Academic literature on the topic 'Nonlinear systems'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlinear systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nonlinear systems"

1

Knobloch, H. W. "Observability of nonlinear systems." Mathematica Bohemica 131, no. 4 (2006): 411–18. http://dx.doi.org/10.21136/mb.2006.133974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wei, Li, Anthony To-Ming Lau, Hongya Gao, and Zhongbo Fang. "Nonlinear Elliptic Systems and Nonlinear Parabolic Systems." Journal of Applied Mathematics 2014 (2014): 1–2. http://dx.doi.org/10.1155/2014/405123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zheng-Ling, Yang, Wang Wei-Wei, Yin Zhen-Xing, Zhang Jun, and Chen Xi. "Differential System's Nonlinear Behaviour of Real Nonlinear Dynamical Systems." Chinese Physics Letters 24, no. 5 (May 2007): 1170–72. http://dx.doi.org/10.1088/0256-307x/24/5/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brandon, John, and P. G. Drazin. "Nonlinear Systems." Mathematical Gazette 77, no. 480 (November 1993): 395. http://dx.doi.org/10.2307/3619812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mangel, Marc. "Nonlinear systems." Mathematical Biosciences 115, no. 1 (May 1993): 119–21. http://dx.doi.org/10.1016/0025-5564(93)90049-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Šeda, Valter. "On nonlinear differential systems with deviating arguments." Czechoslovak Mathematical Journal 36, no. 3 (1986): 450–66. http://dx.doi.org/10.21136/cmj.1986.102105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

K.C. Mishra, K. C. Mishra. "Inverse Homotopy Perturbation Method for Nonlinear systems." International Journal of Scientific Research 2, no. 4 (June 1, 2012): 61–64. http://dx.doi.org/10.15373/22778179/apr2013/86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de los Santos-Sánchez, O., and J. Récamier. "Nonlinear coherent states for nonlinear systems." Journal of Physics A: Mathematical and Theoretical 44, no. 14 (March 11, 2011): 145307. http://dx.doi.org/10.1088/1751-8113/44/14/145307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dower, Peter M., Huan Zhang, and Christopher M. Kellett. "Nonlinear -gain verification for nonlinear systems." Systems & Control Letters 61, no. 4 (April 2012): 563–72. http://dx.doi.org/10.1016/j.sysconle.2012.02.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Whitley, D. C., and Peter A. Cook. "Nonlinear Dynamical Systems." Mathematical Gazette 72, no. 459 (March 1988): 69. http://dx.doi.org/10.2307/3618016.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nonlinear systems"

1

Kozinsky, Inna Roukes Michael Lee Roukes Michael Lee. "Nonlinear nanoelectromechanical systems /." Diss., Pasadena, Calif. : California Institute of Technology, 2007. http://resolver.caltech.edu/CaltechETD:etd-03022007-142824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sun, Hongyan. "Coupled nonlinear dynamical systems." Morgantown, W. Va. : [West Virginia University Libraries], 2000. http://etd.wvu.edu/templates/showETD.cfm?recnum=1636.

Full text
Abstract:
Thesis (Ph. D.)--West Virginia University, 2000.
Title from document title page. Document formatted into pages; contains xi, 113 p. : ill. (some col.). Includes abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
3

Wei, Jianfeng. "Observation and Estimation of Nonlinear Systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=case1143611470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nersesov, Sergey G. "Nonlinear Impulsive and Hybrid Dynamical Systems." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7147.

Full text
Abstract:
Modern complex dynamical systems typically possess a multiechelon hierarchical hybrid structure characterized by continuous-time dynamics at the lower-level units and logical decision-making units at the higher-level of hierarchy. Hybrid dynamical systems involve an interacting countable collection of dynamical systems defined on subregions of the partitioned state space. Thus, in addition to traditional control systems, hybrid control systems involve supervising controllers which serve to coordinate the (sometimes competing) actions of the lower-level controllers. A subclass of hybrid dynamical systems are impulsive dynamical systems which consist of three elements, namely, a continuous-time differential equation, a difference equation, and a criterion for determining when the states of the system are to be reset. One of the main topics of this dissertation is the development of stability analysis and control design for impulsive dynamical systems. Specifically, we generalize Poincare's theorem to dynamical systems possessing left-continuous flows to address the stability of limit cycles and periodic orbits of left-continuous, hybrid, and impulsive dynamical systems. For nonlinear impulsive dynamical systems, we present partial stability results, that is, stability with respect to part of the system's state. Furthermore, we develop adaptive control framework for general class of impulsive systems as well as energy-based control framework for hybrid port-controlled Hamiltonian systems. Extensions of stability theory for impulsive dynamical systems with respect to the nonnegative orthant of the state space are also addressed in this dissertation. Furthermore, we design optimal output feedback controllers for set-point regulation of linear nonnegative dynamical systems. Another main topic that has been addressed in this research is the stability analysis of large-scale dynamical systems. Specifically, we extend the theory of vector Lyapunov functions by constructing a generalized comparison system whose vector field can be a function of the comparison system states as well as the nonlinear dynamical system states. Furthermore, we present a generalized convergence result which, in the case of a scalar comparison system, specializes to the classical Krasovskii-LaSalle invariant set theorem. Moreover, we develop vector dissipativity theory for large-scale dynamical systems based on vector storage functions and vector supply rates. Finally, using a large-scale dynamical systems perspective, we develop a system-theoretic foundation for thermodynamics. Specifically, using compartmental dynamical system energy flow models, we place the universal energy conservation, energy equipartition, temperature equipartition, and entropy nonconservation laws of thermodynamics on a system-theoretic basis.
APA, Harvard, Vancouver, ISO, and other styles
5

Enqvist, Martin. "Linear Models of Nonlinear Systems." Doctoral thesis, Linköping : Linköpings universitet, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5330.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mathew, Manu K. "Nonlinear system identification and prediction /." Online version of thesis, 1993. http://hdl.handle.net/1850/11594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chow, Po-Chuan. "Recursive nonlinear identification of Hammerstein-type systems." Case Western Reserve University School of Graduate Studies / OhioLINK, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=case1054758543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nevistić, Vesna. "Constrained control of nonlinear systems." Online version, 1997. http://bibpurl.oclc.org/web/26200.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Senalp, Erdem Turker. "Cascade Modeling Of Nonlinear Systems." Phd thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/3/12608578/index.pdf.

Full text
Abstract:
Modeling of nonlinear systems based on special Hammerstein forms has been considered. In Hammerstein system modeling a static nonlinearity is connected to a dynamic linearity in cascade form. Fundamental contributions of this work are: 1) Introduction of Bezier curve nonlinearity representations
2) Introduction of B-Spline curve nonlinearity representations instead of polynomials in cascade modeling. As a result, local control in nonlinear system modeling is achieved. Thus, unexpected variations of the output can be modeled more closely. As an important demonstration case, a model is developed and named as Middle East Technical University Neural Networks and Cascade Model (METU-NN-C). Application examples are chosen by considering the Near-Earth space processes, which are important for navigation, telecommunication and many other technical applications. It is demonstrated that the models developed based on the contributions of this work are especially more accurate under disturbed conditions, which are quantified by considering Space Weather parameters. Examples include forecasting of Total Electron Content (TEC), and mapping
estimation of joint angle of simple forced pendulum
estimation of joint angles of spring loaded inverted double pendulum with forced table
identification of Van der Pol oscillator
and identification of speakers. The operation performance results of the International Reference Ionosphere (IRI-2001), METU Neural Networks (METU-NN) and METU-NN-C models are compared qualitatively and quantitatively. As a numerical example, in forecasting the TEC by using the METU-NN-C having Bezier curves in nonlinearity representation, the average absolute error is 1.11 TECu. The new cascade models are shown to be promising for system designers and operators.
APA, Harvard, Vancouver, ISO, and other styles
10

Tsukamoto, Naofumi. "Phase dynamics in nonlinear systems." 京都大学 (Kyoto University), 2008. http://hdl.handle.net/2433/136010.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Nonlinear systems"

1

Fossard, A. J., and D. Normand-Cyrot, eds. Nonlinear Systems. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1193-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fossard, A. J., and D. Normand-Cyrot, eds. Nonlinear Systems. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-2047-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sastry, Shankar. Nonlinear Systems. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4757-3108-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fossard, A. J., and D. Normand-Cyrot, eds. Nonlinear Systems. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6395-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

van de Wouw, Nathan, Erjen Lefeber, and Ines Lopez Arteaga, eds. Nonlinear Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-30357-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khalil, Hassan K. Nonlinear systems. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

J, Fossard A., and Normand-Cyrot D, eds. Nonlinear systems. London: Chapman & Hall, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Drazin, P. G. Nonlinear systems. Cambridge [England]: Cambridge University Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Drazin, P. G. Nonlinear systems. Cambridge: Cambridge University Press, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Khalil, Hassan K. Nonlinear systems. New York: Macmillan Pub. Co., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nonlinear systems"

