To see the other types of publications on this topic, follow the link: Nonadiabatic molecular dynamics.

Journal articles on the topic 'Nonadiabatic molecular dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Nonadiabatic molecular dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tully, John C. "Nonadiabatic molecular dynamics." International Journal of Quantum Chemistry 40, S25 (1991): 299–309. http://dx.doi.org/10.1002/qua.560400830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richardson, Jeremy O., and Michael Thoss. "Communication: Nonadiabatic ring-polymer molecular dynamics." Journal of Chemical Physics 139, no. 3 (2013): 031102. http://dx.doi.org/10.1063/1.4816124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Curchod, Basile F. E., and Todd J. Martínez. "Ab Initio Nonadiabatic Quantum Molecular Dynamics." Chemical Reviews 118, no. 7 (2018): 3305–36. http://dx.doi.org/10.1021/acs.chemrev.7b00423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dou, Wenjie, and Joseph E. Subotnik. "Nonadiabatic Molecular Dynamics at Metal Surfaces." Journal of Physical Chemistry A 124, no. 5 (2020): 757–71. http://dx.doi.org/10.1021/acs.jpca.9b10698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Carvalho, Felipe, Marine Bouduban, Basile Curchod, and Ivano Tavernelli. "Nonadiabatic Molecular Dynamics Based on Trajectories." Entropy 16, no. 1 (2013): 62–85. http://dx.doi.org/10.3390/e16010062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nakamura, Hiroki, Shinkoh Nanbu, Yoshiaki Teranishi, and Ayumi Ohta. "Development of semiclassical molecular dynamics simulation method." Physical Chemistry Chemical Physics 18, no. 17 (2016): 11972–85. http://dx.doi.org/10.1039/c5cp07655b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, Mei-Yu, Qing-Tian Meng, Ting-Xian Xie, Ke-Li Han, and Guo-Zhong He. "Nonadiabatic photodissociation dynamics." International Journal of Quantum Chemistry 101, no. 2 (2004): 153–59. http://dx.doi.org/10.1002/qua.20221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Szabla, Rafał, Robert W. Góra, and Jiří Šponer. "Ultrafast excited-state dynamics of isocytosine." Physical Chemistry Chemical Physics 18, no. 30 (2016): 20208–18. http://dx.doi.org/10.1039/c6cp01391k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li Xiao-Ke and Feng Wei. "Quantum trajectory simulation for nonadiabatic molecular dynamics." Acta Physica Sinica 66, no. 15 (2017): 153101. http://dx.doi.org/10.7498/aps.66.153101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matsuoka, Takahide, and Kazuo Takatsuka. "Nonadiabatic electron wavepacket dynamics behind molecular autoionization." Journal of Chemical Physics 148, no. 1 (2018): 014106. http://dx.doi.org/10.1063/1.5000293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Coker, D. F., and L. Xiao. "Methods for molecular dynamics with nonadiabatic transitions." Journal of Chemical Physics 102, no. 1 (1995): 496–510. http://dx.doi.org/10.1063/1.469428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Runeson, Johan E., and Jeremy O. Richardson. "Spin-mapping approach for nonadiabatic molecular dynamics." Journal of Chemical Physics 151, no. 4 (2019): 044119. http://dx.doi.org/10.1063/1.5100506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Chen, Feng, Kuniyuki Miwa, and Michael Galperin. "Current-Induced Forces for Nonadiabatic Molecular Dynamics." Journal of Physical Chemistry A 123, no. 3 (2018): 693–701. http://dx.doi.org/10.1021/acs.jpca.8b09251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fedorov, Dmitry A., Stefan Seritan, B. Scott Fales, Todd J. Martínez, and Benjamin G. Levine. "PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics." Journal of Chemical Theory and Computation 16, no. 9 (2020): 5485–98. http://dx.doi.org/10.1021/acs.jctc.0c00575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Ibele, Lea M., and Basile F. E. Curchod. "A molecular perspective on Tully models for nonadiabatic dynamics." Physical Chemistry Chemical Physics 22, no. 27 (2020): 15183–96. http://dx.doi.org/10.1039/d0cp01353f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Akimov, Alexey V. "Nonadiabatic Molecular Dynamics with Tight-Binding Fragment Molecular Orbitals." Journal of Chemical Theory and Computation 12, no. 12 (2016): 5719–36. http://dx.doi.org/10.1021/acs.jctc.6b00955.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Westermayr, Julia, Michael Gastegger, Maximilian F. S. J. Menger, Sebastian Mai, Leticia González, and Philipp Marquetand. "Machine learning enables long time scale molecular photodynamics simulations." Chemical Science 10, no. 35 (2019): 8100–8107. http://dx.doi.org/10.1039/c9sc01742a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Wei, Yalan She, Andrey S. Vasenko, and Oleg V. Prezhdo. "Ab initio nonadiabatic molecular dynamics of charge carriers in metal halide perovskites." Nanoscale 13, no. 23 (2021): 10239–65. http://dx.doi.org/10.1039/d1nr01990b.

Full text
Abstract:
Atomistic details govern quantum dynamics of charge carriers in metal halide perovskites, which exhibit properties of solid state and molecular semiconductors, as revealed by time-domain density functional theory and nonadiabatic molecular dynamics.
APA, Harvard, Vancouver, ISO, and other styles
19

Seki, Yusuke, Toshiyuki Takayanagi, and Motoyuki Shiga. "Photoexcited Ag ejection from a low-temperature He cluster: a simulation study by nonadiabatic Ehrenfest ring-polymer molecular dynamics." Physical Chemistry Chemical Physics 19, no. 21 (2017): 13798–806. http://dx.doi.org/10.1039/c7cp00888k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Carlos Borin, Antonio, Sebastian Mai, Philipp Marquetand, and Leticia González. "Ab initio molecular dynamics relaxation and intersystem crossing mechanisms of 5-azacytosine." Physical Chemistry Chemical Physics 19, no. 8 (2017): 5888–94. http://dx.doi.org/10.1039/c6cp07919a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mukherjee, Saikat, Dmitry A. Fedorov, and Sergey A. Varganov. "Modeling Spin-Crossover Dynamics." Annual Review of Physical Chemistry 72, no. 1 (2021): 515–40. http://dx.doi.org/10.1146/annurev-physchem-101419-012625.

Full text
Abstract:
In this article, we review nonadiabatic molecular dynamics (NAMD) methods for modeling spin-crossover transitions. First, we discuss different representations of electronic states employed in the grid-based and direct NAMD simulations. The nature of interstate couplings in different representations is highlighted, with the main focus on nonadiabatic and spin-orbit couplings. Second, we describe three NAMD methods that have been used to simulate spin-crossover dynamics, including trajectory surface hopping, ab initio multiple spawning, and multiconfiguration time-dependent Hartree. Some aspects
APA, Harvard, Vancouver, ISO, and other styles
22

Sisto, Aaron, Clem Stross, Marc W. van der Kamp, et al. "Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model." Physical Chemistry Chemical Physics 19, no. 23 (2017): 14924–36. http://dx.doi.org/10.1039/c7cp00492c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bennett, Kochise, Markus Kowalewski, Jérémy R. Rouxel, and Shaul Mukamel. "Monitoring molecular nonadiabatic dynamics with femtosecond X-ray diffraction." Proceedings of the National Academy of Sciences 115, no. 26 (2018): 6538–47. http://dx.doi.org/10.1073/pnas.1805335115.

Full text
Abstract:
Ultrafast time-resolved X-ray scattering, made possible by free-electron laser sources, provides a wealth of information about electronic and nuclear dynamical processes in molecules. The technique provides stroboscopic snapshots of the time-dependent electronic charge density traditionally used in structure determination and reflects the interplay of elastic and inelastic processes, nonadiabatic dynamics, and electronic populations and coherences. The various contributions to ultrafast off-resonant diffraction from populations and coherences of molecules in crystals, in the gas phase, or from
APA, Harvard, Vancouver, ISO, and other styles
24

Hanasaki, Kota, Manabu Kanno, Thomas A. Niehaus, and Hirohiko Kono. "An efficient approximate algorithm for nonadiabatic molecular dynamics." Journal of Chemical Physics 149, no. 24 (2018): 244117. http://dx.doi.org/10.1063/1.5046757.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Stella, L., M. Meister, A. J. Fisher, and A. P. Horsfield. "Robust nonadiabatic molecular dynamics for metals and insulators." Journal of Chemical Physics 127, no. 21 (2007): 214104. http://dx.doi.org/10.1063/1.2801537.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bittner, Eric R., and Peter J. Rossky. "Decoherent histories and nonadiabatic quantum molecular dynamics simulations." Journal of Chemical Physics 107, no. 20 (1997): 8611–18. http://dx.doi.org/10.1063/1.475013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lezius, M., V. Blanchet, D. M. Rayner, D. M. Villeneuve, Albert Stolow, and Misha Yu Ivanov. "Nonadiabatic Multielectron Dynamics in Strong Field Molecular Ionization." Physical Review Letters 86, no. 1 (2001): 51–54. http://dx.doi.org/10.1103/physrevlett.86.51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ramakrishna, S., and Tamar Seideman. "Dissipative dynamics of laser induced nonadiabatic molecular alignment." Journal of Chemical Physics 124, no. 3 (2006): 034101. http://dx.doi.org/10.1063/1.2130708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bandrauk, André D., and T. Tung Nguyen‐Dang. "Molecular dynamics in intense fields. III. Nonadiabatic effects." Journal of Chemical Physics 83, no. 6 (1985): 2840–50. http://dx.doi.org/10.1063/1.449234.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Nebgen, Ben, and Oleg V. Prezhdo. "Fragment Molecular Orbital Nonadiabatic Molecular Dynamics for Condensed Phase Systems." Journal of Physical Chemistry A 120, no. 36 (2016): 7205–12. http://dx.doi.org/10.1021/acs.jpca.6b05607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wu, Xiaoyan, Baopi Liu, Thomas Frauenheim, Sergei Tretiak, ChiYung Yam, and Yu Zhang. "Investigation of plasmon relaxation mechanisms using nonadiabatic molecular dynamics." Journal of Chemical Physics 157, no. 21 (2022): 214201. http://dx.doi.org/10.1063/5.0127435.

Full text
Abstract:
Hot carriers generated from the decay of plasmon excitation can be harvested to drive a wide range of physical or chemical processes. However, their generation efficiency is limited by the concomitant phonon-induced relaxation processes by which the energy in excited carriers is transformed into heat. However, simulations of dynamics of nanoscale clusters are challenging due to the computational complexity involved. Here, we adopt our newly developed Trajectory Surface Hopping (TSH) nonadiabatic molecular dynamics algorithm to simulate plasmon relaxation in Au20 clusters, taking the atomistic
APA, Harvard, Vancouver, ISO, and other styles
32

Lei, Yuli, Haibo Ma, and Luis Vasquez. "Ab initio nonadiabatic dynamics of semiconductor materials via surface hopping method." Chinese Journal of Chemical Physics 35, no. 1 (2022): 16–37. http://dx.doi.org/10.1063/1674-0068/cjcp2111247.

Full text
Abstract:
Photoinduced carrier dynamic processes are without doubt the main driving force responsible for the efficient performance of semiconductor nano-materials in applications like photoconversion and photonics. Nevertheless, establishing theoretical insights into these processes is computationally challenging owing to the multiple factors involved in the processes, namely reaction rate, material surface area, material composition etc. Modelling of photoinduced carrier dynamic processes can be performed via nonadiabatic molecular dynamics (NA-MD) methods, which are methods specifically designed to s
APA, Harvard, Vancouver, ISO, and other styles
33

Zeng, Huadong, Xiangyue Liu, Hong Zhang, and Xinlu Cheng. "New theoretical insights into the photoinduced carrier transfer dynamics in WS2/WSe2 van der Waals heterostructures." Physical Chemistry Chemical Physics 23, no. 1 (2021): 694–701. http://dx.doi.org/10.1039/d0cp04517a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Xu, Chao, Feng Long Gu, and Chaoyuan Zhu. "Ultrafast intersystem crossing for nitrophenols: ab initio nonadiabatic molecular dynamics simulation." Physical Chemistry Chemical Physics 20, no. 8 (2018): 5606–16. http://dx.doi.org/10.1039/c7cp08601f.

Full text
Abstract:
Ultrafast intersystem crossing mechanisms for two p- and m-nitrophenol groups (PNP and MNP) have been investigated using ab initio nonadiabatic molecular dynamics simulations at the 6SA-CASSCF level of theory.
APA, Harvard, Vancouver, ISO, and other styles
35

Galparsoro, Oihana, Rémi Pétuya, Fabio Busnengo, et al. "Hydrogen abstraction from metal surfaces: when electron–hole pair excitations strongly affect hot-atom recombination." Physical Chemistry Chemical Physics 18, no. 46 (2016): 31378–83. http://dx.doi.org/10.1039/c6cp06222a.

Full text
Abstract:
Using molecular dynamics simulations, we predict that the inclusion of nonadiabatic electronic excitations influences the dynamics of preadsorbed hydrogen abstraction from the W(110) surface by hydrogen scattering.
APA, Harvard, Vancouver, ISO, and other styles
36

Takatsuka, Kazuo. "Quantum Chaos in the Dynamics of Molecules." Entropy 25, no. 1 (2022): 63. http://dx.doi.org/10.3390/e25010063.

Full text
Abstract:
Quantum chaos is reviewed from the viewpoint of “what is molecule?”, particularly placing emphasis on their dynamics. Molecules are composed of heavy nuclei and light electrons, and thereby the very basic molecular theory due to Born and Oppenheimer gives a view that quantum electronic states provide potential functions working on nuclei, which in turn are often treated classically or semiclassically. Therefore, the classic study of chaos in molecular science began with those nuclear dynamics particularly about the vibrational energy randomization within a molecule. Statistical laws in probabi
APA, Harvard, Vancouver, ISO, and other styles
37

Duke, Jessica Ryan, and Nandini Ananth. "Mean field ring polymer molecular dynamics for electronically nonadiabatic reaction rates." Faraday Discussions 195 (2016): 253–68. http://dx.doi.org/10.1039/c6fd00123h.

Full text
Abstract:
We present a mean field ring polymer molecular dynamics method to calculate the rate of electron transfer (ET) in multi-state, multi-electron condensed-phase processes. Our approach involves calculating a transition state theory (TST) estimate to the rate using an exact path integral in discrete electronic states and continuous Cartesian nuclear coordinates. A dynamic recrossing correction to the TST rate is then obtained from real-time dynamics simulations using mean field ring polymer molecular dynamics. We employ two different reaction coordinates in our simulations and show that, despite t
APA, Harvard, Vancouver, ISO, and other styles
38

Chowdhury, Sutirtha N., and Pengfei Huo. "State dependent ring polymer molecular dynamics for investigating excited nonadiabatic dynamics." Journal of Chemical Physics 150, no. 24 (2019): 244102. http://dx.doi.org/10.1063/1.5096276.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Seidu, Issaka, Simon P. Neville, Ryan J. MacDonell, and Michael S. Schuurman. "Resolving competing conical intersection pathways: time-resolved X-ray absorption spectroscopy of trans-1,3-butadiene." Physical Chemistry Chemical Physics 24, no. 3 (2022): 1345–54. http://dx.doi.org/10.1039/d1cp05085k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

DOLTSINIS, NIKOS L., and DOMINIK MARX. "FIRST PRINCIPLES MOLECULAR DYNAMICS INVOLVING EXCITED STATES AND NONADIABATIC TRANSITIONS." Journal of Theoretical and Computational Chemistry 01, no. 02 (2002): 319–49. http://dx.doi.org/10.1142/s0219633602000257.

