Academic literature on the topic 'Nonlinear'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonlinear.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Nonlinear"
TRUEBA, JOSÉ L., JOAQUÍN RAMS, and MIGUEL A. F. SANJUÁN. "ANALYTICAL ESTIMATES OF THE EFFECT OF NONLINEAR DAMPING IN SOME NONLINEAR OSCILLATORS." International Journal of Bifurcation and Chaos 10, no. 09 (September 2000): 2257–67. http://dx.doi.org/10.1142/s0218127400001419.
Full textWang, Yunze, Yan Sheng, Shan Liu, Ruwei Zhao, Tianxiang Xu, Tiefeng Xu, Feng Chen, and Wieslaw Krolikowski. "Wavelength-dependent nonlinear wavefront shaping in 3D nonlinear photonic crystal." Chinese Optics Letters 22, no. 7 (2024): 071901. http://dx.doi.org/10.3788/col202422.071901.
Full textKosek, Zdeněk. "Nonlinear boundary value problem for a system of nonlinear ordinary differential equations." Časopis pro pěstování matematiky 110, no. 2 (1985): 130–44. http://dx.doi.org/10.21136/cpm.1985.108595.
Full textTejedor Sastre, María Teresa, and Christian Vanhille. "Nonlinear Maximization of the Sum-Frequency Component from Two Ultrasonic Signals in a Bubbly Liquid." Sensors 20, no. 1 (December 23, 2019): 113. http://dx.doi.org/10.3390/s20010113.
Full textVatanshenas, Ali. "Nonlinear Analysis of Reinforced Concrete Shear Walls Using Nonlinear Layered Shell Approach." Nordic Concrete Research 65, no. 2 (December 1, 2021): 63–79. http://dx.doi.org/10.2478/ncr-2021-0014.
Full textKubáček, Lubomír. "Nonlinear error propagation law." Applications of Mathematics 41, no. 5 (1996): 329–45. http://dx.doi.org/10.21136/am.1996.134330.
Full textKnobloch, H. W. "Observability of nonlinear systems." Mathematica Bohemica 131, no. 4 (2006): 411–18. http://dx.doi.org/10.21136/mb.2006.133974.
Full textGerasimchuk, V. S., I. V. Gerasimchuk, and N. I. Dranik. "Solutions of Nonlinear Schrodinger Equation with Two Potential Wells in Linear / Nonlinear Media." Zurnal matematiceskoj fiziki, analiza, geometrii 12, no. 2 (June 25, 2016): 168–76. http://dx.doi.org/10.15407/mag12.02.168.
Full textWang, Meiqiao, and Wuquan Li. "Distributed adaptive control for nonlinear multi-agent systems with nonlinear parametric uncertainties." Mathematical Biosciences and Engineering 20, no. 7 (2023): 12908–22. http://dx.doi.org/10.3934/mbe.2023576.
Full textZhu, Yun-Peng, Z. Q. Lang, and Yu-Zhu Guo. "Nonlinear model standardization for the analysis and design of nonlinear systems with multiple equilibria." Nonlinear Dynamics 104, no. 3 (April 22, 2021): 2553–71. http://dx.doi.org/10.1007/s11071-021-06429-9.
Full textDissertations / Theses on the topic "Nonlinear"
Tretter, Christiane. "On l-nonlinear [lambda-nonlinear] boundary eigenvalue problems /." Berlin : Akad.-Verl, 1993. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=004392929&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Full textMeier, Joachim. "DISCRETE NONLINEAR WAVE PROPAGATION IN KERR NONLINEAR MEDIA." Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2900.
Full textPh.D.
Other
Optics and Photonics
Optics
Reynard, D. M. "Nonlinear estimation." Thesis, University of Newcastle Upon Tyne, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.336142.
Full textStepanyan, Anush. "Nonlinear preservers." Doctoral thesis, Université Laval, 2016. http://hdl.handle.net/20.500.11794/26928.