1

Shaikhet, Leonid. "Nonlinear Systems." In Lyapunov Functionals and Stability of Stochastic Difference Equations, 127–90. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-685-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fletcher, Neville H., and Thomas D. Rossing. "Nonlinear Systems." In The Physics of Musical Instruments, 125–35. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-2980-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Scherer, Philipp O. J. "Nonlinear Systems." In Graduate Texts in Physics, 493–516. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61088-7_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Logan, J. David. "Nonlinear Systems." In Undergraduate Texts in Mathematics, 299–330. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7592-8_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pommaret, J. F. "Nonlinear Systems." In Partial Differential Equations and Group Theory, 81–137. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-2539-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bucher, C. G., and G. I. Schuëller. "Nonlinear Systems." In Structural Dynamics, 146–213. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-88298-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rossing, Thomas D., and Neville H. Fletcher. "Nonlinear Systems." In Principles of Vibration and Sound, 125–35. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-3822-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Scherer, Philipp O. J. "Nonlinear Systems." In Computational Physics, 253–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13990-1_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Trangenstein, John A. "Nonlinear Systems." In Texts in Computational Science and Engineering, 307–432. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69107-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nguyen, Nhan T. "Nonlinear Systems." In Model-Reference Adaptive Control, 17–30. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-56393-0_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nonlinear systems"

1

Kono, Shunsuke, Hideki Watanabe, Rintaro Koda, Takao Miyajima, and Masaru Kuramoto. "Blue femtosecond laser diode systems." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nm3b.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chang, Wonkeun, Adrian Ankiewicz, Nail Akhmediev, and J. M. Soto-Crespo. "Self-propelled Solitons in Dissipative Systems." In Nonlinear Photonics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/np.2007.ntha4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Devine, N., A. Ankiewicz, N. Akhmediev, and J. M. Soto-Crespo. "Solitons and Antisolitons in Dissipative Systems." In Nonlinear Photonics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/np.2007.nthb4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Brunton, Steven L., J. Nathan Kutz, Xing Fu, and Mikala Johnson. "Data Driven Control of Complex Optical Systems." In Nonlinear Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/nlo.2015.nw4a.41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kutz, J. Nathan, and Steven L. Brunton. "Machine learning for self-tuning optical systems." In Nonlinear Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/nlo.2019.nth1a.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Christian, J. M., G. S. McDonald, and J. G. Huang. "Kaleidoscope Lasers - Complexity in Simple Optical Systems." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nme39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

García-Ramírez, E. V., S. Almaguer-Valenzuela, O. Sánchez-Dena, O. Baldovino-Pantaleón, and J. A. Reyes-Esqueda. "Nonlinear Optical Properties of Au Colloidal Nanorod Systems." In Nonlinear Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/nlo.2015.nw4a.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sukhorukov, Andrey A., N. Marsal, A. Minovich, D. Wolfersberger, M. Sciamanna, G. Montemezzani, D. N. Neshev, and Yu S. Kivshar. "Control of modulational instability in periodic feedback systems." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nmd7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

"Content List." In Nonlinear Control Systems, edited by Tarbouriech, Sophie, Chair Prieur, Christophe and Queinnec, Isabelle. Elsevier, IFAC, 2013. http://dx.doi.org/10.3182/20130904-3-fr-2041.90001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Christian, J. M., G. S. McDonald, J. T. Ashley, and P. Chamorro-Posada. "Spatiotemporal Vector Solitons in Dispersive Systems with Kerr Nonlinearity." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nw4a.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Nonlinear systems"

1

Dr. Katja Lindenberg. Noisy Nonlinear Systems. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/881047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Byrnes, Christopher I., and Alberto Isidori. Nonlinear Control Systems. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada567983.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Byrnes, Christopher I., and Alberto Isidori. Nonlinear Control Systems. Fort Belvoir, VA: Defense Technical Information Center, June 2004. http://dx.doi.org/10.21236/ada424276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Byrnes, Christopher I., and Alberto Isidori. Nonlinear Control Systems. Fort Belvoir, VA: Defense Technical Information Center, March 2007. http://dx.doi.org/10.21236/ada471765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Holmes, Phillip. Research in Nonlinear Systems. Fort Belvoir, VA: Defense Technical Information Center, August 1995. http://dx.doi.org/10.21236/ada311112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sontag, Edwardo. Control of Nonlinear Systems. Fort Belvoir, VA: Defense Technical Information Center, September 1993. http://dx.doi.org/10.21236/ada270141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sontag, Eduardo D. Control of Nonlinear Systems. Fort Belvoir, VA: Defense Technical Information Center, March 2004. http://dx.doi.org/10.21236/ada424799.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sontag, Eduardo D. Control of Nonlinear Systems. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada387250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mickens, Ronald E. Nonlinear, Singular Oscillatory Systems. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada244724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abed, E. H., J. H. Fu, H. C. Lee, and D. C. Liaw. Bifurcation Control of Nonlinear Systems. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada444561.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography