/2381/4375.
Full textDacco, Roberto. "Switching regimes and threshold effect : an empirical analysis." Thesis, Birkbeck (University of London), 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243296.
Full textGurung, Ai Bahadur. "Analysis and prediction of hydrometeorological time series by dynamical system approach." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31240203.
Full textStrikholm, Birgit. "Essays on nonlinear time series modelling och hypothesis testing." Doctoral thesis, Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:hhs:diva-535.
Full textDiss. Stockholm : Handelshögskolan, 2004
Addo, Peter Martey. "Modern approaches for nonlinear data analysis of economic and financial time series." Thesis, Paris 1, 2014. http://www.theses.fr/2014PA010033/document.
Full textThis thesis centers on introducing modern non-linear approaches for data analysis in economics and finance with special attention on business cycles and financial crisis. It is now well stated in the statistical and economic literature that major economic variables display non-linear behaviour over the different phases of the business cycle. As such, nonlinear approaches/models are required to capture the features of the data generating mechanism of inherently asymmetric realizations, since linear models are incapable of generating such behavior.In this respect, the thesis provides an interdisciplinary and open-minded approach to analyzing economic and financial systems in a novel way. The thesis presents approaches that are robust to extreme values, non-stationarity, applicable to both short and long data length, transparent and adaptive to any financial/economic time series. The thesis provides step-by-step procedures in analyzing economic/financial indicators by incorporating concepts based on surrogate data method, wavelets, phase space embedding, ’delay vector variance’ (DVV) method and recurrence plots. The thesis also centers on transparent ways of identifying, dating turning points, evaluating impact of economic and financial crisis. In particular, the thesis also provides a procedure on how to anticipate future crisis and the possible impact of such crisis. The thesis shows that the incorporation of these techniques in learning the structure and interactions within and between economic and financial variables will be very useful in policy-making, since it facilitates the selection of appropriate processing methods, suggested by the data itself.In addition, a novel procedure to test for linearity and unit root in a nonlinear framework is proposed by introducing a new model – the MT-STAR model – which has similar properties of the ESTAR model but reduces the effects of the identification problem and can also account for asymmetry in the adjustment mechanism towards equilibrium. The asymptotic distributions of the proposed unit root test is non-standard and is derived.The power of the test is evaluated through a simulation study and some empirical illustrations on real exchange rates show its accuracy. Finally, the thesis defines a multivariate Self–Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and present an estimation procedure for the parameters. The modeling procedure for the MSETARX models and problems of estimation are briefly considered
Troughton, Paul Thomas. "Simulation methods for linear and nonlinear time series models with application to distorted audio signals." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624586.
Full textHan, Ngai Sze. "Goodness-of-fit test for non-linear time series model /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?MATH%202002%20HAN.
Full textIncludes bibliographical references (leaves 45-48). Also available in electronic version. Access restricted to campus users.
Zhou, Jia. "SMOOTH TRANSITION AUTOREGRESSIVE MODELS : A STUDY OF THE INDUSTRIAL PRODUCTION INDEX OF SWEDEN." Thesis, Uppsala University, Department of Statistics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-126752.
Full textIn this paper, we study the industrial production index of Sweden from Jan, 2000 to latest Feb, 2010. We find out there is a structural break at time point Dec, 2007, when the global financial crisis burst out first in U.S then spread to Europe. To model the industrial production index, one of the business cycle indicators which may behave nonlinear feature suggests utilizing a smooth transition autoregressive (STAR) model. Following the procedures given by Teräsvirta (1994), we carry out the linearity test against the STAR model, determine the delay parameter and choose between the LSTAR model and the ESTAR model. The results from the estimated model suggest the STAR model is better performing than the linear autoregressive model.
Belkhouja, Mustapha. "Modelling nonlinearities in long-memory time series : simulation and empirical studies." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX24010/document.
Full textThis dissertation deals with the detection and the estimation of structural changes in long memory economic and financial time series. Within the rest three chapters we focused on the univariate case to model both the long range dependence and structural changes in the mean and the volatility of the examined series. In the beginning we just take into account abrupt regime switches but after we use more developed nonlinear models in order to capture the smooth time variations of the dynamics. Otherwise we analyse the efficiency of various techniques permitting to select the number of breaks and we assess the robustness of the used tests in a long memory environment via simulations. Last, this thesis was completed by an extension to multivariate models. These models allow us to detect the impact of some series on the others and identify the relationships among them. The interdependencies between the financial variables were studied and analysed both in the short and the long range. While structural changes were not considered in the last chapter, our multivariate model takes into account asymmetry effects and the long memory behaviour in the volatility
Kilminster, Devin. "Modelling dynamical systems via behaviour criteria." University of Western Australia. Dept. of Mathematics and Statistics, 2002. http://theses.library.uwa.edu.au/adt-WU2003.0029.
Full textKatsiampa, Paraskevi. "Nonlinear exponential autoregressive time series models with conditional heteroskedastic errors with applications to economics and finance." Thesis, Loughborough University, 2015. https://dspace.lboro.ac.uk/2134/18432.
Full textLundbergh, Stefan. "Modelling economic high-frequency time series." Doctoral thesis, Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), 1999. http://urn.kb.se/resolve?urn=urn:nbn:se:hhs:diva-637.
Full textMohajer, Maryam. "Nonlinear time series analysis of electrical activity in a slice model of epilepsy." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ46205.pdf.
Full textVELLOSO, MARIA LUIZA FERNANDES. "TIME SERIES MODEL WITH NEURAL COEFFICIENTS FOR NONLINEAR PROCESSES IN MEAN AND VARIANCE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1999. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8103@1.
Full textEsta tese apresenta uma nova classe de modelos não lineares inspirada no modelo ARN, apresentado por Mellem, 1997. Os modelos definidos nesta classe são aditivos com coeficientes variáveis modelados por redes neurais e, tanto a média quanto a variância condicionais, são modeladas explicitamente. Neste trabalho podem ser identificadas quatro partes principais: um estudo sobre os modelos mais comuns encontrados na literatura de séries temporais; um estudo sobre redes neurais, focalizando a rede backpropagation; a definição do modelo proposto e os métodos utilizados na estimação dos parâmetros e o estudo de casos. Modelos aditivos têm sido escolha preferencial na modelagem não linear: paramétrica ou não paramétrica, de média ou de variância condicional. Além disso, tanto a idéia de modelos de coeficientes variáveis quanto a de modelos híbridos. que reúnem paradigmas diferentes, não é novidade. Por esta razão, foi traçado um panorama dos modelos não lineares mais encontrados na literatura de séries temporais, focalizando-se naqueles que tinham relacionamento mais estreito com a classe de modelos proposta neste trabalho. No estudo sobre redes neurais, além da apresentação de seus conceitos básicos, analisou- se a rede backpropagation, ponto de partida para a modelagem dos coeficientes variáveis. Esta escolha deveu- se à constatação da predominância e constância no uso desta rede, ou de suas variantes, nos estudos e aplicações em séries temporais. Demonstrou-se que os modelos propostos são aproximadores universais e podem ser utilizados para modelar a variância condicional de uma série temporal. Foram desenvolvidos algoritmos, a partir dos métodos de mínimos quadrados e de máxima verossimilhança, para a estimação dos pesos, através da adaptação do algoritmo de backpropagation à esta nova classe de modelos. Embora tenham sido sugeridos outros algoritmos de otimização, este mostrou-se suficientemente apropriado para os casos testados neste trabalho. O estudo de casos foi dividido em duas partes: testes com séries sintéticas e testes com séries reais. Estas últimas, normalmente, utilizadas como benchmarking por analistas de séries temporais não lineares. Para auxiliar na identificação das variáveis do modelo, foram utilizadas regressões de lag não paramétricas. Os resultados obtidos foram comparados com outras modelagens e foram superiores ou, no mínimo, equivalentes. Além disso, é mostrado que o modelo híbrido proposto engloba vários destes outros modelos.
A class of nonlinear additive varyng coefficient models is introduced in this thesis, inspired by ARN model, presented by Mellem, 1997. the coefficients are explicitly modelled. This work is divided in four major parts: a study of most common models in the time series literature; a study of neural networks, focused in backpropagation network; the presentation of the proposed models and the methods used for parameter estimation: and the case studies. Additive models has been the preferencial choice in nonlinear modelling: idea of varyng coefficient and of hybrid models, aren`t news. Hence, the models in the time series literature were analysed, assentialy those closely related with the class of models proposed in this work. Sinse the predominance and constancy in the use of backpropagation network, or its variants, in time series studies and applications, was confirmed by this work, this network was analyzed with more details. This work demonstrated that the proposed models are universal aproximators and could model explicity conditional variance. Moreover, gradient calculus and algorithms for the weight estimation were developed based on the main estimation methods: least mean squares and maximum likelihood. Even though other gradient calculus and otimization algorithms have been sugested, this one was sufficiently adequate for the studied cases. The case studies were divided in two parts: tests with synthetic series and for the nonlinear time series analysts. The obtained results were compared with other models and were superior or, at least, equivalent. Also, these results confirmed that the proposed hybrid model encompass several of the others models
Tonguc, Ozlem. "Wheat Price Dynamics In Turkey: A Nonlinear Analysis." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612357/index.pdf.
Full textSingleton, Michael David. "Nonlinear Hierarchical Models for Longitudinal Experimental Infection Studies." UKnowledge, 2015. http://uknowledge.uky.edu/epb_etds/7.
Full textJahan, Nusrat. "Applying goodness-of-fit techniques in testing time series Gaussianity and linearity." Diss., Mississippi State : Mississippi State University, 2006. http://sun.library.msstate.edu/ETD-db/ETD-browse/browse.
Full textDalderop, Jeroen Wilhelmus Paulus. "Essays on nonparametric estimation of asset pricing models." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/277966.
Full textLopez, Daneri Martin Eduardo. "Essays on income taxation and idiosyncratic risk." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/3342.
Full textKurskoy, Yu S., O. S. Hnatenko, Yu P. Machekhin, and M. V. Neofitnyy. "Topological Model of Laser Emission Parameters Research." Thesis, CAOL, 2019. http://openarchive.nure.ua/handle/document/15100.
Full textKhan, Shiraj. "Nonlinear dependence and extremes in hydrology and climate." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002142.
Full textRech, Gianluigi. "Modelling and forecasting economic time series with single hidden-layer feedforward autoregressive artificial neural networks." Doctoral thesis, Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:hhs:diva-591.
Full textDiss. Stockholm : Handelshögskolan, 2002. Spikblad saknas
Henter, Gustav Eje. "Probabilistic Sequence Models with Speech and Language Applications." Doctoral thesis, KTH, Kommunikationsteori, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134693.
Full textQC 20131128
ACORNS: Acquisition of Communication and Recognition Skills
LISTA – The Listening Talker
Smejkalová, Veronika. "Aproximace prostorově distribuovaných hierarchicky strukturovaných dat." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2018. http://www.nusl.cz/ntk/nusl-392841.
Full textAlegria, Elvis Omar Jara 1986. "Estimação On-Line de parâmetros dependentes do estado (State Dependent Parameter - SDP) em modelos de regressão não lineares." [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/258834.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-27T02:15:32Z (GMT). No. of bitstreams: 1 Alegria_ElvisOmarJara_M.pdf: 5581682 bytes, checksum: cd5b08b04c7ba4bcd505ab00e5335ffc (MD5) Previous issue date: 2015
Resumo: Este trabalho é sobre a identificação recursiva em tempo real das dependências parâmetro-estado em modelos de regressão de series temporais estocásticas. O descobrimento dessas dependências é útil para obter uma nova, e mais acurada, estrutura do modelo. Os métodos recursivos convencionais de estimação de parâmetros variantes no tempo, não conseguem bons resultados quando os modelos apresentam parâmetros dependentes do estado (SDP) pois eles tem comportamento altamente não linear e inclusive caótico. Nossa proposta está baseada no estudo de Peter Young para SDPs no caso Off-Line. É discutido o método que ele propõe para reduzir a entropia das séries nos modelos com SDP e para isto se apresenta umas transformações dos dados. São propostas mudanças no seu algoritmo Off-Line que o fazem mais rápido, eficiente e manejável para a implementação do modo On-Line. Finalmente, três exemplos numéricos são mostrados para validar as nossas propostas e a sua aplicação na área de detecção de falhas paramétricas. Todas as funções foram implementadas no MATLAB e conformam um toolbox para identificação de SDP em modelos de regressão
Abstract: This work is about the identification of the dependency among parameters and states in regression models of stochastic time series. The discovery of that dependency can be useful to obtain a more accurate model structure. Conventional recursive algorithms for estimation of Time Variable Parameters do not provide good results in models with state-dependent parameters (SDP) because these may have highly non-linear and even chaotic behavior. This work is based on Peter Young's studies about Off-Line SDP. Young's methods to data entropy reduction are discussed and some data transformations are proposed for this. Later, are proposed some changes on the Off-Line algorithm in order to improve its velocity, accuracy, and tractability to generate the On-Line version. Finally, three numeric examples to validate our proposal are shown. All the functions were implemented in MATLAB and conform a Toolbox to the SDP identification in regression models
Mestrado
Automação
Mestre em Engenharia Elétrica
Lima, Maria Mabel de Barros. "Modelação do interesse de vídeos de música medido pelo número de procuras na internet via Google Trends." Master's thesis, Instituto Superior de Economia e Gestão, 2014. http://hdl.handle.net/10400.5/7649.
Full textO mercado da música mundial continua a se expandir em novos mercados e criar novos negócios, atraindo cada vez mais usuários para os serviços de música sob o formato digital. A receita gerada pela indústria da música digital apresentou um crescimento de 4,3% de 2012 para 2013 (de US$ 5.6 bi para US$ 5.9 bi), já representa 39% da receita total gerada no mercado mundial. Para uma melhor compreensão da natureza do ciclo de vida do formato digital da música emergente, buscou-se estudar os vídeos de música da internet, dado a sua importância na indústria da música, por ser um dispositivo de marketing destinado, principalmente, a promover as vendas de gravações de música, por ser um importante contributo para a comercialização da música popular e dado a ausência de literatura de caráter qualitativo e quantitativo subjacente. Esta dissertação pretende propor um modelo capaz de descrever a dinâmica dos vídeos de música ao longo do tempo, ou seja, de como se dá o interesse coletivo por um determinado vídeo de música. A base empírica deste estudo consiste em séries temporais de vídeos de música (dados semanais) relacionando frequências de busca disponíveis a partir do Google Trends. Empiricamente avaliou-se o desempenho do modelo proposto, usando métodos de estimação não lineares de séries temporais. Os resultados obtidos permitem distinguir os vídeos de música de internet de curta duração de outros mais duradores.
The global music business continues to expand into new markets and create new business, attracting more and more users to digital format music services. The revenues generated by the digital music industry grew by 4.3% from 2012 to 2013 (US$ 5.6 billion to US$ 5.9 billion), already represents 39% of total revenues generated by the global music market. Internet music videos are a pervasive phenomenon on the Web, they typically consist in a short film made to advertise a popular song that spread through network. In order to contribute to a better understanding of the nature of the life cycle of internet music videos, given its importance in the music industry and in particular plausible models that would explain their temporal dynamics have not previously been reported. Our aim in this paper is thus to develop meaningful and interpretable model that describes the dynamics of music videos over time, i.e., how collective attention to internet music videos evolves over time, and how relate with their life cycle. The empirical basis of our study consists of time series of music videos relating frequencies available search from Google Trends. We conduct an empirical illustration to assess the performance of our model using nonlinear time series models. The results of the empirical illustration indicate to distinguish short and "long" life cycle's internet music videos.