Full textIn this thesis, we are interested in nonlinear preserver problems. In a general formulation, these demand the characterization of a map φ : A → B, which is not supposed to be linear and leaves a certain property, particular relation, or even a subset invariant, where A and B are complex Banach algebras with unit. In Chapter 3, the description of maps φ from B(X) onto B(Y) satisfying c(φ(S)±φ(T)) = c(S ± T), (S, T ∈ B(X)), is given, where c(·) stands either for the minimum modulus, or the surjectivity modulus, or the maximum modulus and B(X) (resp. B(Y)) denotes the algebra of all bounded linear operators on a Banach space X (resp. on Y). In Chapter 4, a similar question for the reduced minimum modulus of operators, is considered. The characterization of bijective bicontinuous maps φ from B(X) to B(Y) satisfying γ(φ(S ± φ(T)) = γ(S ± T), (S, T ∈ B(X)), is obtained. Chapter 5 is devoted to description of maps φ1, φ2 from a semisimple Banach algebra A onto a Banach algebra B with an essential socle, that satisfy σ(φ1(a)φ2(b)) = σ(ab), (a, b ∈ A). Also, the characterization of maps φ from A onto B, under the same assumptions on A and B, satisfying σ(φ(a)φ(b)φ(a)) = σ(aba), (a, b ∈ A), is given. The corollaries for algebras B(X) and B(Y), that follow immediately from the results, are included.
Xie, (Lily) Hong 1965. "Contaminant transport coupled with nonlinear biodegradation and nonlinear sorption." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/290676.
Full textSavvidis, Petros. "Nonlinear control : an LPV nonlinear predictive generalised minimum variance perspective." Thesis, University of Strathclyde, 2017. http://digitool.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27947.
Full textGrün, Alexander. "Nonlinear pulse compression." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284879.
Full textEn esta tesis he investigado dos métodos para generar pulsos láser ultracortos en regiones espectrales que son típicamente difíciles de lograr con las técnicas existentes. Estos pulsos son especialmente atractivos en el estudio de la dinámica ultrarrápida (pocos femtosegundos) en átomos y moléculas. La primera técnica implica Amplificación Paramétrica Óptica (OPA) mediante mezcla de cuatro ondas en fase gaseosa y soporta la generación de pulsos ultracortos desde el Infrarrojo-Cercano (NIR) hasta la región espectral del Infrarrojo-Medio (MIR). Mediante la combinación de pulsos centrados a una longitud de onda de 800 nm y su segundo armónico en una fibra hueca rellena de argón, hemos demostrado a la salida de la fibra la generación de pulsos en el NIR, centrados a 1.4 µm, con 5 µJ de energía y 45 fs de duración. Se espera que el proceso de mezcla de cuatro ondas involucrado en el OPA lleve a pulsos con fase de la envolvente de la portadora estables, ya que es de gran importancia para aplicaciones en óptica extrema no lineal. Estos pulsos desde el NIR hasta el MIR se pueden utilizar directamente en interacciones no-lineales materia-radiación, haciendo uso de sus características de longitud de onda largas. El segundo método permite la compresión de pulsos intensos de femtosegundos en la región del ultravioleta (UV) mediante la mezcla de suma de frecuencias de dos pulsos en el NIR limitados en el ancho de banda en una geometría de ajuste de fases no-colineal bajo condiciones particulares de discrepancia de velocidades de grupo. Específicamente, el cristal debe ser elegido de tal manera que las velocidades de grupo de los pulsos de bombeo del NIR, v1 y v2, y la del pulso suma-de-frecuencias generado, vSF, cumplan la siguiente condición, v1 < vSF < v2. En el caso de un fuerte intercambio de energía y un pre-retardo adecuado entre las ondas de bombeo, el borde delantero del pulso de bombeo más rápido y el borde trasero del más lento se agotan. De esta manera la región de solapamiento temporal de los impulsos de bombeo permanece estrecha, resultando en el acortamiento del impulso generado. La geometría de haces no-colineales permite controlar las velocidades de grupo relativas mientras mantiene la condición de ajuste de fase. Para asegurar frentes de onda paralelos dentro del cristal y que los pulsos generados por suma de frecuencias se generen sin inclinación, es esencial la pre-compensación de la inclinación de los frente de onda de los pulsos NIR. En esta tesis se muestra que estas inclinaciones de los frentes de onda se pueden lograr utilizando una configuración muy compacta basada en rejillas de transmisión y una configuración más compleja basada en prismas combinados con telescopios. Pulsos en el UV tan cortos como 32 fs (25 fs) se han generado mediante compresión de pulsos no-lineal no-colineal en un cristal BBO de ajuste de fase tipo II, comenzando con pulsos en el NIR de 74 fs (46 fs) de duración. El interés de este método radica en la inexistencia de cristales que se puedan utilizar para la compresión de impulsos no-lineal a longitudes de onda entorno a 800 nm en una geometría colineal. En comparación con las técnicas de última generación de compresión basadas en la automodulación de fase, la compresión de pulsos por suma de frecuencias esta libre de restricciones en la apertura de los pulsos, y por lo tanto es expandible en energía. Tales pulsos de femtosegundos en el visible y en el ultravioleta son fuertemente deseados en el estudio de dinámica ultrarrápida de una gran variedad de sistemas (bio)moleculares.
Ungan, Cahit Ugur. "Nonlinear Image Restoration." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12606796/index.pdf.
Full texta modified version of the Optimum Decoding Based Smoothing Algorithm and the Bootstrap Filter Algorithm which is a version of Particle Filtering methods. A computer software called MATLAB is used for performing the simulations of image estimation. The results of some simulations for various observation and image models are presented.
Thompson, Peter Anthony. "Nonlinear optical materials." Thesis, Cranfield University, 1994. http://dspace.lib.cranfield.ac.uk/handle/1826/4162.
Full textMurray, Nicholas Durante. "Nonlinear PID controller." Thesis, This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-03242009-040653/.
Full textBooks on the topic "Nonlinear"
Gaeta, Giuseppe. Nonlinear Symmetries and Nonlinear Equations. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1018-1.
Full textGaeta, Giuseppe. Nonlinear symmetries and nonlinear equations. Dordrecht: Kluwer Academic Publishers, 1994.
Find full textGaeta, Giuseppe. Nonlinear symmetries and nonlinear equations. Dordrecht: Kluwer Academic, 1994.
Find full textGaeta, Giuseppe. Nonlinear Symmetries and Nonlinear Equations. Dordrecht: Springer Netherlands, 1994.
Find full textFertis, Demeter G. Nonlinear mechanics. 2nd ed. Boca Raton: CRC Press, 1999.
Find full textSauter, E. G. Nonlinear optics. New York: Wiley, 1996.
Find full textGalatzer-Levy, Robert M. Nonlinear Psychoanalysis. Abingdon, Oxon; New York, NY: Routledge, 2017. | Series: Psychoanalysis in a new key book series; 36: Routledge, 2017. http://dx.doi.org/10.4324/9781315266473.
Full textBiskamp, D. Nonlinear magnetohydrodynamics. Cambridge [England]: Cambridge University Press, 1993.
Find full textDatseris, George, and Ulrich Parlitz. Nonlinear Dynamics. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91032-7.
Full textAragón, Francisco J., Miguel A. Goberna, Marco A. López, and Margarita M. L. Rodríguez. Nonlinear Optimization. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11184-7.
Full textBook chapters on the topic "Nonlinear"
Weik, Martin H. "nonlinear." In Computer Science and Communications Dictionary, 1107. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_12427.
Full textBreazeale, Mack A. "How Nonlinear Can Nonlinear Be?" In Review of Progress in Quantitative Nondestructive Evaluation, 2043–50. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2848-7_262.
Full textMeulman, Jacqueline J., and Willem J. Heiser. "Nonlinear Biplots for Nonlinear Mappings." In Information and Classification, 201–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-50974-2_20.
Full textAdamy, Jürgen. "Nonlinear Control of Nonlinear Systems." In Nonlinear Systems and Controls, 343–501. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65633-4_5.
