Journal articles on the topic 'Nonlinear optics'

To see the other types of publications on this topic, follow the link: Nonlinear optics.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nonlinear optics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fabelinskii, Immanuil L. "Nonlinear optics." Uspekhi Fizicheskih Nauk 154, no. 4 (1988): 703. http://dx.doi.org/10.3367/ufnr.0154.198804g.0703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

YAJIMA, TATSUO. "Nonlinear optics." Review of Laser Engineering 21, no. 1 (1993): 133–35. http://dx.doi.org/10.2184/lsj.21.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

KOBAYASHI, TAKAYOSHI. "Nonlinear Optics." Sen'i Gakkaishi 45, no. 2 (1989): P68—P76. http://dx.doi.org/10.2115/fiber.45.p68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fleischer, Jason W., Dragomir N. Neshev, Guy Bartal, Tristram J. Alexander, Oren Cohen, Elena A. Ostrovskaya, Ofer Manela, et al. "Nonlinear Optics." Optics and Photonics News 15, no. 12 (December 1, 2004): 30. http://dx.doi.org/10.1364/opn.15.12.000030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baluq, Mihaela, Joel Hales, David J. Hagan, Eric W. Van Stryland, Michael I. Bakunov, Alexey V. Maslov, Sergey B. Bodrov, et al. "Nonlinear Optics." Optics and Photonics News 16, no. 12 (December 1, 2005): 28. http://dx.doi.org/10.1364/opn.16.12.000028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fabelinskiĭ, Immanuil L. "Nonlinear optics." Soviet Physics Uspekhi 31, no. 4 (April 30, 1988): 380–81. http://dx.doi.org/10.1070/pu1988v031n04abeh005758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Moloney, Jerome V., and Alan C. Newell. "Nonlinear optics." Physica D: Nonlinear Phenomena 44, no. 1-2 (August 1990): 1–37. http://dx.doi.org/10.1016/0167-2789(90)90045-q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ferguson, A. I. "Nonlinear Optics." Journal of Modern Optics 39, no. 11 (November 1992): 2375. http://dx.doi.org/10.1080/09500349214552381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Firth, W. J. "Nonlinear Optics." Journal of Modern Optics 40, no. 5 (May 1993): 967–68. http://dx.doi.org/10.1080/09500349314551011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sauter, E. G., and Christos Flytzanis. "Nonlinear Optics." Physics Today 51, no. 1 (January 1998): 64–65. http://dx.doi.org/10.1063/1.882109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Vysloukh, V. A. "Nonlinear fiber optics." Uspekhi Fizicheskih Nauk 160, no. 5 (1990): 151. http://dx.doi.org/10.3367/ufnr.0160.199005k.0151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Soskin, M. S., and M. V. Vasnetsov. "Nonlinear singular optics." Pure and Applied Optics: Journal of the European Optical Society Part A 7, no. 2 (March 1998): 301–11. http://dx.doi.org/10.1088/0963-9659/7/2/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Anderson, Brian P., and Pierre Meystre. "Nonlinear atom optics." Contemporary Physics 44, no. 6 (November 2003): 473–83. http://dx.doi.org/10.1080/00107510310001608863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

de Michel, Marc, and Dan Ostrowsky. "Nonlinear integrated optics." Physics World 3, no. 3 (March 1990): 56–62. http://dx.doi.org/10.1088/2058-7058/3/3/28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bruno, E. Schmidt, Philippe Lassonde, Guilmot Ernotte, Matteo Clerici, Roberto Morandotti, Heide Ibrahim, and François Légaré. "Linearizing Nonlinear Optics." EPJ Web of Conferences 205 (2019): 01007. http://dx.doi.org/10.1051/epjconf/201920501007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Fourier nonlinear optics merges the simplicity of linear optics with the power of nonlinear optics to achieve a decoupling of frequencies, amplitudes and phases in nonlinear processes - enabling first deep UV shaping at 207nm.
16