Full text
Abstract:
Extensions of traditional molecular dynamics to excited electronic states and non-Born–Oppenheimer dynamics are reviewed focusing on applicability to chemical reactions of large molecules, possibly in condensed phases. The latter imposes restrictions on both the level of accuracy of the underlying electronic structure theory and the treatment of nonadiabaticity. This review, therefore, exclusively deals with ab initio "on the fly" molecular dynamics methods. For the same reason, mainly mixed quantum-classical approaches to nonadiabatic dynamics are considered.
APA, Harvard, Vancouver, ISO, and other styles
41

Burtsev, S., and R. Camassa. "Nonadiabatic dynamics of dark solitons." Journal of the Optical Society of America B 14, no. 7 (1997): 1782. http://dx.doi.org/10.1364/josab.14.001782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Muuronen, Mikko, Shane M. Parker, Enrico Berardo, Alexander Le, Martijn A. Zwijnenburg, and Filipp Furche. "Mechanism of photocatalytic water oxidation on small TiO2 nanoparticles." Chemical Science 8, no. 3 (2017): 2179–83. http://dx.doi.org/10.1039/c6sc04378j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

NAKAMURA, HIROKI. "NONADIABATIC TRANSITION AND CHEMICAL DYNAMICS: MULTI-DIMENSIONAL TUNNELING THEORY AND APPLICATIONS OF THE ZHU–NAKAMURA THEORY." Journal of Theoretical and Computational Chemistry 04, no. 01 (2005): 127–37. http://dx.doi.org/10.1142/s0219633605001386.

Full text
Abstract:
Tunneling and nonadiabatic transition are the most important quantum mechanical effects in chemical dynamics. They are important not only for understanding the dynamics properly, but also for controlling molecular functions. The Zhu–Nakamura (ZN) theory can be combined with the quasi-classical trajectory method and with the IVR(Initial Value Representation)-type semiclassical theory to deal with large chemical systems. Laser control of molecular processes and control of molecular functions can also be realized by properly controlling nonadiabatic transitions. Furthermore, we have recently form
APA, Harvard, Vancouver, ISO, and other styles
44

Freixas, Victor M., Alexander J. White, Tammie Nelson, et al. "Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence." Journal of Physical Chemistry Letters 12, no. 11 (2021): 2970–82. http://dx.doi.org/10.1021/acs.jpclett.1c00266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

YANG, Jinlong. "Theoretical Simulation of Nonadiabatic Dynamics on Molecular Excited States." Acta Physico-Chimica Sinica 35, no. 1 (2019): 13–14. http://dx.doi.org/10.3866/pku.whxb201805311.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Bipeng, Weibin Chu, Alexandre Tkatchenko, and Oleg V. Prezhdo. "Interpolating Nonadiabatic Molecular Dynamics Hamiltonian with Artificial Neural Networks." Journal of Physical Chemistry Letters 12, no. 26 (2021): 6070–77. http://dx.doi.org/10.1021/acs.jpclett.1c01645.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Calio, Paul B., Donald G. Truhlar, and Laura Gagliardi. "Nonadiabatic Molecular Dynamics by Multiconfiguration Pair-Density Functional Theory." Journal of Chemical Theory and Computation 18, no. 2 (2022): 614–22. http://dx.doi.org/10.1021/acs.jctc.1c01048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Takatsuka, Kazuo. "Theory of molecular nonadiabatic electron dynamics in condensed phases." Journal of Chemical Physics 147, no. 17 (2017): 174102. http://dx.doi.org/10.1063/1.4993240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Olsen, Thomas, and Jakob Schiøtz. "Memory effects in nonadiabatic molecular dynamics at metal surfaces." Journal of Chemical Physics 133, no. 13 (2010): 134109. http://dx.doi.org/10.1063/1.3490247.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Yu, Linqiu Li, Sergei Tretiak, and Tammie Nelson. "Nonadiabatic Excited-State Molecular Dynamics for Open-Shell Systems." Journal of Chemical Theory and Computation 16, no. 4 (2020): 2053–64. http://dx.doi.org/10.1021/acs.jctc.9b00928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!