Full textAdamy, Jürgen. "Nonlinear Control of Nonlinear Systems." In Nonlinear Systems and Controls, 345–504. Berlin, Heidelberg: Springer Berlin Heidelberg, 2024. http://dx.doi.org/10.1007/978-3-662-68690-4_5.
Full textGaeta, Giuseppe. "Geometric setting." In Nonlinear Symmetries and Nonlinear Equations, 1–22. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1018-1_1.
Full textGaeta, Giuseppe. "Equations of Physics." In Nonlinear Symmetries and Nonlinear Equations, 205–22. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1018-1_10.
Full textGaeta, Giuseppe. "Symmetries and their use." In Nonlinear Symmetries and Nonlinear Equations, 23–44. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1018-1_2.
Full textGaeta, Giuseppe. "Examples." In Nonlinear Symmetries and Nonlinear Equations, 45–54. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1018-1_3.
Full textGaeta, Giuseppe. "Evolution equations." In Nonlinear Symmetries and Nonlinear Equations, 55–82. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1018-1_4.
Full textConference papers on the topic "Nonlinear"
Schawlow, Arthur L. "Nonlinear Spectroscopy." In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.wc1.
Full textMourou, Gérard. "Laser Ascent to Sub Atomic Physics and Applications." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nm1a.1.
Full textBrevet, Pierre-François. "Second Harmonic Generation from Metallic Nanoparticles." In Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nm2a.6.
Full textFridman, Moti. "The Picoseconds Structure of Ultrafast Rogue Waves." In Nonlinear Photonics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/np.2018.npth2c.7.
Full textZheng, Jian, and Masayuki Katsuragawa. "Arbitrary dual-frequency generation in Raman-resonant four-wave-mixing process." In Nonlinear Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/nlo.2017.nm3b.3.
Full textYou, Jian Wei, and Nicolae C. Panoiu. "Simultaneous Tunable Enhancement of SHG and THG in Graphene Optical Gratings." In Nonlinear Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/nlo.2017.nm3b.4.
Full textPoutrina, Ekaterina, and Augustine Urbas. "Nonreciprocal on the Nanoscale: Nonlinear Generation via Multipole Interference." In Nonlinear Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/nlo.2017.nm3b.5.
Full textObreshkov, Boyan, and Tzveta Apostolova. "Conversion efficiency of high harmonic generation in diamond for 800 nm wavelength." In Nonlinear Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/nlo.2019.ntu4a.3.
Full textDevine, Ekaterina Ponizovskaya. "Second harmonics enhancement by nanostructures." In Nonlinear Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/nlo.2019.ntu4a.31.
Full textHartwig, H., and F. Mitschke. "Experimental Investigation of Slow Oscillations of Dispersion-Managed Solitons." In Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.nmc5.
Full textReports on the topic "Nonlinear"
Odom, Robert I. Nonlinear Inversion. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada531411.
Full textOdom, Robert I. Nonlinear Inversion. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542163.
Full textNewhouse, Sheldon E. Nonlinear Dynamics. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada251271.
Full textKevorkian, J. Nonlinear resonance. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6996969.
Full textOdom, Robert I. Nonlinear Inversion from Nonlinear Filters for Ocean Acoustics. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612664.
Full textOdom, Robert I. Nonlinear Inversion from Nonlinear Filters for Ocean Acoustics. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573392.
Full textBeran, Philip S., Ned J. Lindsley, Jose Camberos, and Mohammad Kurdi. Stochastic Nonlinear Aeroelasticity. Fort Belvoir, VA: Defense Technical Information Center, January 2009. http://dx.doi.org/10.21236/ada494780.
Full textAblowitz, Mark J. Nonlinear Wave Propagation. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada495287.
Full textDr. Katja Lindenberg. Noisy Nonlinear Systems. Office of Scientific and Technical Information (OSTI), November 2005. http://dx.doi.org/10.2172/881047.
Full textDresner, L. Nonlinear differential equations. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/5495671.
Full text