Academic literature on the topic 'Nonlinear field equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlinear field equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nonlinear field equations"
Tan, Jinggang, Ying Wang, and Jianfu Yang. "Nonlinear fractional field equations." Nonlinear Analysis: Theory, Methods & Applications 75, no. 4 (March 2012): 2098–110. http://dx.doi.org/10.1016/j.na.2011.10.010.
Full textFairlie, David B. "Interconnections among nonlinear field equations." Journal of Physics A: Mathematical and Theoretical 53, no. 10 (February 20, 2020): 104001. http://dx.doi.org/10.1088/1751-8121/ab6f17.
Full textRego-Monteiro, M. A., and F. D. Nobre. "Nonlinear quantum equations: Classical field theory." Journal of Mathematical Physics 54, no. 10 (October 2013): 103302. http://dx.doi.org/10.1063/1.4824129.
Full textTanaka, Yosuke, Takefumi Shudo, Tetsutaro Yosinaga, and Hiroshi Kimura. "Relativistic field equations and nonlinear dynamics." Chaos, Solitons & Fractals 37, no. 4 (August 2008): 941–49. http://dx.doi.org/10.1016/j.chaos.2008.01.004.
Full textBurt, P. B. "Nonperturbative solution of nonlinear field equations." Il Nuovo Cimento B 100, no. 1 (July 1987): 43–52. http://dx.doi.org/10.1007/bf02829775.
Full textWells, R. O. "Nonlinear field equations and twistor theory." Mathematical Intelligencer 7, no. 2 (June 1985): 26–32. http://dx.doi.org/10.1007/bf03024171.
Full textBruce, S. A. "Nonlinear Maxwell equations and strong-field electrodynamics." Physica Scripta 97, no. 3 (February 10, 2022): 035303. http://dx.doi.org/10.1088/1402-4896/ac50c2.
Full textClapp, Mónica, and Tobias Weth. "Multiple Solutions of Nonlinear Scalar Field Equations." Communications in Partial Differential Equations 29, no. 9-10 (January 2, 2005): 1533–54. http://dx.doi.org/10.1081/pde-200037766.
Full textMederski, Jarosław. "Nonradial solutions of nonlinear scalar field equations." Nonlinearity 33, no. 12 (October 23, 2020): 6349–80. http://dx.doi.org/10.1088/1361-6544/aba889.
Full textLiu, Jiu, Tao Liu, and Jia-Feng Liao. "A perturbation of nonlinear scalar field equations." Nonlinear Analysis: Real World Applications 45 (February 2019): 531–41. http://dx.doi.org/10.1016/j.nonrwa.2018.07.022.
Full textDissertations / Theses on the topic "Nonlinear field equations"
Chakraborty, Susanto. "Solutions of some nonlinear field equations, painleve` properties and Chaos." Thesis, University of North Bengal, 2006. http://hdl.handle.net/123456789/610.
Full textDunning, Tania Clare. "Perturbed conformal field theory, nonlinear integral equations and spectral problems." Thesis, Durham University, 2000. http://etheses.dur.ac.uk/4329/.
Full textO'Day, Joseph Patrick. "Investigation of a coupled Duffing oscillator system in a varying potential field /." Online version of thesis, 2005. https://ritdml.rit.edu/dspace/handle/1850/1212.
Full textGOFFI, ALESSANDRO. "Topics in nonlinear PDEs: from Mean Field Games to problems modeled on Hörmander vector fields." Doctoral thesis, Gran Sasso Science Institute, 2019. http://hdl.handle.net/20.500.12571/9808.
Full textMulvey, Joseph Anthony. "Symmetry methods for integrable systems." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5379/.
Full textHoq, Qazi Enamul. "Quantization Of Spin Direction For Solitary Waves in a Uniform Magnetic Field." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4210/.
Full textNys, Manon. "Schrödinger equations with an external magnetic field: Spectral problems and semiclassical states." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/216641.
Full textDoctorat en Sciences
info:eu-repo/semantics/nonPublished
Nowak, Derek Brant. "The Design of a Novel Tip Enhanced Near-field Scanning Probe Microscope for Ultra-High Resolution Optical Imaging." PDXScholar, 2010. https://pdxscholar.library.pdx.edu/open_access_etds/361.
Full textRuy, Danilo Virges [UNESP]. "Estrutura hamiltoniana da hierarquia PIV." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/92036.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Esta dissertação trata da construção de hierarquias compatíveis com a equação PIV a partir dos modelos: AKNS, dois bósons e dois bósons quadráticos. Também são construidos os problema linear de Jimbo-Miwa dos três modelos e discutimos a hamiltoniana correspondente a equação PIV a partir do formalismo lagrangiano
This dissertation contains the construction of compatible hierarchies with the PIV equation from the models: AKNS, two-boson and quadratic two-boson. Also it is build the Jimbo-Miwa linear problem for the three models and we discuss the hamiltonian corresponding to fouth Painlevé equation from the Lagrangian formalism
Ruy, Danilo Virges. "Estrutura hamiltoniana da hierarquia PIV /." São Paulo : [s.n.], 2011. http://hdl.handle.net/11449/92036.
Full textBanca: Iberê Luiz Caldas
Banca: Roberto André Kraenkel
Resumo: Esta dissertação trata da construção de hierarquias compatíveis com a equação PIV a partir dos modelos: AKNS, dois bósons e dois bósons quadráticos. Também são construidos os problema linear de Jimbo-Miwa dos três modelos e discutimos a hamiltoniana correspondente a equação PIV a partir do formalismo lagrangiano
Abstract: This dissertation contains the construction of compatible hierarchies with the PIV equation from the models: AKNS, two-boson and quadratic two-boson. Also it is build the Jimbo-Miwa linear problem for the three models and we discuss the hamiltonian corresponding to fouth Painlevé equation from the Lagrangian formalism
Mestre
Books on the topic "Nonlinear field equations"
Benci, Vieri, and Donato Fortunato. Variational Methods in Nonlinear Field Equations. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06914-2.
Full textV, Murthy M. K., Spagnolo S, and Workshop on Nonlinear Hyperbolic Equations and Field Theory (1990 : Lake Como, Italy), eds. Nonlinear hyperbolic equations and field theory. Harlow, Essex, England: Longman Scientific & Technical, 1992.
Find full textSelfdual gauge field vortices: An analytical approach. Boston, Mass: Birkhäuser, 2007.
Find full textLeFloch, Philippe G. The hyperboloidal foliation method. New Jersey: World Scientific, 2015.
Find full textTarantello, Gabriella. Selfdual gauge field vortices: An analytical approach. Boston, Mass: Birkhäuser, 2007.
Find full textTarantello, Gabriella. Selfdual gauge field vortices: An analytical approach. Boston, Mass: Birkhäuser, 2007.
Find full textPrikarpatskiĭ, A. K. Algebraicheskie aspekty integriruemosti nelineĭnykh dinamicheskikh sistem na mnogoobrazii͡a︡kh. Kiev: Nauk. dumka, 1991.
Find full textPhilippe, Blanchard, Dias J. P. 1944-, and Stubbe J. 1959-, eds. New methods and results in non-linear field equations: Proceedings of a conference held at the University of Bielefeld, Fed. Rep. of Germany, 7-10 July 1987. Berlin: Springer-Verlag, 1989.
Find full textKorsunskiĭ, S. V. Nonlinear waves in dispersive and dissipative systems with coupled fields. Harlow, Essex: Longman, 1997.
Find full textGatica, Gabriel N. Boundary-field equation methods for a class of nonlinear problems. New York: Longman, 1995.
Find full textBook chapters on the topic "Nonlinear field equations"
Ambrosio, Vincenzo. "Fractional Scalar Field Equations." In Nonlinear Fractional Schrödinger Equations in R^N, 51–105. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60220-8_3.
Full textNachman, Adrian I. "Multidimensional inverse scattering and nonlinear equations." In Field Theory, Quantum Gravity and Strings, 298–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/3-540-16452-9_18.
Full textAgüero Granados, M. A. "Coherent State Theory and the Field Lattice Model." In Nonlinear Evolution Equations and Dynamical Systems, 207–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76172-0_45.
Full textWinternitz, P. "Lie Groups and Solutions of Nonlinear Partial Differential Equations." In Integrable Systems, Quantum Groups, and Quantum Field Theories, 429–95. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1980-1_11.
Full textDafermos, C. M. "Equivalence of Referential and Spatial Field Equations in Continuum Physics." In Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects, 179–83. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-87871-7_21.
Full textKrichever, I., O. Lipan, P. Wiegmann, and A. Zabrodin. "Quantum Integrable Systems and Elliptic Solutions of Classical Discrete Nonlinear Equations." In Low-Dimensional Applications of Quantum Field Theory, 279–317. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1919-9_16.
Full textKlainerman, S. "On the Regularity of Classical Field Theories in Minkowski Space-Time R3+1." In Nonlinear Partial Differential Equations in Geometry and Physics, 29–69. Basel: Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8895-0_2.
Full textEsteban, Maria J., and Pierre-Louis Lions. "Stationary Solutions of Nonlinear Schrödinger Equations with an External Magnetic Field." In Partial Differential Equations and the Calculus of Variations, 401–49. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4684-9196-8_18.
Full textEsteban, Maria J., and Pierre-Louis Lions. "Stationary Solutions of Nonlinear Schrödinger Equations with an External Magnetic Field." In Partial Differential Equations and the Calculus of Variations, 401–49. Boston, MA: Birkhäuser Boston, 1989. http://dx.doi.org/10.1007/978-1-4615-9828-2_18.
Full textAntontsev, S. N., J. I. Díaz, and H. B. de Oliveira. "Stopping a Viscous Fluid by a Feedback Dissipative Field: Thermal Effects without Phase Changing." In Progress in Nonlinear Differential Equations and Their Applications, 1–14. Basel: Birkhäuser Basel, 2005. http://dx.doi.org/10.1007/3-7643-7317-2_1.
Full textConference papers on the topic "Nonlinear field equations"
Verweij, Martin D. "Nonlinear and dissipative constitutive equations for coupled first-order acoustic field equations that are consistent with the generalized Westervelt equation." In INNOVATIONS IN NONLINEAR ACOUSTICS: ISNA17 - 17th International Symposium on Nonlinear Acoustics including the International Sonic Boom Forum. AIP, 2006. http://dx.doi.org/10.1063/1.2210354.
Full textEtrich, C., Paul Mandel, and Kenju Otsuka. "Laser rate equations with phase-sensitive interactions." In Nonlinear Dynamics in Optical Systems. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.tuc7.
Full textGhiner, A. V., and G. I. Surdutovich. "Method of integral equations and extinction theorem in volumetric and surface phenomena in nonlinear optics." In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.tud8.
Full textChavanis, P. H., Sumiyoshi Abe, Hans Herrmann, Piero Quarati, Andrea Rapisarda, and Constantino Tsallis. "General properties of nonlinear mean field Fokker-Planck equations." In COMPLEXITY, METASTABILITY, AND NONEXTENSIVITY: An International Conference. AIP, 2007. http://dx.doi.org/10.1063/1.2828726.
Full textGarcía-Salcedo, R., and Aarón V. B. Arellano. "Nonlinear Electrodynamics and Wormhole Type Solutions for Einstein Field Equations." In ADVANCED SUMMER SCHOOL IN PHYSICS 2006: Frontiers in Contemporary Physics: EAV06. AIP, 2007. http://dx.doi.org/10.1063/1.2563177.
Full textGoorjian, Peter M., Rose M. Joseph, and Allen Taflove. "Calculations of Femtosecond Temporal Solitons and Spatial Solitons Using the Vector Maxwell's Equations." In Nonlinear Guided-Wave Phenomena. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/nlgwp.1993.tub.12.
Full textORTNER, J., and V. M. RYLYUK. "THE USE OF RELATIVISTIC ACTION IN STRONG-FIELD NONLINEAR PHOTOIONIZATION." In Proceedings of the Conference “Kadanoff-Baym Equations: Progress and Perspectives for Many-Body Physics”. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812793812_0022.
Full textMukamel, Shaul, and Jasper Knoester. "Nonlinear Optical Susceptibilities; Beyond the Local Field Approximation." In Nonlinear Optical Properties of Materials. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/nlopm.1988.mb3.
Full textStatman, David, Karl Gass, and Bruce W. Liby. "Periodic Behavior in Photorefractive Two Beam Coupling." In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.md8.
Full textWang, Yuefang, Ganyun Sun, and Lihua Huang. "Magnetic Field-Induced Nonlinear Vibration of an Unbalanced Rotor." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42498.
Full textReports on the topic "Nonlinear field equations"
Davidson, R. C., W. W. Lee, and P. Stoltz. Statistically-averaged rate equations for intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/304184.
Full textDavidson, R. C., and C. Chen. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations. Office of Scientific and Technical Information (OSTI), August 1997. http://dx.doi.org/10.2172/304185.
Full textSaxena, Avadh. Solitary waves in nonlinear Dirac equation. From field theory to Dirac materials. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1225286.
Full text