To see the other types of publications on this topic, follow the link: Nonautonomou.

Books on the topic 'Nonautonomou'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 books for your research on the topic 'Nonautonomou.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Cheban, David N. Nonautonomous Dynamics. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34292-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kloeden, Peter E. Nonautonomous dynamical systems. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barreira, Luis, and Claudia Valls. Stability of Nonautonomous Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-74775-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Claudia, Valls, ed. Stability of nonautonomous differential equations. Berlin: Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Caraballo, Tomás, and Xiaoying Han. Applied Nonautonomous and Random Dynamical Systems. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49247-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pötzsche, Christian. Geometric Theory of Discrete Nonautonomous Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14258-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kloeden, Peter E., and Christian Pötzsche, eds. Nonautonomous Dynamical Systems in the Life Sciences. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-03080-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Attractivity and bifurcation for nonautonomous dynamical systems. Berlin: Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Geometric theory of discrete nonautonomous dynamical systems. Berlin: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

M, Samoĭlenko A., and Kulik V. L, eds. Dichotomies and stability in nonautonomous linear systems. London: Taylor & Francis, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kiguradze, I. T., and T. A. Chanturia. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1808-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Akhmet, Marat, and Ardak Kashkynbayev. Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3180-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Johnson, Russell, Rafael Obaya, Sylvia Novo, Carmen Núñez, and Roberta Fabbri. Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29025-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kiguradze, I. T. Asymptotic properties of solutions of nonautonomous ordinary differential equations. Dordrecht: Kluwer Academic, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mierczynski, Janusz. Spectral theory for random and nonautonomous parabolic equations and applications. Boca Raton: CRC Press, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
16

Banks, H. Thomas. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
17

A, Martyni͡u︡k A., and Shestakov A. A, eds. Stability of motion of nonautonomous systems: (method of limiting equations). Australia: Gordon and Breach, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
18

Banks, H. Thomas. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems. Hampton, Va: ICASE, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
19

Valls, Luis Barreira Claudia. Stability of Nonautonomous Differential Equations. Springer, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
20

Attractors For Infinitedimensional Nonautonomous Dynamical Systems. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
21

Kloeden, Peter E., and Christian Pötzsche. Nonautonomous Dynamical Systems in the Life Sciences. Springer London, Limited, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
22

Cheban, David N. Nonautonomous Dynamics: Nonlinear Oscillations and Global Attractors. Springer, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
23

Attractivity and Bifurcation for Nonautonomous Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71225-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Cheban, David N. Nonautonomous Dynamics: Nonlinear Oscillations and Global Attractors. Springer International Publishing AG, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
25

Mitropolsky, Yu A., A. M. Samoilenko, and V. L. Kulik. Dichotomies and Stability in Nonautonomous Linear Systems. Taylor & Francis Group, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kloeden, Peter E., and Christian Pötzsche. Nonautonomous Dynamical Systems in the Life Sciences. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
27

Pötzsche, Christian. Geometric Theory of Discrete Nonautonomous Dynamical Systems. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
28

Samoilenko, A. M., V. L. Kulik, and Yu A. Mitropolsky. Dichotomies and Stability in Nonautonomous Linear Systems. Taylor & Francis Group, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
29

Kocic, Vlajko L., and Candace M. Kent. Nonlinear Nonautonomous Difference Equations: Global Behavior and Applications. De Gruyter, Inc., 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kocic, Vlajko L., and Candace M. Kent. Nonlinear Nonautonomous Difference Equations: Global Behavior and Applications. de Gruyter GmbH, Walter, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kocic, Vlajko L., and Candace M. Kent. Nonlinear Nonautonomous Difference Equations: Global Behavior and Applications. de Gruyter GmbH, Walter, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fabbri, Roberta, Rafael Obaya, Sylvia Novo, Carmen Núñez, and Russell Johnson. Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kiguradze, Ivan, and T. A. Chanturia. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities. Springer Singapore Pte. Limited, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
35

Fabbri, Roberta, Rafael Obaya, Sylvia Novo, Carmen Núñez, and Russell Johnson. Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control. Springer International Publishing AG, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
36

Han, Xiaoying, and Tomás Caraballo. Applied Nonautonomous and Random Dynamical Systems: Applied Dynamical Systems. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fabbri, Roberta, Rafael Obaya, Sylvia Novo, Carmen Núñez, and Russell Johnson. Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kiguradze, Ivan. Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
39

Akhmet, Marat. Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
40

Akhmet, Marat, and Ardak Kashkynbayev. Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kato, J., A. A. Martynyuk, and A. A. Shestakov. Stability of Motion of Nonautonomous Systems (Method of Limiting Equations). CRC Press, 2019. http://dx.doi.org/10.1201/9780203738849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Kato, Junji. Stability of Motion of Nonautonomous Systems: (Methods of Limiting Equations. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kato, Junji. Stability of Motion of Nonautonomous Systems: (Methods of Limiting Equations. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mierczynski, Janusz, and Wenxian Shen. Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications. Taylor & Francis Group, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mierczynski, Janusz, and Wenxian Shen. Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kato, Junji. Stability of Motion of Nonautonomous Systems: (Methods of Limiting Equations. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mierczynski, Janusz, and Wenxian Shen. Spectral Theory for Random and Nonautonomous Parabolic Equations and Applications. Taylor & Francis Group, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
48

Kato, Junji. Stability of Motion of Nonautonomous Systems: (Methods of Limiting Equations. Taylor & Francis Group, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
49

Stability And Bifurcation Theory For Nonautonomous Differential Equations Cetraro Italy 2011. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
50

Barreira, Luis, and Claudia Valls. Stability of Nonautonomous Differential Equations (Lecture Notes in Mathematics Book 1926). Springer, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography