Journal articles on the topic 'Nonlinear borates'

To see the other types of publications on this topic, follow the link: Nonlinear borates.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nonlinear borates.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yu, Daqiu, and Dongfeng Xue. "Bond analyses of borates from the Inorganic Crystal Structure Database." Acta Crystallographica Section B Structural Science 62, no. 5 (September 18, 2006): 702–9. http://dx.doi.org/10.1107/s0108768106018520.

Full text
Abstract:
Various fundamental building blocks (FBBs) are observed in the crystallographic structures of oxoborates available in the Inorganic Crystal Structure Database, Version 1.3.3 (2004); the occurrence of borate groups with low complexity is dominant. Bond-valence parameters d 0 of B—O bonds in 758 oxoborates with various FBBs have been calculated using the bond-valence sum model. Some discrepancies in the d 0 values obviously occur if the detailed configurations of FBBs in borate crystals are considered; d 0 is sensitive to the chemical bonding structure of B atoms in the crystallographic framework. Moreover, d 0 values are affected by the existence of interstitial atoms and the substitution of other anionic groups. In addition, the d 0 parameters for B—N, B—S, B—P and B—F bonds are also calculated statistically. Some suitable d 0 data for various borate FBBs are recommended according to their particular configurations, especially for those with low complexity. On the basis of the proposed linear relationship between calculated nonlinear optical (NLO) coefficients of borates and the current d 0 values for various FBBs, it is found that the d 0 values may be regarded as a useful parameter for pre-investigating the NLO properties of borates, leading to an efficient structural evaluation and design of novel borates.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Linyan, Guobao Li, Yingxia Wang, Fuhui Liao, and Jianhua Lin. "Bismuth Borates: One-Dimensional Borate Chains and Nonlinear Optical Properties." Chemistry of Materials 17, no. 16 (August 2005): 4174–80. http://dx.doi.org/10.1021/cm050215d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Foldv´ari, Istvan, Katalin Polg´ar, Agnes P´eter, Elena Beregi, and Zsuzsanna Szaller. "Growth and study of nonlinear optical crystals at the Hungarian Academy of Sciences." Journal of Telecommunications and Information Technology, no. 1-2 (June 30, 2000): 37–41. http://dx.doi.org/10.26636/jtit.2000.1-2.15.

Full text
Abstract:
The former Research Laboratory for Crystal Physics continues the growth and defect structure investigation of nonlinear optical single crystals in a new organization, as a part of the Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences. The aim of the activity is to prepare specific crystals for basic and applied research as well as for applications. We improve the quality or modify the properties of well known nonlinear oxide and borate crystals and develop new materials. The principle nonlinear optical crystals in our profile are the followings: Paratellurite (TeO2), congruent, Mg-doped and stoichiometric lithium niobate (LiNbO3), a variety of sillenite structured crystals (Bi12}MeO20, Me=Si, Ge, Ti, etc.), bismuth tellurite (Bi2TeO5 and nonlinear borates (BBO-b-BaB2O4, LBO-LiB3O5, LTB-Li2B4O7, CLBO-CsLiB6O10 and YAB-YAl3(BO3)4). Details of the crystal preparation and the major achievements are discussed in the paper.
APA, Harvard, Vancouver, ISO, and other styles
4

Plachinda, Paul A., Valery A. Dolgikh, Sergey Yu Stefanovich, and Petr S. Berdonosov. "Nonlinear-optical susceptibility of hilgardite-like borates ; )." Solid State Sciences 7, no. 10 (October 2005): 1194–200. http://dx.doi.org/10.1016/j.solidstatesciences.2005.05.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Volkova, Elena A., Daniil A. Naprasnikov, and Nikolay I. Leonyuk. "Thin Films and Glass–Ceramic Composites of Huntite Borates Family: A Brief Review." Crystals 10, no. 6 (June 6, 2020): 487. http://dx.doi.org/10.3390/cryst10060487.

Full text
Abstract:
Rare-earth aluminum borates, RAl3(BO3)4 (where R = Y, Pr–Lu), are of great interest because of their attractive multifunctional properties, depending on their structure and composition. The combination of desirable physical and chemical characteristics makes them promising materials for lasers and nonlinear optics. Research focusing on RAl3(BO3)4 (RAB) compounds and their solids solutions has continued for more than five decades and has been reflected in numerous articles and several reviews. The last decade’s enhanced interest is being conducted towards epitaxial layers because of the availability of other possible applications, for instance, as scintillators, visible emitting phosphors or optical waveguides and waveguide lasers. On the other hand, the tendency of borate melts to form glasses makes them attractive for research of micro-crystallization processes in these systems and can be effortless towards finding relatively inexpensive optical glass–ceramic materials with similar composition as alternative components to laser systems. This article reviews the recent progress carried out hitherto on epitaxial layers and glass–ceramic composites of huntite-type rare-earth aluminum borates.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Chao, Longhua Li, Junling Song, Gang Yang, Mark G. Humphrey, and Chi Zhang. "Solvent-controlled syntheses of mixed-alkali-metal borates exhibiting UV nonlinear optical properties." Inorganic Chemistry Frontiers 4, no. 4 (2017): 692–700. http://dx.doi.org/10.1039/c7qi00001d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Reshak, A. H., and S. Auluck. "Two haloid borate crystals with large nonlinear optical response." Physical Chemistry Chemical Physics 19, no. 28 (2017): 18416–25. http://dx.doi.org/10.1039/c7cp02364b.

