Academic literature on the topic 'Nonadiabatic molecular dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Nonadiabatic molecular dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Nonadiabatic molecular dynamics":

1

Tully, John C. "Nonadiabatic molecular dynamics." International Journal of Quantum Chemistry 40, S25 (1991): 299–309. http://dx.doi.org/10.1002/qua.560400830.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Richardson, Jeremy O., and Michael Thoss. "Communication: Nonadiabatic ring-polymer molecular dynamics." Journal of Chemical Physics 139, no. 3 (July 21, 2013): 031102. http://dx.doi.org/10.1063/1.4816124.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Curchod, Basile F. E., and Todd J. Martínez. "Ab Initio Nonadiabatic Quantum Molecular Dynamics." Chemical Reviews 118, no. 7 (February 21, 2018): 3305–36. http://dx.doi.org/10.1021/acs.chemrev.7b00423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dou, Wenjie, and Joseph E. Subotnik. "Nonadiabatic Molecular Dynamics at Metal Surfaces." Journal of Physical Chemistry A 124, no. 5 (January 9, 2020): 757–71. http://dx.doi.org/10.1021/acs.jpca.9b10698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

de Carvalho, Felipe, Marine Bouduban, Basile Curchod, and Ivano Tavernelli. "Nonadiabatic Molecular Dynamics Based on Trajectories." Entropy 16, no. 1 (December 27, 2013): 62–85. http://dx.doi.org/10.3390/e16010062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nakamura, Hiroki, Shinkoh Nanbu, Yoshiaki Teranishi, and Ayumi Ohta. "Development of semiclassical molecular dynamics simulation method." Physical Chemistry Chemical Physics 18, no. 17 (2016): 11972–85. http://dx.doi.org/10.1039/c5cp07655b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhao, Mei-Yu, Qing-Tian Meng, Ting-Xian Xie, Ke-Li Han, and Guo-Zhong He. "Nonadiabatic photodissociation dynamics." International Journal of Quantum Chemistry 101, no. 2 (2004): 153–59. http://dx.doi.org/10.1002/qua.20221.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Szabla, Rafał, Robert W. Góra, and Jiří Šponer. "Ultrafast excited-state dynamics of isocytosine." Physical Chemistry Chemical Physics 18, no. 30 (2016): 20208–18. http://dx.doi.org/10.1039/c6cp01391k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li Xiao-Ke and Feng Wei. "Quantum trajectory simulation for nonadiabatic molecular dynamics." Acta Physica Sinica 66, no. 15 (2017): 153101. http://dx.doi.org/10.7498/aps.66.153101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Matsuoka, Takahide, and Kazuo Takatsuka. "Nonadiabatic electron wavepacket dynamics behind molecular autoionization." Journal of Chemical Physics 148, no. 1 (January 3, 2018): 014106. http://dx.doi.org/10.1063/1.5000293.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Nonadiabatic molecular dynamics":

1

Zawadzki, Magdalena Martha. "Interrogating nonadiabatic molecular dynamics using ultrafast nonlinear optics." Thesis, Heriot-Watt University, 2017. http://hdl.handle.net/10399/3403.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The field of femtochemistry seeks to comprehend the fundamental underlying mechanisms of the interaction between light and molecules and to study the ultrafast timescales on which these processes occur. In particular, the photoresistance of biologically relevant molecules to potential damage caused by absorption of ultraviolet radiation is of great interest. The so called 'building blocks' of life use ultrafast non-radiative relaxation pathways for the dissipation of the high excess UV energy as vibrational energy into the surroundings, which is the key of their photoprotective function. The use of a 'bottom-up' methodology for such investigations is applied to understand basic model UV chromophores, which are molecular sub-units of various bio-molecules such as, for example, the DNA bases and the melanin pigmentation system. The photophysics of the basic model chromophores, indole and the aniline derivatives N,N-dimethylaniline and 3,5-dimethylaniline, were investigated in the gas phase to understand the link between their molecular structure, the ultrafast non-adiabatic dynamics and thus their potential photoprotection function. This study was done with the powerful time-resolved photoelectron imaging (TRPEI) technique, which provides temporal, energy- and angle-resolved information related to the non-adiabatic relaxation dynamics operating within each molecular system. TRPEI is a highly differential pump-probe spectroscopic technique providing a detailed picture of the underlying processes, since it is sensitive to both electronic and nuclear motion within the molecule. The observation of the complete dynamical process using the TRPEI method is however restricted by the energy of the utilised probe pulse. For this reason the spectroscopic technique was improved with the integration of a newly built femtosecond vacuum ultraviolet (VUV) light source. The VUV laser pulses are generated in a four wave frequency mixing process in third order nonlinear media, such as noble gases. First results from this instrument are presented for the butadiene molecule. The combination of the new VUV laser light and the already powerful spectroscopic technique enables, in principle, the detection of the complete non-radiative relaxation process of a large variety of molecular systems.
2

Opoku-Agyeman, Bernice. "Complexities in Nonadiabatic Dynamics of Small Molecular Anions." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1503094708588515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brooksby, Craig. "Nonadiabatic molecular dynamics with application to condensed phase chemical systems /." Thesis, Connect to this title online; UW restricted, 2003. http://hdl.handle.net/1773/11535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fischer, Michael, Jan Handt, and Rüdiger Schmidt. "Nonadiabatic quantum molecular dynamics with hopping. III. Photoinduced excitation and relaxation of organic molecules." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-151805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Photoinduced excitation and relaxation of organic molecules (C2H4 and CH2NH+2) are investigated by means of nonadiabatic quantum molecular dynamics with hopping (NA-QMD-H), developed recently [Fischer, Handt, and Schmidt, paper I of this series, Phys. Rev. A 90, 012525 (2014)]. This method is first applied to molecules assumed to be initially ad hoc excited to an electronic surface. Special attention is drawn to elaborate the role of electron-nuclear correlations, i.e., of quantum effects in the nuclear dynamics. It is found that they are essential for a realistic description of the long-time behavior of the electronic relaxation process, but only of minor importance to portray the short-time scenario of the nuclear dynamics. Migration of a hydrogen atom, however, is identified as a quantum effect in the nuclear motion. Results obtained with explicit inclusion of an fs-laser field are presented as well. It is shown that the laser-induced excitation process generally leads to qualitatively different gross features of the relaxation dynamics, as compared to the field-free case. Nevertheless, the nuclear wave packet contains all subtleties of the cis-trans isomerization mechanism as observed without a laser field.
5

Fischer, Michael, Jan Handt, and Rüdiger Schmidt. "Nonadiabatic quantum molecular dynamics with hopping. I. General formalism and case study." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-151703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
An extension of the nonadiabatic quantum molecular dynamics approach is presented to account for electron-nuclear correlations in the dynamics of atomic many-body systems. The method combines electron dynamics described within time-dependent density-functional or Hartree-Fock theory with trajectory-surface-hopping dynamics for the nuclei, allowing us to take into account explicitly a possible external laser field. As a case study, a model system of H++H collisions is considered where full quantum-mechanical calculations are available for comparison. For this benchmark system the extended surface-hopping scheme exactly reproduces the full quantum results. Future applications are briefly outlined.
6

Craig, Colleen F. "Nonadiabatic molecular dynamics in time-dependent density functional theory with applications to nanoscale materials /." Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/8671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fischer, Michael, Jan Handt, and Rüdiger Schmidt. "Nonadiabatic quantum molecular dynamics with hopping, II. Role of nuclear quantum effects in atomic collisions." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-151796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
An extension of the nonadiabatic quantum molecular dynamics approach is presented to account for electron-nuclear correlations in the dynamics of atomic many-body systems. The method combines electron dynamics described within time-dependent density-functional or Hartree-Fock theory with trajectory-surface-hopping dynamics for the nuclei, allowing us to take into account explicitly a possible external laser field. As a case study, a model system of H++H collisions is considered where full quantum-mechanical calculations are available for comparison. For this benchmark system the extended surface-hopping scheme exactly reproduces the full quantum results. Future applications are briefly outlined.
8

Andersson, Mauritz. "Quantum Dynamics of Molecular Systems and Guided Matter Waves." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5169-1/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Steinsiek, Christoph. "Molecular Beam Scattering from Ultrathin Metallic Films." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2017. http://hdl.handle.net/11858/00-1735-0000-0023-3EB8-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mansour, Ritam. "Nonadiabatic photoprocesses in nucleic acid fragments and other biologically active chromophores." Electronic Thesis or Diss., Aix-Marseille, 2022. http://www.theses.fr/2022AIXM0299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
La conversion interne (CI) est fondamentale pour les mécanismes de photoprotection dans l'ADN, le développement de matériaux photothermiques et de radiateurs moléculaires plus efficaces. Cette thèse se concentre sur les petites molécules hétéro-bicycliques azotées, en particulier les fragments d'acide nucléique et l'azaindole dont plusieurs aspects de la conversion interne sont encore inconnus. L'adénine et son nucléoside adénosine sont de bons exemples pour étudier ces caractéristiques. Pour évaluer comment la température affecte la durée de vie à l'état excité, nous avons simulé la dynamique non adiabatique des deux molécules à 0 K et 400 K. Nous montrons que la redistribution de l'énergie vibrationnelle est la clé derrière le taux de CI plus lent pour l'adénosine à 0 K, tandis que l'adénine est à peine affectée par les changements de température. Nous avons étudié de manière comparative comment la liaison hydrogène intramoléculaire impacte la désactivation à l'état excité de l'adénosine en phase gazeuse en simulant la dynamique moléculaire non adiabatique pour deux conformères, avec et sans une telle liaison hydrogène. Les résultats montrent que la liaison hydrogène accélère le taux de CI, toujours dominé par les croisements d'états plissés S1/S0. Enfin, nous avons considéré l'azaindole protoné et comment la tautomérisation affecte sa conversion interne. Nos simulations dynamiques ont révélé pourquoi la durée de vie S3 expérimentale du 7-azaindole protoné est environ dix fois plus longue que son isomère, le 6-azaindole protoné
Internal conversion (IC) is fundamental for photoprotection mechanisms in DNA and the development of more efficient photothermal materials and molecular heaters. This thesis focuses on small nitrogenated hetero-bicyclic molecules, particularly nucleic acid fragments and azaindole, whose several aspects of their internal conversion are still unclear. Adenine and its nucleoside adenosine are good examples to investigate those features. To assess how temperature affects their excited-state lifetime, we simulated the nonadiabatic dynamics of both molecules at 0 K and 400 K. We show that vibrational energy redistribution is the key behind the slower IC rate for adenosine at 0 K, while adenine is barely affected by changes in the temperature. We comparatively investigated how the intramolecular hydrogen bond impacts the excited-state deactivation of adenosine in the gas phase by simulating the nonadiabatic molecular dynamics for two conformers, with and without such a hydrogen bond. The results show that the hydrogen bond accelerates the IC rate, still dominated by puckered S1/S0 state crossings. Finally, we investigate how tautomerization affects the internal conversion of protonated azaindole. Our dynamics simulations revealed why the experimental S3 lifetime of protonated 7-azaindole is about ten times longer than its isomer, protonated 6-azaindole

Books on the topic "Nonadiabatic molecular dynamics":

1

Baer, M. Beyond Born-Oppenheimer: Conical intersections and electronic nonadiabatic coupling terms. Hoboken, NJ: Wiley-Interscience, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhu, Chaoyuan. Time-Dependent Density Functional Theory: Nonadiabatic Molecular Dynamics. Jenny Stanford Publishing, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhu, Chaoyuan. Time-Dependent Density Functional Theory: Nonadiabatic Molecular Dynamics. Jenny Stanford Publishing, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhu, Chaoyuan. Time-Dependent Density Functional Theory: Nonadiabatic Molecular Dynamics. Jenny Stanford Publishing, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Nonadiabatic molecular dynamics":

1

Nakamura, Hiroki. "Nonadiabatic Transitions and Chemical Dynamics." In Current Developments in Atomic, Molecular, and Chemical Physics with Applications, 71–77. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0115-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Öhrn, Y., and E. Deumens. "Time-Dependent, Direct, Nonadiabatic, Molecular Reaction Dynamics." In Quantum Dynamics of Complex Molecular Systems, 245–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-34460-5_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Coker, D. F., and S. Bonella. "Linearized Nonadiabatic Dynamics in the Adiabatic Representation." In Quantum Dynamics of Complex Molecular Systems, 321–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-34460-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Köppel, H. "Nonadiabatic Multimode Dynamics at Symmetry-Allowed Conical Intersections." In Quantum Dynamics of Complex Molecular Systems, 113–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-34460-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Westermayr, Julia, and Philipp Marquetand. "Chapter 4. Machine Learning for Nonadiabatic Molecular Dynamics." In Theoretical and Computational Chemistry Series, 76–108. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781839160233-00076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mayer, H. D., and H. Köppel. "Dynamics of wave packets and strong nonadiabatic effects." In Dynamics of Wave Packets in Molecular and Nuclear Physics, 120–21. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/3-540-16772-2_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Baihua, Xin He, and Jian Liu. "Phase Space Mapping Theory for Nonadiabatic Quantum Molecular Dynamics." In Time-Dependent Density Functional Theory, 405–30. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003319214-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nakamura, Hiroki. "Nonadiabatic Chemical Dynamics: Comprehension and Control of Dynamics, and Manifestation of Molecular Functions." In Advances in Chemical Physics, 95–212. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470259474.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zheng, Qijing, Weibin Chu, Xiang Jiang, Lili Zhang, Yunzhe Tian, Hongli Guo, and Jin Zhao. "Excited Carrier Dynamics in Condensed Matter Systems Investigated by ab initio Nonadiabatic Molecular Dynamics." In Time-Dependent Density Functional Theory, 275–319. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003319214-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhoua, Panwang, and Keli Hana. "Multistate Nonadiabatic Molecular Dynamics: The Role of Conical Intersection between the Excited States." In Time-Dependent Density Functional Theory, 251–74. New York: Jenny Stanford Publishing, 2022. http://dx.doi.org/10.1201/9781003319214-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Nonadiabatic molecular dynamics":

1

LARIA, DANIEL, GIOVANNI CICCOTTI, DAVID F. COKER, RAYMOND KAPRAL, and MAURO FERRARIO. "Nonadiabatic molecular dynamics methods for diffusion." In Proceedings of the International School of Physics. WORLD SCIENTIFIC, 1998. http://dx.doi.org/10.1142/9789812839664_0029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Julienne, Paul S. "Calculations on nonadiabatic dynamics in photoassisted collisions." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.fd2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The close-coupled theory of scattering in a radiation field can be successfully used to predict excited atomic alignment (orientation) and fine structure branching when linearly (circularly) polarized laser light is absorbed by the transient quasi-molecule formed during a strong atomic collision. Specific calculations based on ab initio molecular potentials have been carried out for Sr + Ar and Na + He and Ar. Generally good agreement is found between calculated and measured branching fractions as a function of detuning up to several hundred cm-1 from the atomic resonant transition frequency. An analysis of the scattering wave function shows how the transition amplitudes can be factored into separate parts representing Franck-Condon excitation and half-collision dynamics, as for photodissociation phenomena. A simple recoil limit applies when the atoms separate in a time short compared to the time scale of angular momentum recoupling. Departures from the recoil limit can be explained in terms of axis rotation dynamics and the crossing of molecular Born-Oppenheimer potential curves.
3

Perez, Juan, and Joel Y. Yuen-Zhou. "Polariton assisted down-conversion of photons via nonadiabatic molecular dynamics." In Physical Chemistry of Semiconductor Materials and Interfaces IX, edited by Daniel Congreve, Christian Nielsen, and Andrew J. Musser. SPIE, 2020. http://dx.doi.org/10.1117/12.2569308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kidwell, Nathanael, Andrew Petit, Marcus Marracci, and K. Blackshaw. "DYNAMICAL SIGNATURES FROM COMPETING, NONADIABATIC FRAGMENTATION PATHWAYS OF S-NITROSOTHIOPHENOL." In 2021 International Symposium on Molecular Spectroscopy. Urbana, Illinois: University of Illinois at Urbana-Champaign, 2021. http://dx.doi.org/10.15278/isms.2021.fj01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kowalewski, Markus, Kochise Bennett, Jérémy R. Rouxel, and Shaul Mukamel. "Monitoring Ultrafast Nonadiabatic Dynamics in Molecules by Streaking of Photoelectrons." In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/up.2016.uth5a.2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yong, Haiwang, Jérémy R. Rouxel, Daniel Keefer, and Shaul Mukamel. "Tracking Ultrafast Nonadiabatic Dynamics via Electronic Coherences in Twisted X-ray Diffraction." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.th5a.3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Direct observation of electronic coherences at conical intersections (CIs) is challenging. We present a novel ultrafast twisted x-ray diffraction technique that can exclusively track transient electronic coherences at CIs in gas-phase molecules.

To the bibliography