Academic literature on the topic 'Nonlinear periodic systems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlinear periodic systems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nonlinear periodic systems"
Gasiński, Leszek, and Nikolaos S. Papageorgiou. "Nonlinear Multivalued Periodic Systems." Journal of Dynamical and Control Systems 25, no. 2 (June 14, 2018): 219–43. http://dx.doi.org/10.1007/s10883-018-9408-9.
Full textVerriest, Erik I. "Balancing for Discrete Periodic Nonlinear Systems." IFAC Proceedings Volumes 34, no. 12 (August 2001): 249–54. http://dx.doi.org/10.1016/s1474-6670(17)34093-4.
Full textLuo, Albert C. J. "Periodic Flows to Chaos Based on Discrete Implicit Mappings of Continuous Nonlinear Systems." International Journal of Bifurcation and Chaos 25, no. 03 (March 2015): 1550044. http://dx.doi.org/10.1142/s0218127415500443.
Full textCan, Le Xuan. "On periodic waves of the nonlinear systems." Vietnam Journal of Mechanics 20, no. 4 (December 30, 1998): 11–19. http://dx.doi.org/10.15625/0866-7136/10037.
Full textSundararajan, P., and S. T. Noah. "Dynamics of Forced Nonlinear Systems Using Shooting/Arc-Length Continuation Method—Application to Rotor Systems." Journal of Vibration and Acoustics 119, no. 1 (January 1, 1997): 9–20. http://dx.doi.org/10.1115/1.2889694.
Full textOrtega, Juan-Pablo. "Relative normal modes for nonlinear Hamiltonian systems." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 133, no. 3 (June 2003): 665–704. http://dx.doi.org/10.1017/s0308210500002602.
Full textGrigoraş, Victor, and Carmen Grigoraş. "Connecting Analog and Discrete Nonlinear Systems for Noise Generation." Bulletin of the Polytechnic Institute of Iași. Electrical Engineering, Power Engineering, Electronics Section 68, no. 1 (March 1, 2022): 81–90. http://dx.doi.org/10.2478/bipie-2022-0005.
Full textAbbas, Saïd, Mouffak Benchohra, Soufyane Bouriah, and Juan J. Nieto. "Periodic solutions for nonlinear fractional differential systems." Differential Equations & Applications, no. 3 (2018): 299–316. http://dx.doi.org/10.7153/dea-2018-10-21.
Full textKamenskii, Mikhail, Oleg Makarenkov, and Paolo Nistri. "Small parameter perturbations of nonlinear periodic systems." Nonlinearity 17, no. 1 (October 17, 2003): 193–205. http://dx.doi.org/10.1088/0951-7715/17/1/012.
Full textGhadimi, M., A. Barari, H. D. Kaliji, and G. Domairry. "Periodic solutions for highly nonlinear oscillation systems." Archives of Civil and Mechanical Engineering 12, no. 3 (September 2012): 389–95. http://dx.doi.org/10.1016/j.acme.2012.06.014.
Full textDissertations / Theses on the topic "Nonlinear periodic systems"
Tang, Xiafei. "Periodic disturbance rejection of nonlinear systems." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/periodic-disturbance-rejection-of-nonlinear-systems(0bddefd9-2750-47fd-8c92-c90a01b8e1ef).html.
Full textAbd-Elrady, Emad. "Nonlinear Approaches to Periodic Signal Modeling." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4644.
Full textGroves, James O. "Small signal analysis of nonlinear systems with periodic operating trajectories." Diss., This resource online, 1995. http://scholar.lib.vt.edu/theses/available/etd-06062008-162614/.
Full textZhang, Zhen. "Adaptive robust periodic output regulation." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187118803.
Full textKhames, Imene. "Nonlinear network wave equations : periodic solutions and graph characterizations." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMIR04/document.
Full textIn this thesis, we study the discrete nonlinear wave equations in arbitrary finite networks. This is a general model, where the usual continuum Laplacian is replaced by the graph Laplacian. We consider such a wave equation with a cubic on-site nonlinearity which is the discrete φ4 model, describing a mechanical network of coupled nonlinear oscillators or an electrical network where the components are diodes or Josephson junctions. The linear graph wave equation is well understood in terms of normal modes, these are periodic solutions associated to the eigenvectors of the graph Laplacian. Our first goal is to investigate the continuation of normal modes in the nonlinear regime and the modes coupling in the presence of nonlinearity. By inspecting the normal modes of the graph Laplacian, we identify which ones can be extended into nonlinear periodic orbits. They are normal modes whose Laplacian eigenvectors are composed uniquely of {1}, {-1,+1} or {-1,0,+1}. We perform a systematic linear stability (Floquet) analysis of these orbits and show the modes coupling when the orbit is unstable. Then, we characterize all graphs for which there are eigenvectors of the graph Laplacian having all their components in {-1,+1} or {-1,0,+1}, using graph spectral theory. In the second part, we investigate periodic solutions that are spatially localized. Assuming a large amplitude localized initial condition on one node of the graph, we approximate its evolution by the Duffing equation. The rest of the network satisfies a linear system forced by the excited node. This approximation is validated by reducing the discrete φ4 equation to the graph nonlinear Schrödinger equation and by Fourier analysis. The results of this thesis relate nonlinear dynamics to graph spectral theory
Warkomski, Edward Joseph 1958. "Nonlinear structures subject to periodic and random vibration with applications to optical systems." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277811.
Full textZhang, Xiaohong. "Optimal feedback control for nonlinear discrete systems and applications to optimal control of nonlinear periodic ordinary differential equations." Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/40185.
Full textMyers, Owen Dale. "Spatiotemporally Periodic Driven System with Long-Range Interactions." ScholarWorks @ UVM, 2015. http://scholarworks.uvm.edu/graddis/524.
Full textHayward, Peter J. "On the computation of periodic responses for nonlinear dynamic systems with multi-harmonic forcing." Thesis, University of Sussex, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429733.
Full textRoyston, Thomas James. "Computational and Experimental Analyses of Passive and Active, Nonlinear Vibration Mounting Systems Under Periodic Excitation /." The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487928649987553.
Full textBooks on the topic "Nonlinear periodic systems"
Reithmeier, Eduard. Periodic Solutions of Nonlinear Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0094521.
Full textChulaevskiĭ, V. A. Almost periodic operators and related nonlinear integrable systems. Manchester, UK: Manchester University Press, 1989.
Find full textAmbrosetti, A. Periodic solutions of singular Lagrangian systems. Boston: Birkhäuser, 1993.
Find full textauthor, Bolle Philippe, ed. Quasi-periodic solutions of nonlinear wave equations in the D-dimensional torus. Berlin: European Mathematical Society, 2020.
Find full textReithmeier, Eduard. Periodic solutions of nonlinear dynamical systems: Numerical computation, stability, bifurcation, and transition to chaos. Berlin: Springer-Verlag, 1991.
Find full textP, Walker K., and United States. National Aeronautics and Space Administration., eds. Nonlinear mesomechanics of composites with periodic microstructure: Final report on NASA NAG3-882. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Find full textFiedler, Bernold. Global bifurcation of periodic solutions with symmetry. Berlin: Springer-Verlag, 1988.
Find full textLuo, Albert C. J. Periodic Flows to Chaos in Time-delay Systems. Springer, 2016.
Find full textChulaevsky, V. A. Almost Periodic Operators and Related Nonlinear Integrable Systems (Nonlinear Science: Theory & Application). John Wiley & Sons, 1992.
Find full textCoti-Zelati, V., and A. Ambrosetti. Periodic Solutions of Singular Lagrangian Systems. Birkhauser Verlag, 2012.
Find full textBook chapters on the topic "Nonlinear periodic systems"
Toda, Morikazu. "Periodic Systems." In Theory of Nonlinear Lattices, 98–146. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83219-2_4.
Full textLuo, Albert C. J. "Periodic Flows in Continuous Systems." In Nonlinear Physical Science, 199–279. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47275-0_5.
Full textSzemplińska-Stupnicka, Wanda. "Secondary Resonances (Periodic and Almost-Periodic)." In The Behavior of Nonlinear Vibrating Systems, 171–245. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1870-2_7.
Full textAkhmet, Marat. "Discontinuous Almost Periodic Functions." In Nonlinear Systems and Complexity, 69–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20572-0_3.