Anderson, Brian P., and Pierre Meystre. "Nonlinear Atom Optics." Optics and Photonics News 13, no. 6 (June 1, 2002): 20. http://dx.doi.org/10.1364/opn.13.6.000020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Vysloukh, Victor A. "Nonlinear fiber optics." Soviet Physics Uspekhi 33, no. 5 (May 31, 1990): 400. http://dx.doi.org/10.1070/pu1990v033n05abeh002596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lenz, G., P. Meystre, and E. M. Wright. "Nonlinear atom optics." Physical Review Letters 71, no. 20 (November 15, 1993): 3271–74. http://dx.doi.org/10.1103/physrevlett.71.3271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Rasing, Th. "Nonlinear magneto-optics." Journal of Magnetism and Magnetic Materials 175, no. 1-2 (November 1997): 35–50. http://dx.doi.org/10.1016/s0304-8853(97)00175-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Stegeman, George I., and Colin T. Seaton. "Nonlinear integrated optics." Journal of Applied Physics 58, no. 12 (December 15, 1985): R57—R78. http://dx.doi.org/10.1063/1.336205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dalton, B. J. "Modern Nonlinear Optics." Journal of Modern Optics 41, no. 8 (August 1994): 1678. http://dx.doi.org/10.1080/09500349414552531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dianov, Evgenii M., P. V. Mamyshev, and A. M. Prokhorov. "Nonlinear fiber optics." Soviet Journal of Quantum Electronics 18, no. 1 (January 31, 1988): 1–15. http://dx.doi.org/10.1070/qe1988v018n01abeh010192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kreher, K. "Modern Nonlinear Optics." Zeitschrift für Physikalische Chemie 213, Part_1 (January 1999): 109–10. http://dx.doi.org/10.1524/zpch.1999.213.part_1.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Feinberg, Jack. "Photorefractive Nonlinear Optics." Physics Today 41, no. 10 (October 1988): 46–52. http://dx.doi.org/10.1063/1.881157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Chin, S. L., F. Théberge, and W. Liu. "Filamentation nonlinear optics." Applied Physics B 86, no. 3 (September 29, 2006): 477–83. http://dx.doi.org/10.1007/s00340-006-2455-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Manzoni, Cristian, and Giulio Cerullo. "Parametric nonlinear optics." Photoniques, no. 122 (2023): 46–51. http://dx.doi.org/10.1051/photon/202312246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Many scientific and technological applications require the generation of broadly tunable femtosecond light pulses. Optical parametric amplifiers (OPAs) exploit second-order nonlinear interactions to convert a high-power fixed wavelength pulse (the pump) into a tunable pulse (the signal). This paper reviews the principles of OPAs and highlights their capability to generate few-optical-cycle pulses with high energy and carrier-envelope-phase stability.
27

Meredith, Gerald R. "Organic Materials for Nonlinear Optics." MRS Bulletin 13, no. 8 (August 1988): 24–29. http://dx.doi.org/10.1557/s0883769400064642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
were very exciting but speculative, being technologically feasible only if new classes of materials could be developed The subject of materials in nonlinear optics (NLO) encompasses a wide range of important topics. Today the line between materials and NLO processes has become fuzzy, particularly for newer NLO processes (e.g. photorefrac-tion, and optical bistability, logic and computing). For more established NLO processes (e.g., harmonic generation, parametric processes, linear electro-optic effect, etc.) the subjects are well studied and the importance of various materials properties on the NLO process are known, though these properties are not necessarily predictable, controllable, or optimized in current materials.A decade ago, having been introduced to NLO phenomena through postdoctoral research, I had an opportunity to define and pursue an NLO research program at Xerox's Webster Research Center. The question was posed: “Are new materials needed for NLO applications?” The answer must start with another question: “Which NLO process … with light of what wavelength, pulse duration, and power… and for what purpose?”It was clear that important limitations to many of the novel things one might do with optics were: insufficient nonlin-earity magnitude, inability to fabricate reliable device structures, occurrence of deleterious optical properties, and restrictions due to other material properties. The newer NLO phenomena. Use of older NLO processes in new technological applications seemed a more down-to-earth quest.
28

Downer, M. C. "OPTICS: A New Low for Nonlinear Optics." Science 298, no. 5592 (October 11, 2002): 373–75. http://dx.doi.org/10.1126/science.1078098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Elston, Steve J. "Optics and Nonlinear Optics of Liquid Crystals." Journal of Modern Optics 41, no. 7 (July 1994): 1517–18. http://dx.doi.org/10.1080/09500349414551451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Ackemann, Thorsten, Cornelia Denz, and Fedor Mitschke. "Dynamics in Nonlinear Optics and Quantum Optics." Applied Physics B 81, no. 7 (November 2005): 881–82. http://dx.doi.org/10.1007/s00340-005-2067-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

SHAN, JIE, AJAY NAHATA, and TONY F. HEINZ. "TERAHERTZ TIME-DOMAIN SPECTROSCOPY BASED ON NONLINEAR OPTICS." Journal of Nonlinear Optical Physics & Materials 11, no. 01 (March 2002): 31–48. http://dx.doi.org/10.1142/s0218863502000845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We present a brief review of the use of nonlinear optics for broadband terahertz (THz) time-domain spectroscopy with femtosecond laser pulses. The generation of THz pulses is accomplished by optical rectification and coherent detection by electro-optic sampling or field-induced second-harmonic generation. The approach permits exceptional time response, as well as the possibility for multichannel detection schemes.
32

Liu, Chao, Xiao Han, Rongchao Shi, Siming Qi, Songhua Chen, Liang Xu, and Jialiang Xu. "Nonlinear optics of graphdiyne." Materials Chemistry Frontiers 5, no. 17 (2021): 6413–28. http://dx.doi.org/10.1039/d1qm00834j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Graphdiyne features a high π-conjugation degree and an intrinsic natural bandgap, which guarantee a large optical refractive index and broadband absorption, and thus promises a wide range of application prospects in nonlinear optics.
33

Kuzyk, Mark G. "Nonlinear Optics: Fundamental Limits of Nonlinear Susceptibilities." Optics and Photonics News 14, no. 12 (December 1, 2003): 26. http://dx.doi.org/10.1364/opn.14.12.000026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Konorov, S. O. "Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers." Optics and Spectroscopy 99, no. 1 (2005): 131. http://dx.doi.org/10.1134/1.1999905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Jordan, C., G. Marowsky, R. Buhleier, G. Lüpke, E. J. Canto-Said, Z. Gogolak, and J. Kuhl. "Silicon Surface Nonlinear Optics." Materials Science Forum 173-174 (September 1994): 153–58. http://dx.doi.org/10.4028/www.scientific.net/msf.173-174.153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Litchinitser, Natalia M. "Nonlinear optics in metamaterials." Advances in Physics: X 3, no. 1 (January 2018): 1367628. http://dx.doi.org/10.1080/23746149.2017.1367628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hübner, Wolfgang. "Magneto-optics goes nonlinear." Physics World 8, no. 10 (October 1995): 21–22. http://dx.doi.org/10.1088/2058-7058/8/10/23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Boyd, Robert W., and Barry R. Masters. "Nonlinear Optics, Third Edition." Journal of Biomedical Optics 14, no. 2 (2009): 029902. http://dx.doi.org/10.1117/1.3115345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ansari, Nadeem A., Colin Pask, and David R. Rowland. "Momentum in nonlinear optics." Journal of Modern Optics 47, no. 6 (May 2000): 993–1011. http://dx.doi.org/10.1080/09500340008233401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

A. Ansari, Colin Pask, David R. Row, Nadeem. "Momentum in nonlinear optics." Journal of Modern Optics 47, no. 6 (May 15, 2000): 993–1011. http://dx.doi.org/10.1080/095003400147629.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gavrilenko, Vladimir I., Tatiana V. Murzina, and Goro Mizutani. "Nonlinear Optics of Nanostructures." Physics Research International 2012 (December 9, 2012): 1–2. http://dx.doi.org/10.1155/2012/648758.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hau, Lene Vestergaard. "Nonlinear optics: Shocking superfluids." Nature Physics 3, no. 1 (January 2007): 13–14. http://dx.doi.org/10.1038/nphys498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sutherland, Richard L. "Handbook of Nonlinear Optics." Optical Engineering 36, no. 3 (March 1, 1997): 964. http://dx.doi.org/10.1117/1.601248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Ghamsari, Behnood G., and Pierre Berini. "Nonlinear optics rules magnetism." Nature Photonics 10, no. 2 (January 29, 2016): 74–75. http://dx.doi.org/10.1038/nphoton.2015.272.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Donnat, Phillipe, and Jeffrey Rauch. "Dispersive nonlinear geometric optics." Journal of Mathematical Physics 38, no. 3 (March 1997): 1484–523. http://dx.doi.org/10.1063/1.531905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sorokin, P. P., and J. H. Glownia. "Nonlinear optics in space." Canadian Journal of Physics 78, no. 5-6 (April 5, 2000): 461–81. http://dx.doi.org/10.1139/p00-016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
A detailed model for nonlinear photoexcitation of H2 in space is proposed and considered at length. It is shown that, on the basis of this model, one is able to provide at least partial explanations for three famous astrophysical spectral mysteries pertaining to our galaxy. These concern the carrier identities of the Diffuse Interstellar (Absorption) Bands (DIBs), the Unidentified Infrared (Emission) Bands (UIBs), and the visible bands emitted by the Red Rectangle nebula.PACS Nos.: 95.30Gv, 33.70-w
47

Kennedy, Brian. "Nonlinear optics made clear." Physics World 5, no. 5 (May 1992): 47–48. http://dx.doi.org/10.1088/2058-7058/5/5/32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Meyer‐Arendt, Jurgen R. "Nonlinear Optics: Basic Concepts." American Journal of Physics 60, no. 7 (July 1992): 669. http://dx.doi.org/10.1119/1.17097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Landsberg, P. T. "Physics of Nonlinear Optics." Progress in Quantum Electronics 25, no. 4 (January 2001): 192. http://dx.doi.org/10.1016/s0079-6727(01)00010-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

MILLS, D. "Nonlinear optics, basic concepts." Annales de Chimie Science des Mat�riaux 24, no. 4-5 (1999): 402. http://dx.doi.org/10.1016/s0151-9107(99)80081-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography