Dissertations / Theses on the topic 'Nonlinear Chemical Dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 33 dissertations / theses for your research on the topic 'Nonlinear Chemical Dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Tsamopoulos, John Abraham. "Nonlinear dynamics of simple and compound drops." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/119604.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND SCIENCE.
Bibliography: leaves 176-186.
by John Abraham Tsamopoulos.
Ph.D.
McKinley, Gareth Huw. "Nonlinear dynamics of viscoelastic flows in complex geometries." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/13921.
Full textPerrman, Delmar. "Nonlinear effects in chemical dynamics and chemical kinetics: Chaos in physical chemistry." Thesis, University of Ottawa (Canada), 1994. http://hdl.handle.net/10393/9500.
Full textMcIlwaine, Rachel Elizabeth. "Nonlinear dynamics of acid- and base-regulated chemical systems." Thesis, University of Leeds, 2007. http://etheses.whiterose.ac.uk/797/.
Full textAli, Fathei M. "On the nonlinear chemical dynamics of the imperfectly mixed CSTR." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ33891.pdf.
Full textSands, Jonathan David. "Current oscillations arising from nonlinear chemical dynamics in solid oxide fuel cells." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/5973/.
Full textAlonso, Eva Vicente. "Nonlinear dynamics of a nematic liquid crystal in the presence of a shear flow." Thesis, University of Southampton, 2000. https://eprints.soton.ac.uk/50628/.
Full textHuynh, Nguyen. "Digital control and monitoring methods for nonlinear processes." Link to electronic thesis, 2006. http://www.wpi.edu/Pubs/ETD/Available/etd-100906-083012/.
Full textKeywords: Parametric optimization; nonlinear dynamics; functional equations; chemical reaction system dynamics; time scale multiplicity; robust control; nonlinear observers; invariant manifold; process monitoring; Lyapunov stability. Includes bibliographical references (leaves 92-98).
Dziekan, Piotr. "Dynamics of far-from-equilibrium chemical systems : microscopic and mesoscopic approaches." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066402/document.
Full textMany nonlinear systems under non-equilibrium conditions are highly sensitive to internal fluctuations. In this dissertation, stochastic effects in some generic reaction-diffusion models are studied using two approaches of different precision. In the mesoscopic approach, evolution of the system is governed by the master equation, which can be solved numerically or used to set up kinetic Monte Carlo simulations. On the microscopic level, particle computer simulations are used. These two stochastic approaches are compared with deterministic, macroscopic reaction-diffusion equations.In the Introduction, key information about the different approaches is presented, together with basics of nonlinear systems and a presentation of numerical algorithms used.The first part of the Results chapter is devoted to studies on reaction-induced perturbation of particle velocity distributions in models of bistability and wave front propagation. A master equation including this perturbation is presented and compared with microscopic simulations.The second part of the Results deals with pattern formation in reaction-diffusion systems in the context of developmental biology. A method for simulating Turing patternsat the microscopic level using the direct simulation Monte Carlo algorithm is developed. Then, experiments consisting of perturbing segmentation of vertebrate embryo’s bodyaxis are explained using the Turing mechanism. Finally, a different possible mechanism of body axis segmentation, the “clock and wavefront” model, is formulated as a reaction-diffusion model
Zheng, Yexin. "MOLECULAR DYNAMICS SIMULATION STUDY OF NONLINEAR MECHANICAL BEHAVIOR FOR POLYMER GLASSES AND POLYMER RHEOLOGY." University of Akron / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=akron1595776504507743.
Full textSousa, Raphael Nagao de. "Elucidação de mecanismos reacionais em regime longe do equilíbrio termodinâmico." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-24022014-114406/.
Full textThe spontaneous formation of self-organized spatiotemporal patterns under far from thermodynamic equilibrium conditions is a characteristic behavior in reaction-transport systems. Indeed, this spatial structuration can be understood as a collective behavior of a large number of individual elements in the system. Consequently the pattern emerges as a result of the interaction between the local dynamic of these subunits and the spatial coupling. Multistable, excitable and oscillatory nonlinear dynamics are typical examples of complex temporal patterns usually associated to the spatial structuration. In this doctoral thesis, two work fronts are presented using the nonlinear chemical dynamics in the elucidation of reaction mechanisms under far from thermodynamic equilibrium regime: (a) the investigation of the chemical nature and effect of the drift in the transient time-series in electrochemical oscillators. The analysis of the temporal evolution of the bifurcation parameter was based on an empiric method of stabilization, being the slow accumulation of oxygenated species the main responsible for the drift; (b) the decoupling of the parallel electrochemical routes for CO2 production by a combination of experiments, modeling and numerical simulations during the oscillatory electro-oxidation of methanol on polycrystalline platinum. The effect of perchlorate and sulfate anions in the parallel reactions was investigated by the global production of CO2 and HCOOCH3. Remarkably, sulfate anions inhibited more strongly the catalytic activity from direct pathway in contrast to the small alteration in the indirect pathway. In parallel to the two work fronts, an experimental setup was built in order to obtain a spatiotemporal evolution of a electrochemical reaction with a multichannel data acquisition system. A description of the confection process of the cell and the multichannel working electrode, data treatment and some preliminary experimental results are included as an additional chapter. The main idea of this thesis converges in the obtainment of chemical kinetic information which is not observed in conditions close to the thermodynamic equilibrium. This interpretation might be used as an alternative methodology in the study of electrocatalysis in complex chemical reactions.
Thakore, Vaibhav. "Nonlinear dynamic modeling, simulation and characterization of the mesoscale neuron-electrode interface." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5529.
Full textPh.D.
Doctorate
Physics
Sciences
Physics
Koulouris, Alexandros. "Multiresolution learning in nonlinear dynamic process modeling and control." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11376.
Full textBezuidenhout, Leon Christo. "Detecting change in nonlinear dynamic process systems." Thesis, Stellenbosch : University of Stellenbosch, 2004. http://hdl.handle.net/10019.1/16258.
Full textENGLISH ABSTRACT: As result of the increasingly competitive performance in today’s industrial environment, it has become necessary for production facilities to increase their efficiency. An essential step towards increasing the efficiency of these production facilities is through tighter processes control. Process control is a monitoring and modelling problem, and improvements in these areas will also lead to better process control. Given the difficulties of obtaining theoretical process models, it has become important to identify models from process data. The irregular behaviour of many chemical processes, which do not seem to be inherently stochastic, can be explained by analysing time series data from these systems in terms of their nonlinear dynamics. Since the discovery of time delay embedding for state space analysis of time series, a lot of time has been devoted to the development of techniques to extract information through analysis of the geometrical structure of the attractor underlying the time series. Nearly all of these techniques assume that the dynamical process under question is stationary, i.e. the dynamics of the process did not change during the observation period. The ability to detect dynamic changes in processes, from process data, is crucial to the reliability of these state space techniques. Detecting dynamic changes in processes is also important when using advanced control systems. Process characteristics are always changing, so that model parameters have to be recalibrated, models have to be updated and control settings have to be maintained. More reliable detection of changes in processes will improve the performance and adaptability of process models used in these control systems. This will lead to better automation and enormous cost savings. This work investigates and assesses techniques for detecting dynamical changes in processes, from process data. These measures include the use of multilayer perceptron (MLP) neural networks, nonlinear cross predictions and the correlation dimension statistic.The change detection techniques are evaluated by applying them to three case studies that exhibit (possible) nonstationary behaviour. From the research, it is evident that the performance of process models suffers when there are nonstationarities in the data. This can serve as an indication of changes in the process parameters. The nonlinear cross prediction algorithm gives a better indication of possible nonstationarities in the process data; except for instances where the data series is very short. Exploiting the correlation dimension statistic proved to be the most accurate method of detecting dynamic changes. Apart from positively identifying nonstationary in each of the case studies, it was also able to detect the parameter changes sooner than any other method tested. The way in which this technique is applied, also makes it ideal for online detection of dynamic changes in chemical processes.
AFRIKAANSE OPSOMMING: Dit is belangrik om produksie aanlegte so effektief moontlik te bedryf. Indien nie, staar hulle die moontlikheid van finansiële ondergang in die gesig – veral as gevolg van toenemende mededinging die industrie. Die effektiwiteit van produksie aanlegte kan verhoog word deur verbeterde prosesbeheer. Prosesbeheer is ‘n moniterings en modellerings probleem, en vooruitgang in hierdie areas sal noodwendig ook lei tot beter prosesbeheer. Omdat dit moeilik is om teoretiese proses modelle af te lei, word dit al hoe belangriker om modelle vanuit proses data te identifiseer. Die ongewone optrede van baie chemiese prosesse, wat nie inherent stogasties blyk te wees nie, kan meestal verklaar word deur tydreeks data vanaf hierdie prosesse te analiseer in terme van hul nie-liniêre dinamika. Sedert die ontdekking van tydreeksontvouing vir toestandveranderlike stelsels, is baie tyd daaraan spandeer om tegnieke te ontwikkel wat inligting uit tydreekse kan onttrek deur die onderliggende geometriese struktuur van die attraktor te bestudeer. Byna al hierdie tegnieke aanvaar dat die dinamiese proses stationêr is, m.a.w dat die dinamika van die proses nie verander het tydens die observasie periode nie. Die vermoë om hierdie dinamiese proses veranderinge te kan identifiseer, is daarom baie belangrik. Ook in gevorderde beheerstelsels is vroegtydige identifisering van dinamiese veranderinge in prosesse belangrik. Proses karakteristieke is altyd besig om te verander, sodat model parameters herkalibreer moet word, modelle opgedateer moet word en beheer setpunte onderhou moet word. Meer betroubare tegnieke om veranderinge in prosesse te identifiseer sal die aanpasbaarheid van proses modelle in hierdie beheerstelsels verbeter. Dit sal lei tot beter outomatisering en sodoende lei tot enorme kostebesparings. Hierdie werk ondersoek tegnieke om dinamiese veranderinge in prosesse te identifiseer, deur die analise van proses data. Die tegnieke wat gebruik word sluit die volgende in:multilaag-perseptron neurale netwerke, nie-liniêre kruisvoorspelling statistieke en die korrelasie dimensie statistiek. Die tegnieke is op drie gevallestudies toegepas om te sien of hulle die dinamiese veranderinge in die data kan identifiseer. Vanuit die navorsing is dit duidelik dat proses modelle nadelig beinvloed word deur niestationêre data. Dit kan dien as ‘n indikasie van veranderinge in die proses parameters. Die nie-liniêre kruisvoorspellings algoritme gee ‘n beter indikasie van dinamiese veranderinge in die proses data, behalwe waar die tydreeks baie kort is. Toepassings van die korrelasie dimensie statistiek gee die beste resultate. Hierdie tegniek kon dinamiese veranderinge vinniger as enige ander tegniek identifiseer, en die manier waarop dit gebruik word maak dit ideaal vir die identifisering van dinamiese veranderinge in chemiese prosesse.
Espie, David Miller. "The use of nonlinear parameter estimation for dynamic chemical reactor modelling." Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/7692.
Full textSawlekar, Rucha. "Programming dynamic nonlinear biomolecular devices using DNA strand displacement reactions." Thesis, University of Warwick, 2016. http://wrap.warwick.ac.uk/91757/.
Full textMihaliuk, Eugene. "Identification and control of dynamical systems." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=965.
Full textKalamangalam, G. P. "Nonlinear oscillations and chaos in chemical cardiorespiratory control." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296830.
Full textJemwa, Gorden Takawadiyi. "Multivariate nonlinear time series analysis of dynamic process systems." Thesis, Stellenbosch : University of Stellenbosch, 2003. http://hdl.handle.net/10019.1/16339.
Full textENGLISH ABSTRACT: Physical systems encountered in process engineering are invariably ill-defined, multivariate, and exhibit complex nonlinear dynamical behaviour. The increasing demands for better process efficiency and high product quality have led to the development and implementation of advanced control strategies in process plants. These modern control strategies are based on the use of a mathematical model defined for the process. Traditionally, linear models have been used to approximate the dynamics of processes whereas most processes are governed by nonlinear mechanisms. Since linear systems theory is well-established whereas nonlinear systems theory is not, recent developments in nonlinear dynamical systems theory present opportunities for improved approaches in modelling these process systems. It is now known that a nonlinear description of a process can be obtained from using time-delayed copies reconstructed from measurements taken from the process. Due to low signal to noise ratios associated with measured data it is logical to exploit redundant information in multivariate time signals taken from the systems in reconstructing the underlying dynamics. This study investigated the extension of univariate nonlinear time series analysis to the situation where multivariate measurements are available. Using simulated data from a coupled continuously stirred tank reactor and measured data from a flotation process system, the comparative advantages of using multivariate and univariate state space reconstructions were investigated. With respect to detection of nonlinearity multivariate surrogate analysis were found to give potentially robust results because of preservation of cross-correlations among components in the surrogate data. Multivariate local linear models showed a deterministic structure in both small and large neighbourhood sizes whereas for scalar embeddings determinism was defined only in smaller neighbourhood sizes. Non-uniform multivariate embeddings gave local linear models that resembled models from a trivial reconstruction of the original state space variables. With regard to global nonlinear modelling, multivariate embeddings gave models with better predictability irrespective of the model class used. Further improvements in the performance of models were obtained for multivariate non-uniform embeddings. A relatively new statistical learning algorithm, the least-squares support vector machine (LSSVM), was evaluated using multilayer perceptrons (MLP) as a benchmark in modelling nonlinear time series using simulated and plant data. It was observed that in the absence of autocorrelations in the variables and sparse data LSSVMs performed better than MLPs. Simulation of trained models gave consistent results for the LSSVMs, which was not the case for MLPs. However, the computational costs incurred in training the LSSVM model was significantly higher than for MLPs. LSSVMs were found to be insensitive to dimensionality reduction methods whereas the performance of MLPs degraded with increasing complexity of the dimension reduction method. No relative merits were found for using complex subspace dimension reduction methods for the data used. No general conclusions could be drawn with respect to the relative superiority of one class of models method over the other. Spatiotemporal structures are routinely observed in many chemical systems, such as reactive-diffusion and other pattern forming systems. We investigated the modelling of spatiotemporal time series using the coupled logistic map lattice as a case study. It was found that including both spatial and temporal information improved the performance of the fitted models. However, the superiority of spatiotemporal embeddings over individual time series was found to be defined for certain choices of the spatial and temporal embedding parameters.
AFRIKAANSE OPSOMMING: Fisiese stelsels wat in prosesingenieurswese voorkom is dikwels nie goed gedefinieer nie, multiveranderlik en vertoon komplekse nie-lineˆere gedrag. Toenemende vereistes vir ho¨e prosesdoeltreffendheid en produkgehalte het gelei tot die ontwikkeling en implementering van gevorderde beheerstrategie¨e vir prosesaanlegte. Hierdie morderne beheerstrategie¨e is gebaseer op die gebruik van wiskundige prosesmodelle. Lineˆere modelle word gewoonlik ontwikkel, al is die onderliggende prosesmeganismes in die algemeen nie-lineˆere, aangesien lineˆere stetselteorie goed gevestig is, en nie-line¨ere stelselteorie nie. Onlangse verwikkelinge in die teorie van nie-lineˆeredinamiese stelsels bied egter geleenthede vir verbeterde modellering van prosesstelsels. Dit is bekend dat ‘n nie-lineˆere beskrywing van ‘n progses verkry kan word deur tydvertraagde kopie¨e van metings van die prosesse te rekonstrueer. Met die lae seintot- geraasverhoudings wat met gemete data geassosieer word, is dit logies om die oortollige informasie in meerveranderlike seine te benut tydens die rekonstruksie van die onderliggende prosesdinamika. In die tesis is die uitbreiding van enkel-veranderlike nie-lineˆere tydreeksontleding na meer-veranderlike stelsels ondersoek. Met data van twee aaneengeskakelde gesimuleerde geroerde tenkreaktore en werklike data van ‘n flottasieproses, is die meriete van enkel- en meerveranderlike rekonstruksies van toestandruimtes ondersoek. Meerveranderlike surrogaatdata-ontleding het nie-lineariteite in die data op ‘n meer robuuste wyse ge¨ıdentifiseer, a.g.v. die behoud van kruis-korrelasies in die komponente van die data. Meerveranderlike lokale lineˆere modelle het ‘n deterministiese struktuur in beide klein en groot naasliggende omgewings ge¨ıdentifiseer, terwyl enkelveranderlike metodes dit slegs vir klein naasliggende omgewings kon doen. Nie-uniforme meerveranderlike inbeddings het lokale lineˆere modelle gegenereer wat soos globale modelle afkomstig van triviale rekonstruksies van die data gelyk het. M.b.t globale nie-lineˆere modellering, het meerveranderlike inbedding deurgaans beter modelle opgelewer. Verdere verbetering in die prestasie van modelle kon verkry word d.m.v. meerveranderlike nie-uniforme inbedding. ‘n Relatief nuwe statistiese algoritme, die kleinste-kwadrate-steunvektormasjien (KKSVM) is ge¨evalueer teenoor multilaag-perseptrons (MLP) as ‘n standaard vir die modellering van nie-lineˆere tydreekse, deur gebruik te maak van gesimuleerde en werklike aanlegdata. Daar is gevind dat die KKSVM beter presteer het as die MLPs wanneer die opeenvolgende waarnemings swak gekorreleer en min was relatief tot die aantal veranderlikes. Die KKSVMs het beduidend langer geneem as die MLPs om te ontwikkel. Hulle was ook minder sensitief vir die metodes wat gevolg is om die dimensionaliteit van die data te verlaag, anders as die MLPs. Ook is gevind dat meer komplekse metodes tot die verlaging van die dimensionaliteit weinig nut gehad het. Geen algemene gevolgtrekkings kan egter gemaak word m.b.t die verskillende modelle nie. Ruimtelik-temporale strukture word algemeen waargeneem in baie chemiese stelsels, soos reaktiewe diffusie e.a. patroonvormende sisteme. Die modellering van ruimtelik-temporale stelsels is bestudeer aan die hand van ‘n gekoppelde logistiese projeksierooster. Insluiting van beide die ruimtelike en temporale inligting het tot beduidend beter modelle gelei, solank as wat di´e inligting op die regte wyse ontsluit is.
Chen, Wen-shiang. "Bayesian estimation by sequential Monte Carlo sampling for nonlinear dynamic systems." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1086146309.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiv, 117 p. : ill. (some col.). Advisors: Bhavik R. Bakshi and Prem K. Goel, Department of Chemical Engineering. Includes bibliographical references (p. 114-117).
Marques, Fellipe Garcia. "Modelagem fenomenológica e controle de uma planta piloto de neutralização de pH." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/3/3139/tde-31122015-101900/.
Full textThe pH neutralization is used in industry to discard properly the wastewater, ensuring the environment preservation. The pH neutralization is a complex control problem, as the model of the plant presents a strong nonlinearity and time varying characteristics, which demands a proper modeling in order to design ecient control systems. However, the application of the theory related to pH modeling is not a trivial task and may result in models that can not predict the plant dynamics. The rst objective of this research was to model the pH Neutralization Pilot Plant, of the Laboratory of Industrial Processes Control (LCPI), using a methodology that could be replicated to model other pH neutralization plants. Initially, the pH Neutralization Pilot Plant was modeled with the phenomenological approach, utilizing rst principles, such as the mass conservation, electroneutrality and chemical equilibrium. Moreover, the model was adjusted to represent the process observed data (empirical approach), as its titration curves of the inuent streams and its reactor residence time distribution. Through experiments, it was veried that the model could represent adequately the real process dynamics. Furthermore, this model was used to achieve the second objective of this research: to design a pH control system, which was composed of a nonlinear observer and a modelbased control. This control structure was tested experimentally, ensuring that the control requirements were satised.
Wilson, Jamie Robyn. "Measurement and prediction of nonlinear harmonics as a tool for dynamic characterization of electrochemical systems /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9852.
Full textBeal, Logan Daniel. "Large-Scale Non-Linear Dynamic Optimization For Combining Applications of Optimal Scheduling and Control." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7021.
Full textSanchez, Edinzo J. Iglesias. "Using fuzzy logic to enhance control performance of sliding mode control and dynamic matrix control." [Tampa, Fla] : University of South Florida, 2006. http://purl.fcla.edu/usf/dc/et/SFE0001497.
Full textFranco, Alejandro A. "A multiscale modeling framework for the transient analysis of PEM Fuel Cells - From the fundamentals to the engineering practice." Habilitation à diriger des recherches, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00740967.
Full textGummalla, Mallika. "Transport-chemistry coupling in cocurrent and countercurrent flow configurations: Applications to nonlinear dynamics of flames and deposition of membranes in porous media." 2003. https://scholarworks.umass.edu/dissertations/AAI3078690.
Full textHamik, Chad Thomas Steinbock Oliver. "Anomalous dispersion of excitation pulses in the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction." 2003. http://etd.lib.fsu.edu/theses/available/etd-08112004-123237.
Full textAdvisor: Dr. Oliver Steinbock, Florida State University, College of Arts and Sciences, Dept. of Chemistry and Biochemistry. Title and description from dissertation home page (Aug. 27, 2004). Includes bibliographical references.
Shaik, Osman Shahi [Verfasser]. "Model based external forcing of nonlinear dynamics in chemical and biochemical reaction systems via optimal control / presented by Osman Shahi Shaik." 2008. http://d-nb.info/987620231/34.
Full textJędrusiak, Mikołaj. "Eksperymentalne i modelowe badanie dynamicznych niestabilności w reakcjach chemicznych z udziałem nadtlenku wodoru." Doctoral thesis, 2017.
Find full textDocter, William A. "Order reduction of nonlinear dynamic models by subspace identification and stepwise regression /." Diss., 1999. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9935158.
Full text(10711971), Alex M. Sherman. "Dynamic Chemical Imaging And Analysis Within Biologically Active Materials." Thesis, 2021.
Find full textKarimi, Hadiseh. "Parameter Estimation Techniques for Nonlinear Dynamic Models with Limited Data, Process Disturbances and Modeling Errors." Thesis, 2013. http://hdl.handle.net/1974/8534.
Full textThesis (Ph.D, Chemical Engineering) -- Queen's University, 2013-12-23 15:12:35.738
Gwaltney, Courtney Ryan. "Reliable location of equilibrium states and bifurcations in nonlinear dynamical systems with applications in food web modeling and chemical engineering." 2006. http://etd.nd.edu/ETD-db/theses/available/etd-04192006-142303/.
Full textThesis directed by Mark A. Stadtherr for the Department of Chemical and Biomolecular Engineering. "May 2006." Includes bibliographical references (leaves 239-253).