Full textAkhmet, Marat. "Discontinuous Almost Periodic Solutions." In Nonlinear Systems and Complexity, 85–101. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20572-0_4.
Full textAnishchenko, Vadim S., Tatyana E. Vadivasova, and Galina I. Strelkova. "Synchronization of Periodic Self-Sustained Oscillations." In Deterministic Nonlinear Systems, 217–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06871-8_13.
Full textBelyakov, Vladimir Alekseevich. "Nonlinear Optics of Periodic Media." In Partially Ordered Systems, 188–214. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4396-0_6.
Full textAkhmet, Marat. "Periodic Solutions of Nonlinear Systems." In Principles of Discontinuous Dynamical Systems, 99–111. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6581-3_7.
Full textLuo, Albert C. J. "Periodic Flows in Time-delay Systems." In Nonlinear Systems and Complexity, 221–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42778-2_4.
Full textLuo, Albert C. J. "Periodic Flows in Time-Delay Systems." In Nonlinear Systems and Complexity, 81–113. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42664-8_3.
Full textConference papers on the topic "Nonlinear periodic systems"
Sukhorukov, Andrey A., N. Marsal, A. Minovich, D. Wolfersberger, M. Sciamanna, G. Montemezzani, D. N. Neshev, and Yu S. Kivshar. "Control of modulational instability in periodic feedback systems." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nmd7.
Full textShermeneva, Maria. "Nonlinear periodic waves on a slope." In Modeling complex systems. AIP, 2001. http://dx.doi.org/10.1063/1.1386843.
Full textVakakis, Alexander. "Nonlinear Periodic Systems: Bands and Localization." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-87315.
Full textVladimirov, A. G., E. B. Pelyukhova, and E. E. Fradkin. "Periodic and Chaotic Operations of a Laser with a Saturable Absorber." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.oc527.
Full textMandel, Paul, N. P. Pettiaux, Wang Kaige, P. Galatola, and L. A. Lugiato. "Generic Properties of Periodic Attractors in Two-Photon Processes." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.ob257.
Full textWinful, Herbert G., Shawe-Shiuan Wang, and Richard K. DeFreez. "Periodic and Chaotic Beam Scanning in Semiconductor Laser Arrays." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.pdp4.
Full textWinful, Herbert G., Shawe-Shiuan Wang, and Richard K. DcFreez. "Spontaneous Periodic and Chaotic Beam Scanning in Semiconductor Laser Arrays." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/nldos.1990.sdslad119.
Full textDe Jagher, P. C., and D. Lenstra. "The modulated semiconductor laser: a Hamiltonian search for its periodic attractors." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.tha5.
Full textPettiaux, Nicolas, and Thomas Erneux. "From harmonic to pulsating periodic solutions in intracavity second harmonic generation." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.mc25.
Full textRoyston, Thomas J., and Rajendra Singh. "Periodic Response of Nonlinear Engine Mounting Systems." In SAE Noise and Vibration Conference and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951297.
Full textReports on the topic "Nonlinear periodic systems"
Mirus, Kevin A. Control of nonlinear systems using periodic parametric perturbations with application to a reversed field pinch. Office of Scientific and Technical Information (OSTI), January 1998. http://dx.doi.org/10.2172/656820.
Full textSoloviev, Vladimir, and Andrey Belinskij. Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. [б. в.], 2018. http://dx.doi.org/10.31812/123456789/2851.
Full textMoon, Francis C. Nonlinear dynamics of fluid-structure systems. Final technical report for period January 5, 1991 - December 31, 1997. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/756804.
Full textBielinskyi, Andrii O., Oleksandr A. Serdyuk, Сергій Олексійович Семеріков, Володимир Миколайович Соловйов, Андрій Іванович Білінський, and О. А. Сердюк. Econophysics of cryptocurrency crashes: a systematic review. Криворізький державний педагогічний університет, December 2021. http://dx.doi.org/10.31812/123456789/6974.
Full textWu, Yingjie, Selim Gunay, and Khalid Mosalam. Hybrid Simulations for the Seismic Evaluation of Resilient Highway Bridge Systems. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/ytgv8834.
Full text