Full text
Abstract:
The photophysical properties of the noncentrosymmetric haloid borates K3B6O10X (X = Cl or Br) are calculated using density functional theory within the recently modified Becke–Johnson potential.
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, L., Y. Zhang, W. W. Su, Y. F. Kong, and J. J. Xu. "Structural study of nonlinear optical borates K1−xNaxSr4(BO3)3 (x≤0.5)." Powder Diffraction 25, S1 (September 2010): S11—S16. http://dx.doi.org/10.1154/1.3478412.

Full text
Abstract:
X-ray powder diffraction was used for the structural study of nonlinear optical borates K1−xNaxSr4(BO3)3 (x≤0.5). Results show that up to 50% K+ can be substituted by Na+ in orthorhombic K1−xNaxSr4(BO3)3. Isolated BO3 triangles in the Na-substituted compound constrict to adjust to a local distribution of alkali-metal atoms, which explains the large range of structural homogeneity. An expansion of the c axis in a unit cell with increasing Na substitution was found probably caused by the tilted BO3 triangles and asymmetric distortion of (K/Na)O8 polyhedra. As the ratio of ionic radii of alkaline-earth and alkali-metal cations decreases and the electronegative difference between alkaline-earth and alkali-metal cations increases, the crystal system of MM′4(BO3)3 borates changes from cubic to orthorhombic and then to monoclinic.
APA, Harvard, Vancouver, ISO, and other styles
9

Yao, Wenjiao, Ran He, Xiaoyang Wang, Zheshuai Lin, and Chuangtian Chen. "Borates: Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End (Advanced Optical Materials 5/2014)." Advanced Optical Materials 2, no. 5 (May 2014): 410. http://dx.doi.org/10.1002/adom.201470030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kang, Lei, Pifu Gong, Zheshuai Lin, and Bing Huang. "Deep‐Ultraviolet Nonlinear‐Optical van‐der‐Waals Beryllium Borates**." Angewandte Chemie International Edition 60, no. 30 (June 18, 2021): 16680–86. http://dx.doi.org/10.1002/anie.202105789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kang, Lei, Pifu Gong, Zheshuai Lin, and Bing Huang. "Deep‐Ultraviolet Nonlinear‐Optical van‐der‐Waals Beryllium Borates**." Angewandte Chemie 133, no. 30 (June 18, 2021): 16816–22. http://dx.doi.org/10.1002/ange.202105789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Wei, Qi, Li Sun, Jie Zhang, and Guo-Yu Yang. "Two deep-ultraviolet nonlinear optical alkaline-earth metal borates based on different types of oxoboron clusters." Dalton Transactions 46, no. 24 (2017): 7911–16. http://dx.doi.org/10.1039/c7dt01677h.

Full text
Abstract:
Two non-centrosymmetric alkaline-earth metal borates were synthesized, showing the layered structures constructed from different oxoboron clusters and potentially new candidates for deep-UV NLO materials.
APA, Harvard, Vancouver, ISO, and other styles
13

Subanakov, Alexey K., Evgeniy V. Kovtunets, Sampil Zh Choydonov, Sesegma G. Dorzhieva, and Bair G. Bazarov. "Синтез и характеризация нового двойного бората рубидия–гольмия Rb3HoB6O12." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, no. 2 (June 14, 2019): 278–86. http://dx.doi.org/10.17308/kcmf.2019.21/765.

Full text
Abstract:
Методом цитратной золь-гель технологии получен новый двойной борат рубидия–гольмия состава Rb3HoB6O12. Соединение кристаллизуется в тригональной сингонии (пр. гр. R32, a = 13.4038(7), с = 30.315(2) Å, V = 4716.76 Å3) и плавится инконгруэнтно при 818 °С. Попытки получить в однофазном состоянии Rb3HoB6O12 методом твердофазных реакций не привели к положительному результату REFERENCES Wu C., Yang G., Humphrey M.G., Zhang C. Recent advances in ultraviolet and deep-ultraviolet secondorder nonlinear optical crystals // Chem. Rev., 2018, v. 375, pp. 1–30. https://doi.org/10.1016/j.ccr.2018.02.017 Bubnova R., Volkov S., Albert B., Filatov S. Borates – crystal structures of prospective nonlinear optical materials: high anisotropy of the thermal expansion caused by anharmonic atomic vibrations // Crystals, 2017, v. 7, pp.1–32. DOI: 10.3390/cryst7030093 Becker P. Borate materials in nonlinear optics // Mater., 1998, v. 10, pp. 979–992. https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<979::AIDADMA979>3.0.CO;2-N Chen C., Li R. The anionic group theory of the nonlinear optical effect and its applications in the development of new high-quality NLO crystals in the borate series // Rev. Phys. Chem., 1988, v. 8, pp. 65–91. https://doi.org/10.1080/01442358909353223 Chen C., Wu Y., Jiang A., Wu B., You G., Li R., Lin S. New nonlinear-optical crystal: LiB3O5 // Opt. Soc. Am. B: Opt. Phys., 1989, v. 6, pp. 616–621. https://doi.org/10.1364/JOSAB.6.000616 French R. H., Ling J. W., Ohuchi F. S., Chen C. T. Electronic structure of b-BaB2O4 and LiB3O5 nonlinear optical crystals // Rev. B: Condens. Matter, 1991, v. 44, pp. 8496–8502. https://doi.org/10.1103/Phys-RevB.44.8496 Yusuke Mori, Ikio Kuroda, Satoshi Nakajima, Takamoto Sasaki, Sadao Nakai. New nonlinear optical crystal: Cesium lithium borate // Phys. Lett., 1995, v. 67, pp. 1818–1820. https://doi.org/10.1063/1.115413 Haohai Yu, Zhongben Pan, Huaijin Zhang, Jiyang Wang. Recent advances in self-frequency-doubling crystals // Materiomics, 2016, v. 2, pp. 55–65. https://doi.org/10.1016/j.jmat.2015.12.001 Bajor A.L., Kisielewski J., Klos A., Kopzyński K., Lukasiewicz T., Mierczyk J., Mlyńczak J. Assessment of gadolinium calcium oxoborate (GdCOB) for laser applications // Opto-electronics Review, 2011, v. 19, pp. 439–448. https://doi.org/10.2478/s11772-011-0042-2 Dan Zhao, Cong-Kui Nie, Ye Tian, Bao-Zhong Liu, Yun-Chang Fan, Ji Zhao. A new luminescent host material K3GdB6O12: synthesis, crystal structure and luminescent properties activated by Sm3+ // Kristallogr., 2018, v. 233, pp. 411–419. https://doi.org/10.1515/zkri-2017-2101 Dan Zhao, Fa-Xue Ma, Rui-Juan Zhang, Wei Wei, Juan Yang, Ying-Jie Li. A new rare-earth borate K3LuB6O12: crystal and electronic structure, and luminescent properties activated by Eu3+ // Mater Sci: Mater Electron., 2017, pp. 1–9. https://doi.org/10.1007/s10854-016-5501-6 Atuchin V. V., Subanakov A. K., Aleksandrovsky A. S., Bazarov B. G., Bazarova J. G., Dorzhieva S. G., Gavrilova T. A., Krylov A. S., Molokeev M. S., Oreshonkov A. S., Pugachev A. M., Tushinova Yu. L., Yelisseyev A. P. Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12 // Powder Technol., 2017, v. 28, pp. 1309–1315. https://doi.org/10.1016/j.apt.2017.02.019 Atuchin V. V., Subanakov A. K., Aleksandrovsky A. S., Bazarov B. G., Bazarova J. G., Gavrilova T. A., Krylov A. S., Molokeev M. S., Oreshonkov A. S., Stefanovich S. Yu. Structural and spectroscopic properties of new noncentrosymmetric selfactivated borate Rb3EuB6O12 with B5O10 units // Des., 2018, v. 140, pp. 488–494. https://doi.org/10.1016/j.matdes.2017.12.004 Sangen Zhao, Guochun Zhang, Jiyong Yao, Yicheng Wu. K3YB6O12: A new nonlinear optical crystal with a short UV cutoff edge // Res. Bull., 2012, v. 47, pp. 3810–3813. https://doi.org/10.1016/j.materresbull.2012.05.062 Miriding Mutailipu, Zhiqing Xie, Xin Su, Min Zhang, Ying Wang, Zhihua Yang, Muhammad Ramzan Saeed Ashraf Janjua, Shilie Pan. Chemical cosubstitution- oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials // Am. Chem. Soc., 2017, v. 139, pp. 18397–18405. https://doi.org/10.1021/jacs.7b11263 Li Yang, Yingpeng Wan, Honggen Weng, Yanlin Huang, Cuili Chen, Hyo Jin Seo. Luminescence and color center distributions in K3YB6O12 : Ce3+ phosphor // Phys. D: Appl. Phys., 2016, v. 49 (325303), pp. 1–12. https://doi.org/10.1088/0022-3727/49/32/325303
APA, Harvard, Vancouver, ISO, and other styles
14

Yao, Wenjiao, Ran He, Xiaoyang Wang, Zheshuai Lin, and Chuangtian Chen. "Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End." Advanced Optical Materials 2, no. 5 (February 28, 2014): 411–17. http://dx.doi.org/10.1002/adom.201300535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wei, Qi, Chao He, Bang-Di Ge, Meng-Xin Wan, Li Wei, and Guo-Ming Wang. "Zeolitic Open-Framework Borates with Noncentrosymmetric Structures and Nonlinear Optical Properties." Inorganic Chemistry 58, no. 5 (February 13, 2019): 3527–34. http://dx.doi.org/10.1021/acs.inorgchem.9b00101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Giesber, H. "Synthesis and characterization of optically nonlinear and light emitting lanthanide borates." Information Sciences 149, no. 1-3 (January 2003): 61–68. http://dx.doi.org/10.1016/s0020-0255(02)00245-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mutailipu, Miriding, Min Zhang, Zhihua Yang, and Shilie Pan. "Targeting the Next Generation of Deep-Ultraviolet Nonlinear Optical Materials: Expanding from Borates to Borate Fluorides to Fluorooxoborates." Accounts of Chemical Research 52, no. 3 (February 22, 2019): 791–801. http://dx.doi.org/10.1021/acs.accounts.8b00649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Bingbing, Xiaodong Zhang, Jin Yu, Ying Wang, Kui Wu, and Ming-Hsien Lee. "First-Principles High-Throughput Screening Pipeline for Nonlinear Optical Materials: Application to Borates." Chemistry of Materials 32, no. 15 (July 16, 2020): 6772–79. http://dx.doi.org/10.1021/acs.chemmater.0c02583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Atuchin, V. V., B. G. Bazarov, T. A. Gavrilova, V. G. Grossman, M. S. Molokeev, and Zh G. Bazarova. "Preparation and structural properties of nonlinear optical borates K2(1−x)Rb2xAl2B2O7, 0." Journal of Alloys and Compounds 515 (February 2012): 119–22. http://dx.doi.org/10.1016/j.jallcom.2011.11.115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sun, Zhenjie. "Application of third-order nonlinear optical materials in complex crystalline chemical reactions of borates." Nonlinear Engineering 11, no. 1 (January 1, 2022): 609–14. http://dx.doi.org/10.1515/nleng-2022-0234.

Full text
Abstract:
Abstract In order to explore the application of third-order nonlinear optical (NLO) materials in complex borate crystalline chemical reactions, the laser light source with limited wavelength range can be extended to ultraviolet (UV) and deep UV region by using NLO crystal materials and frequency conversion technology, which has become a hot research direction of deep UV light source. The experimental results show that the UV cutoff edge of the grown KLi(HC3N3O3)·2H2O crystal is 237 nm. The refractive index of the crystal was measured by prism coupling technique, and the Sellmeier equation of the refractive index of the crystal was fitted. The chemical bond of the crystal is a fundamental means to understand the relationship between structure and properties. With the emergence of a large number of hybrid functional crystals, the composition and structure of crystals become more complex, and the chemical bond theory has also been greatly developed, and then the chemical bond theory of meta crystals or complex crystals has emerged. Once proposed, the theory has been widely used, such as analyzing the eligibility of luminescent crystals, NLO crystals and high-temperature superconductor crystals. NLO materials are the dominant field of China in the world. Crystals with good nonlinear behavior have more complex crystal structures, due to the theory of amorphous structure, the exploration of this aspect is particularly difficult. For the first time, the influence of the composition of rare earth-doped bismuth borate glass on the crystal precipitation and glass microstructure of NLO materials was systematically studied, which laid a theoretical foundation for further development and understanding of new bismuth borate optical systems.
APA, Harvard, Vancouver, ISO, and other styles
21

Mutailipu, Miriding, Zhiqing Xie, Xin Su, Min Zhang, Ying Wang, Zhihua Yang, Muhammad Ramzan Saeed Ashraf Janjua, and Shilie Pan. "Chemical Cosubstitution-Oriented Design of Rare-Earth Borates as Potential Ultraviolet Nonlinear Optical Materials." Journal of the American Chemical Society 139, no. 50 (December 7, 2017): 18397–405. http://dx.doi.org/10.1021/jacs.7b11263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Yan, Xue, Siyang Luo, Zheshuai Lin, Jiyong Yao, Ran He, Yinchao Yue, and Chuangtian Chen. "ReBe2B5O11 (Re = Y, Gd): Rare-Earth Beryllium Borates as Deep-Ultraviolet Nonlinear-Optical Materials." Inorganic Chemistry 53, no. 4 (January 28, 2014): 1952–54. http://dx.doi.org/10.1021/ic4029436.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Cai, Wenbing, Qun Jing, and Jun Zhang. "Lone pair electron effect induced differences in linear and nonlinear optical properties of bismuth borates." New Journal of Chemistry 44, no. 4 (2020): 1228–35. http://dx.doi.org/10.1039/c9nj05873g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Qiu, Qi-Ming, and Guo-Yu Yang. "Two deep-ultraviolet nonlinear optical barium borates framework: Alkali metal enhances the second-harmonic generation response." Journal of Solid State Chemistry 301 (September 2021): 122303. http://dx.doi.org/10.1016/j.jssc.2021.122303.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Yan, Xue, Siyang Luo, Zheshuai Lin, Jiyong Yao, Ran He, Yinchao Yue, and Chuangtian Chen. "ChemInform Abstract: REBe2B5O11(RE: Y, Gd): Rare-Earth Beryllium Borates as Deep-Ultraviolet Nonlinear-Optical Materials." ChemInform 45, no. 16 (April 3, 2014): no. http://dx.doi.org/10.1002/chin.201416015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Zhang, Bingbing, Zhihua Yang, Yun Yang, Ming-Hsien Lee, Shilie Pan, Qun Jing, and Xin Su. "p–(p,π*) interaction mechanism revealing and accordingly designed new member in deep-ultraviolet NLO borates LinMn−1B2n−1O4n−2 (M = Cs/Rb, n = 3, 4, 6)." J. Mater. Chem. C 2, no. 21 (2014): 4133–41. http://dx.doi.org/10.1039/c4tc00363b.

Full text
Abstract:
Exploration on the compounds in the complex alkali metal borate system had resulted in the discovery of a class of deep-ultraviolet second-order nonlinear optical (NLO) materials LinMn−1B2n−1O4n−2 (M = Cs/Rb, n = 3, 4, 6).
APA, Harvard, Vancouver, ISO, and other styles
27

Kuz’micheva, Galina, Irina Kaurova, Victor Rybakov, and Vadim Podbel’skiy. "Crystallochemical Design of Huntite-Family Compounds." Crystals 9, no. 2 (February 15, 2019): 100. http://dx.doi.org/10.3390/cryst9020100.

Full text
Abstract:
Huntite-family nominally-pure and activated/co-activated LnM3(BO3)4 (Ln = La–Lu, Y; M = Al, Fe, Cr, Ga, Sc) compounds and their-based solid solutions are promising materials for lasers, nonlinear optics, spintronics, and photonics, which are characterized by multifunctional properties depending on a composition and crystal structure. The purpose of the work is to establish stability regions for the rare-earth orthoborates in crystallochemical coordinates (sizes of Ln and M ions) based on their real compositions and space symmetry depending on thermodynamic, kinetic, and crystallochemical factors. The use of diffraction structural techniques to study single crystals with a detailed analysis of diffraction patterns, refinement of crystallographic site occupancies (real composition), and determination of structure–composition correlations is the most efficient and effective option to achieve the purpose. This approach is applied and shown primarily for the rare-earth scandium borates having interesting structural features compared with the other orthoborates. Visualization of structures allowed to establish features of formation of phases with different compositions, to classify and systematize huntite-family compounds using crystallochemical concepts (structure and superstructure, ordering and disordering, isostructural and isotype compounds) and phenomena (isomorphism, morphotropism, polymorphism, polytypism). Particular attention is paid to methods and conditions for crystal growth, affecting a crystal real composition and symmetry. A critical analysis of literature data made it possible to formulate unsolved problems in materials science of rare-earth orthoborates, mainly scandium borates, which are distinguished by an ability to form internal and substitutional (Ln and Sc atoms), unlimited and limited solid solutions depending on the geometric factor.
APA, Harvard, Vancouver, ISO, and other styles
28

Qiu, Qi-Ming, and Guo-Yu Yang. "From [B6O13]8− to [GaB5O13]8− to [Ga{B5O9(OH)}{BO(OH)2}]2−: synthesis, structure and nonlinear optical properties of new metal borates." CrystEngComm 23, no. 30 (2021): 5200–5207. http://dx.doi.org/10.1039/d1ce00719j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kuz’min, N. N., K. N. Boldyrev, N. I. Leonyuk, S. Yu Stefanovich, and M. N. Popova. "Luminescence and Nonlinear Optical Properties of Borates LnGa3(BO3)4 (Ln = Nd, Sm, Tb, Er, Dy, or Ho)." Optics and Spectroscopy 127, no. 1 (July 2019): 107–12. http://dx.doi.org/10.1134/s0030400x19070154.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jiang, Xingxing, Siyang Luo, Lei Kang, Pifu Gong, Hongwei Huang, Shichao Wang, Zheshuai Lin, and Chuangtian Chen. "First-Principles Evaluation of the Alkali and/or Alkaline Earth Beryllium Borates in Deep Ultraviolet Nonlinear Optical Applications." ACS Photonics 2, no. 8 (August 7, 2015): 1183–91. http://dx.doi.org/10.1021/acsphotonics.5b00248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Ding, Fenghua, Matthew L. Nisbet, Weiguo Zhang, P. Shiv Halasyamani, Liyuan Chai, and Kenneth R. Poeppelmeier. "Why Some Noncentrosymmetric Borates Do Not Make Good Nonlinear Optical Materials: A Case Study with K3B5O8(OH)2." Inorganic Chemistry 57, no. 18 (August 31, 2018): 11801–8. http://dx.doi.org/10.1021/acs.inorgchem.8b01965.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Bubnova, Rimma, Sergey Volkov, Barbara Albert, and Stanislav Filatov. "Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations." Crystals 7, no. 3 (March 22, 2017): 93. http://dx.doi.org/10.3390/cryst7030093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Atuchin, V. V., B. G. Bazarov, T. A. Gavrilova, V. G. Grossman, M. S. Molokeev, and Zh G. Bazarova. "ChemInform Abstract: Preparation and Structural Properties of Nonlinear Optical Borates K2(1-x)Rb2xAl2B2O7, 0 < x < 0.75." ChemInform 43, no. 14 (March 8, 2012): no. http://dx.doi.org/10.1002/chin.201214013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Shuao, Evgeny V. Alekseev, Jie Ling, Guokui Liu, Wulf Depmeier, and Thomas E. Albrecht-Schmitt. "Polarity and Chirality in Uranyl Borates: Insights into Understanding the Vitrification of Nuclear Waste and the Development of Nonlinear Optical Materials." Chemistry of Materials 22, no. 6 (March 23, 2010): 2155–63. http://dx.doi.org/10.1021/cm9037796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Topnikova, Anastasiia, Elena Belokoneva, Olga Dimitrova, Anatoliy Volkov, and Sergey Stefanovich. "New borates with similar structures and different properties – acentric nonlinear optical KGd[B6O10(OH)2] and centrosymmetric KHo[B6O10(OH)2]." Acta Crystallographica Section A Foundations and Advances 74, a2 (August 22, 2018): e234-e234. http://dx.doi.org/10.1107/s2053273318091647.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Belokoneva, E. L., A. P. Topnikova, S. Yu Stefanovich, E. A. Dobretsova, A. S. Volkov, and O. V. Dimitrova. "New isoformula borates with similar structures and different properties – Acentric nonlinear optical KGd[B6O10(OH)2] and centrosymmetric KHo[B6O10(OH)2]." Solid State Sciences 46 (August 2015): 43–48. http://dx.doi.org/10.1016/j.solidstatesciences.2015.05.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wang, Shuao, Evgeny V. Alekseev, Jie Ling, Guokui Liu, Wulf Depmeier, and Thomas E. Albrecht-Schmitt. "ChemInform Abstract: Polarity and Chirality in Uranyl Borates: Insights into Understanding the Vitrification of Nuclear Waste and the Development of Nonlinear Optical Materials." ChemInform 41, no. 33 (July 24, 2010): no. http://dx.doi.org/10.1002/chin.201033019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cheng, Lin, Qi Wei, Han-Qing Wu, Liu-Jiang Zhou, and Guo-Yu Yang. "Ba3M2[B3O6(OH)]2[B4O7(OH)2] (M=Al, Ga): Two Novel UV Nonlinear Optical Metal Borates Containing Two Types of Oxoboron Clusters." Chemistry - A European Journal 19, no. 52 (November 22, 2013): 17662–67. http://dx.doi.org/10.1002/chem.201303088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kosyl, Katarzyna M., Wojciech Paszkowicz, Roman Minikayev, Alexey N. Shekhovtsov, Miron B. Kosmyna, Maciej Chrunik, and Andrew N. Fitch. "Site-occupancy scheme in disordered Ca3RE2(BO3)4: a dependence on rare-earth (RE) ionic radius." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 77, no. 3 (May 7, 2021): 339–46. http://dx.doi.org/10.1107/s2052520621002328.

Full text
Abstract:
The structures of polycrystalline Ca3RE2(BO3)4 (RE = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Y; space group Pnma) orthoborates were determined using powder X-ray diffraction. Trends in the unit-cell dimensions and yet unreported trends in other structural properties (interatomic distances and the fractional occupation of three Ca/RE sites) for these compounds are demonstrated as a function of RE ionic radius. The unit-cell volume and a unit-cell parameter present a linear dependence, while the b and c unit-cell parameters change in a nonlinear manner. For the whole series, the RE atoms are present at all three cationic sites (labelled as M1, M2 and M3), but the fractional occupancies depend on the RE ionic radius. The small rare-earth atoms tend to enter mainly the M3 site; for the larger rare earths, the occupancy of this site decreases sharply. The occupancy of the M1 site by RE atoms is around 0.5 and tends to increase with increasing RE ionic radius. The M2 site is the least preferentially occupied by RE ions, but the occupancy discernibly increases with rising radius as well. These findings are assembled with properties of isostructural strontium and barium borates, allowing prediction of occupancy schemes for not yet investigated compounds from the A 3RE2(BO3)4 (A = Ca, Ba, Sr).
APA, Harvard, Vancouver, ISO, and other styles
40

Belokoneva, E. L., A. P. Topnikova, S. Yu Stefanovich, E. A. Dobretsova, A. S. Volkov, and O. V. Dimitrova. "ChemInform Abstract: New Isoformula Borates with Similar Structures and Different Properties - Acentric Nonlinear Optical KGd[B6O10(OH)2] and Centrosymmetric KHo[B6O10(OH)2]." ChemInform 46, no. 36 (August 20, 2015): no. http://dx.doi.org/10.1002/chin.201536013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Cheng, Lin, Qi Wei, Han-Qing Wu, Liu-Jiang Zhou, and Guo-Yu Yang. "ChemInform Abstract: Ba3M2[B3O6(OH)]2[B4O7(OH)2] (M: Al, Ga): Two Novel UV Nonlinear Optical Metal Borates Containing Two Types of Oxoboron Clusters." ChemInform 45, no. 14 (March 21, 2014): no. http://dx.doi.org/10.1002/chin.201414006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Belokoneva, Elena L., Sergej Yu Stefanovich, and Olga V. Dimitrova. "New nonlinear optical potassium iodate K[IO3] and borates K3[B6O10]Br, KTa[B4O6(OH)4](OH)2·1.33H2O—Synthesis, structures and relation to the properties." Journal of Solid State Chemistry 195 (November 2012): 79–85. http://dx.doi.org/10.1016/j.jssc.2012.01.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Ковтунец, Евгений Викторович, Алексей Карпович Субанаков, and Баир Гармаевич Базаров. "Синтез, структура и люминесцентные свойства нового двойного бората K3Eu3B4O12." Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, no. 2 (June 25, 2020): 219–24. http://dx.doi.org/10.17308/kcmf.2020.22/2823.

Full text
Abstract:
Установлено образование нового двойного бората K3Eu3B4O12. По данным уточнения кристаллической структуры методом Ритвельда соединение, кристаллизуется в моноклинной сингонии с параметрами элементарной ячейки a = 10.6727(7) Å, b = 8.9086(6) Å, c = 13.9684(9) Å, b = 110.388(2) ° (пр. гр. P2/c). Структура K3Eu3B4O12 представляет собой ажурные слои [Eu8(BO3)8]∞, расположенные почти параллельно плоскости ab, образованные пятиугольными бипирамидами EuO7, октаэдрами EuO6 и присоединенными к ним через общие вершины треугольниками BO3. Связьмежду соседними слоями осуществляется посредством пятиугольных бипирамид EuO7, треугольников BO3 и катионов калия. В спектре люминесценции наблюдается доминирование заметной полосы на длине волны 611 нм, обусловленной переходом 5D0→7F2 иона Eu3+. ЛИТЕРАТУРА 1. Xie Z., Mutailipu M., He G., Han G., Wang Y., Yang Z., Zhang M., Pan S. A series of rare-earth boratesK7MRE2B15O30 (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with large second harmonic generation responses. Chemistry of Materials. 2018;30 (7): 2414–2423. DOI: https://doi.org/10.1021/acs.chemmater.8b004912. Mutailipu M., Xie Z., Su X., Zhang M., Wang Y., Yang Z., Janjua M. R. S. A., Pan S. Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials. Journal of theAmerican Chemical Society. 2017;139(50): 18397–18405. DOI: https://doi.org/10.1021/jacs.7b112633. Atuchin V. V., Subanakov A. K., Aleksandrovsky A. S., Bazarov B. G., Bazarova J. G., DorzhievaS. G., Gavrilova T. A., Krylov A. S., Molokeev M. S., Oreshonkov A. S., Pugachev A. M., Tushinova Yu. L.,Yelisseyev A. P. Exploration of structural, thermal, vibrational and spectroscopic properties of new noncentrosymmetric double borate Rb3NdB6O12. Advanced Powder Technology. 2017;28(5): 1309–1315. DOI:https://doi.org/10.1016/j.apt.2017.02.0194. Atuchin V. V., Subanakov A. K., Aleksandrovsky A. S., Bazarov B. G., Bazarova J. G., GavrilovaT. A., Krylov A. S., Molokeev M. S., Oreshonkov A. S., Stefanovich S. Yu. Structural and spectroscopic propertiesof new noncentrosymmetric selfactivated borate Rb3EuB6O12 with B5O10 units. Materials & Design.2018;140: 488–494. DOI: https://doi.org/10.1016/j.matdes.2017.12.0045. Subanakov A. K., Kovtunets E. V., Bazarov B. G., Dorzhieva S. G., Bazarova J. G. New double holmiumborates: Rb3HoB6O12 and Rb3Ho2B3O9. Solid State Sciences. 2020;105: 106231. DOI: https://doi.org/10.1016/j.solidstatesciences.2020.1062316. Zhao J., Zhao D., Liu B.-Z., Xue Y.-L., Fan Y.-P., Zhang S.-R., Zong Q. K3Gd3B4O12: a new member ofrare-earth orthoborate for luminescent host matrix. Journal of Materials Science: Materials in Electronics.2018;29(24): 20808–20819. DOI: https://doi.org/10.1007/s10854-018-0223-67. Bruker AXS TOPAS V4: General profi le and structure analysis software for powder diffraction data. User’sManual. Bruker AXS, Karlsruhe, Germany, 2008. 68 p. 8. Järvinen M. Application of symmetrized harmonics expansion to correction of the preferred orientationeffect. Journal of Applied Crystallography. 1993;26(4): 525–531. DOI: https://doi.org/10.1107/S00218898930012199. Tanner P. A. Some misconceptions concerning the electronic spectra of tri-positive europium andcerium. Chemical Society Reviews. 2013;12: 5090 DOI: https://doi.org/10.1039/c3cs60033e10. Zhao D., Ma F.-X., Wu Z.-Q., Zhang L., Wei W., Yang J., Zhang R.-H., Chen P.-F., Wu S.-X. Synthesis,crystal structure and characterizations of a new red phosphor K3EuB6O12. Materials Chemistry and Physics.2016;182: 231–236. DOI: https://doi.org/10.1016/j.matchemphys.2016.07.027
APA, Harvard, Vancouver, ISO, and other styles
44

Belokoneva, Elena L., Sergej Yu Stefanovich, and Olga V. Dimitrova. "ChemInform Abstract: New Nonlinear Optical Potassium Iodate K[IO3] and Borates K3[B6O10]Br, KTa[B4O6(OH)4] (OH)2·1.33H2O - Synthesis, Structures and Relation to the Properties." ChemInform 43, no. 52 (December 18, 2012): no. http://dx.doi.org/10.1002/chin.201252012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Arun Kumar, R. "Borate Crystals for Nonlinear Optical and Laser Applications: A Review." Journal of Chemistry 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/154862.

Full text
Abstract:
The development of borate-based single crystals for laser and frequency conversion applications is reviewed. The basic idea behind nonlinear optics and the role of anionic groups in the borate crystals are summarized. The properties of borate crystals—BBO, LBO, CBO, KBBF, SBBO, CLBO, YCOB, GdCOB, GdYCOB, KAB and LCB—are discussed. The growth and characterization of several rare earth-based borate crystals are mainly focused. Several borate crystals are grown from the melt techniques and a few crystals are grown adopting the flux technique. Many rare earth-based borate crystals are extensively used in device applications as they exhibit the frequency conversion ability along with high laser-induced damage tolerance.
APA, Harvard, Vancouver, ISO, and other styles
46

Rodrigo G. dos Santos, Rodrigo G. dos Santos, Lauro J. Q. Maia Lauro J. Q. Maia, Cid B. de Araújo Cid B. de Araújo, and Leonardo de S. Menezes Leonardo de S. Menezes. "Nonlinear optical characterization of single β-barium-borate nanocrystals using second-harmonic confocal microscopy." Chinese Optics Letters 16, no. 4 (2018): 041902. http://dx.doi.org/10.3788/col201816.041902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

SASAKI, TAKATOMO, YUSUKE MORI, and MASASHI YOSHIMURA. "DEVELOPMENT OF NEW NLO BORATE CRYSTALS." Journal of Nonlinear Optical Physics & Materials 10, no. 02 (June 2001): 249–63. http://dx.doi.org/10.1142/s0218863501000589.

Full text
Abstract:
Interests in the use of borate crystals in ultraviolet nonlinear optics have increased because all-solid-state UV lasers obtained with NLO crystals are in highly demand for scientific and industrial applications. Recently, new borate crystals, CsLiB 6 O 10 and Gd x Y 1-x Ca 4 O ( BO 3)3 have been developed by the present authors. CsLiB 6 O 10 is for fourth- and fifth-harmonic generations of Nd:YAG laser, Gd x Y 1-x Ca 4 O ( BO 3)3 for third-harmonic generation. This paper reviews the growth and nonlinear optical properties of these new borate crystals and the progress in UV light generation.
APA, Harvard, Vancouver, ISO, and other styles
48

Becker, Petra. "Borate Materials in Nonlinear Optics." Advanced Materials 10, no. 13 (September 1998): 979–92. http://dx.doi.org/10.1002/(sici)1521-4095(199809)10:13<979::aid-adma979>3.0.co;2-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

B Harde, Gajanan. "Measurements of Nonlinear Absorption and Refraction Coefficients of Pure and Nd Doped Calcium Lanthanum Borate Glasses." International Journal of Science and Research (IJSR) 12, no. 4 (April 5, 2023): 1317–20. http://dx.doi.org/10.21275/sr23415161529.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xue, D., K. Betzler, H. Hesse, and D. Lammers. "Nonlinear optical properties of borate crystals." Solid State Communications 114, no. 1 (March 2000): 21–25. http://dx.doi.org/10.1016/s0038-1098(99)00579-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography